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Fig. 1: (top) Given an egocentric video of an environment, SceneScript directly pre-
dicts a 3D scene representation consisting of structured scene language commands.
(bottom) Our method generalizes on diverse real scenes while being solely trained
on synthetic indoor environments. (last column, bottom) A notable advantage of our
method is its capacity to easily adapt the structured language to represent novel scene
entities. For example, by introducing a single new command, SceneScript can directly
predict object parts jointly with the layout and bounding boxes.

Abstract. We introduce SceneScript, a method that directly produces
full scene models as a sequence of structured language commands using
an autoregressive, token-based approach. Our proposed scene represen-
tation is inspired by recent successes in transformers & LLMs, and de-
parts from more traditional methods which commonly describe scenes
as meshes, voxel grids, point clouds or radiance fields. Our method in-
fers the set of structured language commands directly from encoded vi-
sual data using a scene language encoder-decoder architecture. To train
SceneScript, we generate and release a large-scale synthetic dataset
called Aria Synthetic Environments consisting of 100k high-quality in-
door scenes, with photorealistic and ground-truth annotated renders of
egocentric scene walkthroughs. Our method gives state-of-the art results
in architectural layout estimation, and competitive results in 3D object
detection. Lastly, we explore an advantage for SceneScript, which is
the ability to readily adapt to new commands via simple additions to
the structured language, which we illustrate for tasks such as coarse 3D
object part reconstruction.

Work done while the author was an intern at Meta.
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1 Introduction

Scene representations play a crucial role in machine learning and computer vi-
sion applications, enabling accurate understanding of the environment. Over the
years, researchers have explored various options such as meshes, voxel grids,
point clouds, and implicit representations, aiming to represent complex real-
world scenes with high-fidelity. Each of these exhibits distinct advantages and
limitations that impact their suitability for different tasks. Meshes offer detailed
geometric information but can be expensive in both computation and mem-
ory. Voxel grids provide a volumetric representation but suffer from a trade-off
between resolution and memory requirements. Point clouds are efficient in rep-
resenting sparse scenes but lack semantics and explicit connectivity information.
Implicit representations, such as DeepSDF [22] and NeRF [15], can be infinitely
precise but lack interpretability and editability. The selection of an appropriate
representation directly impacts the performance and efficacy of various tasks in-
cluding object recognition, scene understanding, and 3D reconstruction. In this
paper, we propose a novel scene representation based on structured language
commands as a more efficient and versatile solution.

Our motivation stems from the recent advancements in the field of Large Lan-
guage Models (LLMs) and “next token prediction” autoregressive methods |20],
coupled with recent works on exploring generation of sequences to represent
geometric structures. For example, PolyGen |18| demonstrated the ability to de-
scribe 3D meshes as a sequence of vertices and faces generated using transform-
ers [30]. Similarly, CAD-as-Language [11] showcased the effectiveness of gener-
ating Computer-Aided Design (CAD) primitives to represent 2D CAD sketches.
Our main goal is to directly infer a metrically accurate representation
of a full scene as a text-based sequence of specialized structured language
commands.

Our method, denoted SceneScript, autoregressively predicts a language of
hand-designed structured language commands in pure text form. This language
offers several distinct advantages: 1) As pure text, it is compact and reduces
memory requirements of a large scene to only a few bytes. 2) It is crisp and
complete since the commands are designed to result in sharp and well-defined
geometry (similar to scalable vector graphics). 3) It is interpretable, editable
and semantically rich by design via the use of high-level parametric commands
such as make_door (*door_parameters). 4) It can seamlessly integrate novel
geometric entities by simply adding new structured commands to the language.
5) The fact that the scene representation is a series of language tokens similar
to |20] opens up a plethora of potential new applications in the future such as
ways to edit the scene, query it, or spin up chat interactions.

We mainly focus on the problems of architectural layout estimation and ob-
ject detection as proxy tasks for the efficacy of our SceneScript language as
a scene representation. Architectural entities such as walls, doors, and windows
are highly structured entities, making them an ideal test-bed. However, one no-
table drawback of language models is that they require vast amounts of data for
training. Since there is no existing dataset of scene walkthroughs and their cor-
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responding structured language commands, we publicly released Aria Synthetic
Environments (ASE), a synthetically generated dataset of 100k unique interior
scenes. For each scene, we simulate egocentric trajectories with an entire suite
of sensor data from Project Aria [14]. We also release multiple sources of ground
truth including depth and instance segmentations. Importantly, for each ren-
dered egocentric sequence, the architectural layout ground truth is given in our
proposed SceneScript language.

While architectural layout serves as a test-bed, we demonstrate that our
method SceneScript can easily be extended to new tasks via simple exten-
sions to SceneScript language while keeping both the visual input and network
architecture fixed. We illustrate this on the problem of 3D object detection,
which results in a method that jointly infers architectural layout and 3D ori-
ented bounding boxes. Additionally, we demonstrate more proof-of-concept ex-
periments that show that our method results in a significantly lower barrier
to entry for new tasks including representing coarse 3D object reconstruction,
curved entities, composition of entities, and entity states.

Our core contributions are:

— We propose SceneScript, a method that jointly predicts architectural layout
and object bounding boxes of a scene in the form of structured language
commands given a video stream.

— We demonstrate that SceneScript can easily be extended to completely
new tasks with simple additions of commands to our structured language,
significantly lowering the barrier to entry for new tasks.

— We release a large-scale synthetic dataset, named Aria Synthetic Environ-
ments, comprized of 100k unique high-quality 3D indoor scenes with GT,
which will enable large scale ML training of scene understanding methods.

— We show that training SceneScript on Aria Synthetic Environments leads
to generalization on real scenes ( see videos/demos on the project page).

2 Related Works

2.1 Layout Estimation

Layout estimation is an active research area, aiming to infer architectural el-
ements. Scan2BIM [17] proposes heuristics for wall detection to produce 2D
floorplans. Ochmann et al. [19] formulate layout inference as an integer linear
program using constraints on detected walls. Shortest path algorithms around
birds-eye view (BEV) free space |3] and wall plus room instance segmentation [5]
have also been explored.

Furukawa et al. [10] utilize a Manhattan world-based multi-view stereo al-
gorithm [9] to merge axis-aligned depth maps into a full 3D mesh of building
interiors. RoomNet [13]| predicts layout keypoints while assuming that a fixed
set of Manhattan layouts can occur in a single image of a room. LayoutNet [38|
improves on this by predicting keypoints and optimising the Manhattan room
layout inferred from them. Similarly, AtlantaNet [23] predicts a BEV floor or
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Table 1: Complete set of structured language commands designed for detailing archi-
tectural layouts and object bounding boxes. Supported data types can include int,
float, bool. It is important to note that the language’s extensibility allows for easy
augmentation by introducing new commands like make_prim, make_pillar, or enhanc-
ing existing commands, such as incorporating is_double_door (bool).

make_wall (int) make_door (int) make_window (int) make_bbox (int)

id  int id int id int clladss o
a_x float wallO_id int wallO_id int osition x float
a_y float walll_id int walll_id int Position_ float
a_z float position_x float | position_x float p . -y
A A position_z float
b_x float |position_y float | position_y float ansle z float
b_y float |position_z float | position_z float scile_x float
b_z float width float width float scale_ float
height float height float height float -y
scale_z float

ceiling shape and approximates the shape contour with a polygon resulting in
an Atlanta world prior. SceneCAD [1] uses a graph neural network to predict
object-object and object-layout relationships to refine its layout prediction.

Our approach stands out by requiring neither heuristics nor explicitly defined
prior knowledge about architectural scene structure. In fact, our method demon-
strates geometric understanding of the scene which emerges despite learning to
predict the GT scene language as a sequence of text tokens.

2.2 Geometric Sequence Modelling

Recent works have explored transformers for generating objects as text-based
sequences. PolyGen [18] models 3D meshes as a sequence of vertices and faces.
CAD-as-Language [11] represents 2D CAD sketches as a sequence of triplets
in protobuf representation, followed by a sequence of constraints. Both Sketch-
Gen [21] and SkexGen [33] use transformers to generate sketches. DeepSVG [4]
learns a transformer-based variational autoencoder (VAE) that is capable of
generating and interpolating through 2D vector graphics images. DeepCAD [32]
proposes a low-level language and architecture similarly to DeepSVG, but ap-
plies it to 3D CAD models instead of 2D vector graphics. Our approach stands
out by utilising high-level commands, offering interpretability and semantic rich-
ness. Additionally, while low-level commands can represent arbitrarily complex
geometries, they lead to prohibitively longer sequences when representing a full
scene.

The closest work to ours is Pix2Seq [6]. Pix2Seq proposes a similar archi-
tecture to ours but experiments only with 2D object detection, thus requir-
ing domain-specific augmentation strategies. Another closely related work is
Point2Seq [34] that trains a recurrent network for autoregressively regressing
continuous 3D bounding box parameters. Interestingly, they find the autoregres-
sive ordering of parameters outperforms current standards for object detection
architectures, including anchors |12]| and centers [36].
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Fig. 2: Aria Synthetic Environments: (top) Random samples of generated scenes show-
ing diversity of layouts, lights and object placements. (bottom - left to right) A top
down view of a scene filled with objects, a simulated trajectory (blue path), renderings
of depth, RGB, and object instances, and lastly a scene pointcloud.

3 SceneScript Structured Language Commands

We first describe our structured language commands that define a full scene
representation including both layout and objects. After this, we introduce our
corresponding large scale training dataset: Aria Synthetic Environments.

3.1 Commands and Parameters

We begin with a parameterization that captures the most common layout ele-
ments. For this purpose we use three commands: make_wall, make_door, and
make_window. Each command comes with a set of parameters that results in
well-defined geometry. For example, the full set of parameters for make_wall
specifies a gravity-aligned 2D plane, while make_door and make_window spec-
ify box-based cutouts from walls. It is worth noting that this parametrization
is arbitrary, and is only made in the context of presenting a proof-of-concept
SceneScript system. There are infinitely many parametrization schemes, in this
work we opt for one that prioritizes ease of use and research iteration speed.

In addition to representing these three major layout entities, we aim to jointly
infer objects as oriented bounding boxes. Thus, we introduce a fourth command:

make_bbox: id, class, position_x, position_y,
position_z, angle_z, scale_x, scale_y, scale_z

This simple parametrization represents an oriented 3D bounding box that is
assumed to be aligned with gravity (assuming it points in the —z direction).
A summary of these commands and their respective parameters are shown in
Table 1l
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While we have described just four commands to capture structure and ob-
jects in an indoor environment, importantly, this text-based parametrization can
readily be extended geometrically and/or even semantically to include states
or other functional aspects. For example, changing the mentioned make_door
command to include parameters such as open_degree allows the language to
represent door states. In Section [0} we demonstrate how such extensions to the
language allows for SceneScript to readily adapt to new tasks including coarse
3D object reconstruction.

3.2 Scene Definition

A single scene can be described as a sequence of our proposed structured language
commands. The sequence requires no specific ordering, and can be of arbitrary
length. From this definition, the 3D scene can easily be obtained by parsing the
commands through a simple custom interpreter.

3.3 Training Dataset

To enable practical indoor scene reconstruction based on our structured language
commands (Section, we publicly released a new dataset called Aria Synthetic
Environments. It consists of a large number of training pairs of egocentric scene
walkthroughs linked with corresponding ground truth command sequences.

Since transformers require vast amounts of data, we generated 100k synthetic
scenes, which is in comparison infeasible for real-world data. Each synthetic scene
comes with a floor plan model, a corresponding complete 3D scene as well as a
simulated agent trajectory and a photo-realistic rendering of this trajectory. Fig.
[2]illustrates the basics of Aria Synthetic Environments. For brevity, we refer the
reader to the supplemental material for further details.

4 SceneScript Network Architecture

Our pipeline is a simple encoder-decoder architecture that consumes a video
sequence and returns SceneScript language in a tokenized format. Figure [3]
illustrates a high-level overview of our method.

We examine three encoder variants: a pointcloud encoder, a posed image set
encoder, and a combined encoder. The decoder remains the same in all cases.

4.1 Input Modalities and Encoders

The encoder computes a latent scene code in the form of a 1D sequence from
video walkthrough of the scene. The decoder is designed to consume these 1D se-
quences as input. This enables the integration of various input modalities within
a unified framework. As a preliminary, for each scene we assume access to a set
of M posed camera images {I1,...,Im}, e.g., SLAM output.
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Fig. 3: SceneScript core pipeline overview. Raw images & pointcloud data are encoded
into a latent code, which is then autoregressively decoded into a sequence of commands
that describe the scene. Visualizations are shown using a customly built interpreter.
Note that for the results in this paper, the the point clouds are computed from the
images using Aria MPS [25] — i.e. are not using a dedicated RGB-D / Lidar sensor.

Point Clouds. A point cloud P = {p1, ..., pn} consists of N points, where p;
is a 3D point coordinate. It can come from passive images using SLAM or SfM,
or RGB-D / Lidar sensors.

Specifically, we use the Semi-dense Pointclouds from Project Aria’s Machine
Perception Services [25], that are obtained from a visual-inertial SLAM system
using Aria’s monochrome cameras and IMUs. We discretize the point cloud to
5cm resolution, then employ a sparse 3D convolution library [26127] to generate
pooled features. The encoder €4, applies a series of down convolutions, resulting
in a reduction of the number of points in the lowest level.

Fyeo = Egeo(P), P € RVYP Fy,, € RFXOE (1)

where K < N. F, is a condensed latent representation of the point cloud that
contains the necessary scene context. For later use in the transformer decoder,
we treat Fg., as a sequence of feature vectors where the entries fi, i € 1..K
are sorted lexicographically according to the coordinate of the active site c;, 7 €
1...K. To incorporate positional encoding, we append the coordinates of the
active sites to their respective feature vectors f; < cat(fi, c;).

Point Clouds with Lifted Features. We additionally explore augmenting
the point cloud with image features. From the original egocentric sequence and
associated trajectory, we sample a set of M keyframes, I; where i € 1...M, and
compute a set of image features F; for each. We then project each point into the
set of keyframe cameras and retrieve the feature vector (output by a CNN) at
the pixel location:

fip = Fi(m(p)) peP,icl.M, (2)

where 7(-) represents the projection function of a 3D point into the camera. If
7(p) falls outside the image bounds, no feature is retrieved. We combine the set
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of lifted features for a point thrOIJl\%h an average, resulting in a single feature
vector for each point: f, = 1/M 3.~ f;,.

We form our lifted-feature point cloud, P’ = {p], ..., pjp}, by concatenating
each point’s lifted feature with the original XYZ location: p’ = cat(f,, p). P’ is
then encoded into a context sequence using sparse 3D convolutions, with only
the input feature channels adjusted to match the new point feature dimension.

End-to-end Encoding of Posed Views. In order to encode the egocentric
sequence more directly without a pre-computed point cloud, we adopt a 2D < 3D
bidirectional transformer encoder following the form defined in RayTran [29).

In this formulation, we initialize a volume representation of the scene as a
dense voxel grid of features, V, that coincides with the scene geometry. In turn,
we sample a subset of M keyframes, I; where ¢ € 1...M, from the full stream of
posed images. And for each of these keyframes we compute image features from a
CNN, F;. Repeated layers of bidirectional attention enable the image and voxel
grid features to be refined iteratively in successive transformer blocks through
the aggregation of view-point and global-scene information. As in RayTran [29],
the interaction between the two representations is guided by the image-formation
process by leveraging known camera parameters and poses. Attention in these
transformer blocks is restricted by patch-voxel ray intersections, where each im-
age patch attends to the voxels it observes and each voxel location attends to
all the patches that observe it. The resulting voxel grid of features is flattened,
concatenated with an encoded represention of its XYZ location, and passed to
the decoder.

4.2 Language Decoder

We utilize a transformer decoder [30] to decode the scene latent code into a se-
quence of structured language commands. The sequence of tokens passes through
an embedding layer, followed by a positional encoding layer. Together with the
encoded scene code (Section , the embedded tokens are passed into the sev-
eral transformer decoder layers where a causal attention mask is used to ensure
autoregressive generation. More implementation details can be found in Ap-
pendix ?77.

4.3 Language Tokenization

We refer to the serialization the structured language into a sequence of tokens as
tokenization. The goal is to construct a bijective mapping between a sequence
of structured language commands (Section [3) and a sequence of integer tokens
that can be predicted by the transformer decoder architecture. We utilize the
following schema:

[ ,PART, CMD, PARAM_1, PARAM_2, ..., PARAM_N, PART, ..., ]
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For example, a sample sequence for a make_door command may look like:

[ ,PART, MAKE_DOOR, POSITION_X, POSITION_Y,POSITION_Z,
WALLO_IDX,WALL1_IDX,WIDTH, HEIGHT, PART, ..., ]

This schema enables 1D packing of tokens without requiring fixed-size slots or
padding like other sequence modelling methods such as [32]. Additionally, it does
not impose any limitations on the number or the hierarchy of sub-sequences, as
they are flexibly separated by a PART token. This allows for arbitrarily complex
scene representations.

The tokenized sequence is discretized into integers at a 5cm resolution, then
translated into a sequence of embeddings via learnable lookup table. Note that
by designing the SceneScript language, we also design the tokenization. This
tokenization scheme is notably different from standard NLP tokenization, which
involves Byte-Pair Encodings (BPE) [20].

5 Results

In this section, we introduce the metrics we define to measure performance, and
we discuss some qualitative and quantitative results that give insights to our
proposed SceneScript method.

5.1 Metrics

To evaluate accuracy of the layout estimation, we make use of geometric metrics
applied between the ground-truth room layout and our predicted SceneScript lan-
guage. To do so, we define an entity distance, dg, between a pair of entities of the
same class. Each entity, F, is represented as a 3D plane segment comprising of 4
corners {cy, ¢a, ¢3, ¢4 }. The distance between two entities, E and E’ is computed
as the maximum Euclidean distance between each corner and its counterpart as-
signed via Hungarian mathcing, i.e.: dg(E, E') = max{||c; —c;(i) [|:i=1,..,4},
where 7(4) is the permutation also found via Hungarian matching.

We threshold dg to define the success criteria for the predicted entities. We
compute the following metrics:

— F1 Score @ threshold — the F1 score of the set of predictions is computed at
a single dg threshold.

— Average F1 Score — the F1 score is computed across a range of entity distance
thresholds and averaged.

The scores are computed for each class independently and averaged to overall
score. In addition, scores are computed for each scene and averaged across the
dataset. We use the following range of thresholds (cm) for the average F1 scores:
T=1{1,2,..,9,10,15, 25, 30,50, 75,100}.
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Input Pointcloud SceneCAD RoomFormer* SceneScript Ground Truth

BT R
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Fig. 4: Qualitative samples between our model and SOTA methods on Aria Synthetic
Environments’s test set. Hierarchical methods like SceneCAD suffer from error cascad-
ing which leads to missing elements in the edge prediction module. RoomFormer (a 2D
method extruded to 3D) primarily suffers from lightly captured scene regions which
leave a unnoticeable signal in the density map.

Table 2: Layout Estimation on Aria Synthetic Environments Quantitative
comparison between our method and related recent work.

F1 @5cm Avg F1
Method mean wall door window|mean wall door window
SceneCAD 20 [1] - 0.048 - - - 0275 -

RoomFormer 23 |37]|0.139 0.159 0.148 0.110 |0.464 0.505 0.481 0.407
Ours (Point cloud) |0.848 0.930 0.922 0.692 |0.784 0.816 0.811 0.724
Ours (Lifted features)|0.903 0.943 0.959 0.806 |0.801 0.818 0.822 0.764
Ours (Image-only) |0.661 0.687 0.798 0.497 [0.719 0.727 0.772 0.658

5.2 Layout Estimation

We perform scene layout estimation with the the three encoder variants of
SceneScript: a baseline model with sparse3d convolution pointcloud encoder,
an RGB RayTran-based feature volume encoder [29]|, and our proposed lifted
feature point encoder. The same transformer decoder is being used in all three
scenarios.

To provide comparison to existing works, we include results from two baseline
methods, namely SceneCAD [1] and the recent RoomFormer [37]. For these
experiments SceneCAD and RoomFormer were both trained on Aria Synthetic
Environments. Note that SceneCAD only predicts walls.

Table [2] shows the main results for our F1-based metrics on Aria Synthetic
Environments. SceneScript exhibits a substantial performance advantage over
SOTA layout estimation baselines across multiple metrics.
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Table 3: 3D Object Detection Performance comparison against state-of-the-art
methods on an 3D object detection task trained and evaluated by F1-score at 0.25 and
0.5 IoU thresholds. By simply adding a make_bbox command SceneScript can achieve
competitive object detection results.

(a) Aria Synthetic Environments (b) ScanNet [§|
F1 F1
Method Input [@.25 IoU @.50 IoU Method Input  |@.25 IoU @.50 IoU

3DETR. 21 [16] [Points| 0.201  0.078 3DETR "21 [16] | Points 0.480  0.349
Cube R-CNN 23 [2]| RGB | 0.394  0.228  3DPETR-m 21i6|| Points 0.536  0.407

ImVoxelNet 22 {24] | RGB | 0.584 0.516 SoftGroup 22 |31||RGB Points| 0.622  0.573
Ours | Points 0'620 0‘577 Ours RGB Points| 0.506 0.406

Both baseline methods encounter a significant decline in accuracy when deal-
ing with finer details. See Figure [4] for qualitative comparisons between our
method and baseline methods.

Encoder Ablation. The results demonstrate that SceneScript is robust to
the encoding strategy chosen to encode the egocentric capture. It is able to
infer highly accurate scene layouts in all configurations tested, and in each case
SceneScript outperforms the included baselines by a significant margin.

Relative comparison of the encoder strategies reveals that leveraging the
pointclouds from a highly specialized and well-tuned system is still able to of-
fer advantages of an, almost, entirely learned approach such as RayTran [29].
A light extension in the form of lifted image features can widen this gap even
further. In particular, we observe that the discrepancy between the encoders be-
comes particularly apparent as the complexity of the scene increases in the form
of increased room count. In the Appendix, we also show a quantitative evalu-
ation of per-entity error distances, which aids in further attribution of relative
performance gains between the encoding methods.

5.3 Object Detection

In this section, we perform evaluation of SceneScript for object detection on
both Aria Synthetic Environments and ScanNet [8]. For comparison, we include
recent and state-of-the-art baseline methods, namely Cube-RCNN |2], ImVoxel-
Net [24], 3DETR [16], and SoftGroup [31].

Worth noting is that SceneScript does not predict a confidence score for
each make_bbox command. This means that fair computation of the conventional
mAP metric for this task is not possible, as detections cannot be ranked across
scenes. Among other issues, this results in a metric that varies with the order in
which scenes are evaluated. We therefore report Fl-score-based metrics, which
do not exhibit this order variance. Further discussion of this, and mAP numbers
for the baselines for reference, can be found in the Appendix.
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Original Decomposed
Primitives

Fig. 5: Example scene reconstructions on scenes from Aria Synthetic Environments.
(left) Visualisation of the decomposed meshes used to create make_prim training pairs.
(right) Views of full scene predictions, as well as close ups highlighting the fidelity of ob-
ject reconstruction through the prediction volumetric primitives enabled by make_prim.

In Table all methods were trained on Aria Synthetic Environments.
3DETR performs poorly due to its encoder being designed for relatively clean
datasets such as ScanNet [8], while semi-dense point clouds from Aria Synthetic
Environments exhibit more noise and less uniformity (see Figure 3| for an exam-
ple). Cube R-CNN and ImVoxelNet both operate on RGB images, and detections
are tracked for the entire sequence via a tracker |2] to provide competitive perfor-
mance. In Table our method provides similar performance to both 3DETR
and SoftGroup.

Through the addition of the make_bbox command, SceneScript demon-
strates object detection performance on par with SOTA baselines on multiple
object detection datasets. This result illustrates the extensibility of a token-based
approach, and that our proposed SceneScript language representation does not
suffer compared to specialised object detection network architectures.

6 Extending the SceneScript Structured Language

A key advantage offered by SceneScript’s structured language prediction paradigm
is that the expressiveness of its reconstruction can be tailored without requiring

a change to the method. Up to now, we have focussed on showcasing the efficacy
of SceneScript for representing simple layout elements and objects as bounding
boxes. In this section, we showcase this characteristic by increasing the fidelity
of our scene representation by introducing coarse 3D object reconstruction.

6.1 Objects as Volumetric Primitives

We turn to a language based on volumetric primitives, motivated by works such
as [28l[35]. Using simple primitives such as cuboids and extruded cylinders, en-
ables us to coarsely represent arbitrary object categories while maintaining ob-
ject semantics (e.g. tabletops can be represented by a single cuboid). Thus, this
language can describe many object categories simultaneously.
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Fig. 6: Example scene reconstructions on real scenes with the addition of the
make_prim command. Note that SceneScript was trained only on synthetic data.

This representation requires only one additional command over the layout
and box commands already discussed previously, namely:

make_prim: bbox_id, prim_num, class, center_x, center_y
, center_z, angle_x, angle_y, angle_z, scale_x,
scale_y, scale_z

This command and its parameters describe a volumetric primitive (cuboid or
extruded cylinder) via its 3D center, 3D rotation, and 3D scale. The prim_num
parameter can be associated with semantics, e.g. tabletops of different tables
typically have the same prim_num.

Dataset. To obtain ground truth make_prim commands that align with the
objects in Aria Synthetic Environments, we first run an extension of Yang et
al. to obtain cuboid and extruded cylinder primitives of a database of 3D
CAD models (ABO , which was used to populate Aria Synthetic Environ-
ments). See Figure (left) for example decompositions. For this proof-of-concept
experiment, we use three categories: table, chair, and sofa. We then convert these
decomposed primitives into make_prim commands that are aligned with the ob-
jects in the dataset, which results in training pairs.

Results. We show qualitative results on Aria Synthetic Environments in Fig-
ure [5} In Figure [6] we show inferences in a few real-world environments despite
only having trained on our simulated dataset. These results demonstrate that
SceneScript’s general purpose architecture is capable of coarsely reconstructing
objects of multiple categories through addition of a new command.

6.2 Further Extensions

In this section, we have explored just one extension of SceneScript’s structured
scene language in order to demonstrate its flexibility. The result was greatly
increased expressiveness of the scene reconstruction. In the Appendix, we include
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additional explorations that can further increase the fidelity and accuracy of the
reconstructions. These explorations include reconstructing curved walls, inferring
object states (e.g., door opening angles), as well as direct prediction of parametric
models using object models deployed commonly by tech artists (e.g., blender
geometry nodes) for object reconstruction.

7 Interactive Scene Reconstruction

Scene reconstruction often occurs offline, on pre-recorded walkthroughs of an
environment, or derivatives of them, such as a point cloud. However, we take
advantage of SceneScript’s inference occurring at an interactive rate, which
takes between 2-5s depending on the size of the environment, by implement-
ing streaming of SceneScript’s live reconstructions into a modern VR headset.
This enables an interactive experience where the user can see the reconstruc-
tion overlaid onto the environment they are exploring in real-time. See the video
recording on the website for examples. Visualisations of this interface are in-
cluded in Figure

8 Limitations and Future Work

SceneScript exhibits certain limitations that should be acknowledged. First,
the structured language commands are manually defined, which requires hu-
man intervention at this stage. Secondly, due to the higher-level nature of our
commands, it can be challenging to capture fine-grained geometric details with
extremely high precision (i.e. mm). As a consequence, the resulting reconstruc-
tions based on this representation tend to lead to simpler and coarser geometries,
potentially missing intricate nuances at the very high detail level. These limita-
tions potentially highlight areas for future research and optimization, aiming to
automate the command definition process and explore techniques to enhance the
representation’s ability to capture intricate geometric details accurately. How-
ever, we believe that the ability to built scene representations that are based
on structured language commands will be a key part in complex and efficient
methods of scene reconstruction in the future.

9 Conclusion

We introduced SceneScript, a novel reconstruction method that is based on
a tokenized scene representation. SceneScript autoregressively predicts a se-
quence of structured scene language commands given a video stream of an indoor
space. This tokenized scene representation is compact, editable and intepretable.
In addition, we showed that a strength of SceneScript is the ability to extend to
arbitrary elements (e.g. Bezier curves, object part decomposition) with minimal
changes. This research opens up new directions in representing 3D scenes as lan-
guage, bringing the 3D reconstruction community closer to the recent advances
in large language models such as GPT-class models |20].
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