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Abstract. Visual synthesis has recently seen significant leaps in per-
formance, largely due to breakthroughs in generative models. Diffusion
models have been a key enabler, as they excel in image diversity. How-
ever, this comes at the cost of slow training and synthesis, which is only
partially alleviated by latent diffusion. To this end, flow matching is an
appealing approach due to its complementary characteristics of faster
training and inference but less diverse synthesis. We demonstrate our
FMBoost approach, which introduces flow matching between a frozen
diffusion model and a convolutional decoder that enables high-resolution
image synthesis at reduced computational cost and model size. A small
diffusion model can then effectively provide the necessary visual diversity,
while flow matching efficiently enhances resolution and detail by mapping
the small to a high-dimensional latent space, producing high-resolution
images. Combining the diversity of diffusion models, the efficiency of
flow matching, and the effectiveness of convolutional decoders, state-of-
the-art high-resolution image synthesis is achieved at 10242 pixels with
minimal computational cost. Cascading FMBoost optionally boosts this
further to 20482 pixels. Importantly, this approach is orthogonal to re-
cent approximation and speed-up strategies for the underlying model,
making it easily integrable into the various diffusion model frameworks.
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1 Introduction

Visual synthesis has recently witnessed unprecedented progress and popularity
in computer vision and beyond. Various generative models have been proposed
to address the diverse challenges in this field [78], including sample diversity,
quality, resolution, training, and test speed. Among these approaches, diffusion
models (DMs) [58, 59, 61] currently rank among the most popular and highest
quality, defining the state of the art in numerous synthesis applications. While
DMs excel in sample quality and diversity, they face challenges in high-resolution
synthesis, slow sampling speed, and a substantial memory footprint.
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Fig. 1: Samples synthesized in 10242 px. FMBoost elevates Diffusion Models
(DMs) and similar architectures to a higher-resolution domain, achieving exceptionally
rapid processing speeds. We use Latent Consistency Models (LCM) [48], distilled from
SD1.5 [59] and SDXL [55], respectively. To achieve the same resolution as LCM-SDXL,
we boost LCM-SD1.5 with our approach. The LCM-SDXL model fails to produce com-
petitive results within this shortened timeframe, highlighting the effectiveness of our
approach in achieving both speed and quality in image synthesis.

Lately, numerous efficiency improvements to DMs have been proposed [12,57,
68], but the most popular remedy has been the introduction of Latent Diffusion
Models (LDMs) [59]. Operating only in a compact latent space, LDMs combine
the strengths of DMs with the efficiency of a convolutional encoder-decoder that
translates the latents back into pixel space. However, Rombach et al. [59] also
showed that an excessively strong first-stage compression leads to information
loss, limiting generation quality. Efforts have been made to expand the latent
space [55] or stack a series of different DMs, each specializing in different reso-
lutions [20, 61]. Nevertheless, these approaches are still computationally costly,
especially when synthesizing high-resolution images.

The inherent stochasticity of DMs is key to their proficiency in generating
diverse images. In the later stages of DM inference, as the global structure of
the image has already been generated, the advantages of stochasticity diminish.
Instead, the computational overhead due to the less efficient stochastic diffu-
sion trajectories becomes a burden rather than helping in up-sampling to and
improving higher resolution images [8]. At this stage, converse characteristics
become beneficial: reduced diversity and a short and straight trajectory toward
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the high-resolution latent space of the decoder. These goals align precisely with
the strengths of Flow Matching (FM) [4, 41, 44], another emerging family of
generative models currently gaining significant attention. In contrast to DMs,
Flow Matching enables the modeling of an optimal transport conditional prob-
ability path between two distributions that is significantly straighter than those
achieved by DMs, making it more robust, and efficient to train. The determin-
istic nature of Flow Matching models also allows the utilization of off-the-shelf
Ordinary Differential Equation (ODE) solvers, which are more efficient to sample
from and can further accelerate inference.

Therefore, we propose FMBoost to leverage the complementary strengths of
DMs, FMs, and VAEs: the diversity of stochastic DMs, the speed of Flow Match-
ing in training and inference stages, and the efficiency of a convolutional decoder
when mapping latents into pixel space. This synergy results in a small diffusion
model that excels in generating diverse samples at a low resolution. Flow Match-
ing then takes a direct path from this lower-resolution representation to a higher-
resolution latent, which is subsequently translated into a high-resolution image
by a convolutional decoder. Moreover, the Flow Matching model can establish
data-dependent couplings with the synthesized information from the DM, which
automatically and inherently forms optimal transport paths from the noise to
the data samples in the Flow Matching model [5, 72].

Note that our work is complementary to recent work on sampling acceleration
of diffusion models like DDIM [68], DPM-Solver [46], and LCM-LoRA [47, 48].
FMBoost can be directly integrated into any existing DM architecture to increase
the final output resolution efficiently.

2 Related Work

Diffusion Models Diffusion models [19, 67, 70] have shown broad applications
in computer vision, spanning image [59], audio [42], and video [9,22]. Albeit with
high fidelity in generation, they do so at the cost of sampling speed compared
to alternatives like Generative Adversarial Networks [16, 28, 31]. Hence, several
works propose more efficient sampling techniques for diffusion models, includ-
ing distillation [49, 63, 69], noise schedule design [33, 52, 56], and training-free
sampling [30, 43, 45, 68]. Nonetheless, it is important to highlight that existing
methods have not fully addressed the challenge imposed by the strong curvature
in the sampling trajectory [36], which limits sampling step sizes and necessitates
the utilization of intricately tuned solvers, making sampling costly.

Flow Matching-based Generative Models A recent competitor, known as
Flow Matching [6, 41, 44, 50], has gained prominence for its ability to maintain
straight trajectories during generation by modeling the synthesis process using
an optimal transport conditional probability path with Ordinary Differential
Equations (ODE), positioning it as an apt alternative for addressing trajec-
tory straightness-related issues encountered in diffusion models. The versatility
of Flow Matching has been showcased across various domains, including im-
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age [13, 23, 24, 41], video [7], audio [34], depth [17], and even text [25]. This
underscores its capacity to address the inherent trajectory challenges associated
with diffusion models, mitigating the limitations of slow sampling in the cur-
rent generation based on diffusion models. Considerable effort has been directed
towards optimizing transport within Flow Matching models [44,72], which con-
tributes to enhanced training stability and accelerated inference speed by mak-
ing the trajectories even straighter and thus enabling larger sampling step sizes.
However, the generation capabilities of Flow Matching presently do not parallel
those of diffusion models [13, 41]. We remedy this limitation by using a small
diffusion model for synthesis quality.

Image Super-Resolution Image super-resolution (SR) is a fundamental prob-
lem in computer vision. Prominent methodologies include GANs [28, 35, 75, 81],
diffusion models [37,62,80] and Flow Matching methods [5, 41].

FMBoost adopts the Flow Matching approach, leveraging its objective to
achieve faster training and inference compared to diffusion models. We take
inspiration from latent diffusion models [59] and transition the training to the
latent space, which further enhances computational efficiency. This enables the
synthesis of images with significantly higher resolution, thereby advancing the
capacity for image generation in terms of both speed and output resolution.

3 Method

We speed up and increase the resolution of existing LDMs by integrating Flow
Matching in the latent space. The proposed architecture should not be lim-
ited to unconditional image synthesis but also be applicable to text-to-image
synthesis [51, 58, 59, 61] and Diffusion models with other conditioning including
depth maps, canny edges, etc. [14,38,82]. The main challenge is not a deficiency
in diversity within the Diffusion model; rather it is the slow convergence of the
training procedure, the huge memory demand, and the slow inference [55,61,79].
While there are substantial efforts to accelerate inference speed of DMs either by
distillation techniques [49], or by an ODE approximation at inference [45,46,68],
we argue that we can achieve faster training and inference speed by training
with an ODE assumption [41]. Flows characterized by straight paths without
Wiener process inherently incur minimal time-discretization errors during nu-
merical simulation [44] and can be simulated with only a few ODE solver steps.
FMBoost employs a compact Diffusion model and a Flow Matching model aimed
at high-resolution image generation (Sec. 3.1, Sec. 3.2). The combination of both
models (Sec. 3.3) ensures efficient and detailed image generation.

3.1 From LDM to FM-LDM

Diffusion Models (DMs) [19] are generative models that learn a data distribu-
tion p(x) by learning to denoise noisy samples. During inference, they generate
samples in a multi-step denoising process starting from Gaussian noise. Their
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Fig. 2: Approach overview. a) During training we feed both a low- and a high-res
image through the pre-trained encoder to their respective latent code. Based on the
concatenated low-res latent code and a noisy version of it, we model a vector field within
t 2 [0, 1]. b) During inference we can take any LDM, generate the low-res latent, and
then use our coupling flow matching model to synthesize the higher dimensional latent
code. Finally, the pre-trained decoder projects the latent code back to pixel space.

inherent stochasticity allows them to effectively approximate the data manifold
with high diversity, even in high-dimensional complex data domains such as im-
ages [52,61] or videos [9,22,65], but makes generation inefficient, requiring many
denoising steps at the data resolution. This problem has previously partially been
addressed by Latent Diffusion Models (LDMs), which move the diffusion process
to an autoencoder latent space, but efficiency is still a problem. While diffusion
models’ stochasticity helps them generate high-quality samples, we propose that
this stochasticity is not needed for later stages of generation and that the diffu-
sion generation process can be separated into two parts without substantial loss
in quality: one diffusion-based low-resolution stage for generating image seman-
tics with high variation and a light-weight high-resolution stage with reduced
stochasticity. Recently, the formulation of generative processes as optimal trans-
port conditional probability paths has gained much attraction [6,41,72], perfectly
suiting this task of modeling straight trajectories between two distributions.

3.2 Flow Matching

Flow Matching models are generative models that regress vector fields based on
fixed conditional probability paths. Let Rd be the data space with data points
x. Let ut(x) : [0, 1]⇥Rd ! Rd be the time-dependent vector field, which defines
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the ODE in the form of dx = ut(x)dt, and let �t(x) denote the solution to this
ODE with the initial condition �0(x) = x.

The probability density path pt : [0, 1] ⇥ Rd ! R>0 depicts the probability
distribution of x at timestep t with

R
pt(x)dx = 1. The pushforward function

pt = [�t]#(p0) then transports the probability density path p along u from
timestep 0 to t. Assuming that pt(x) and ut(x) are known, and the vector field
ut(x) generates pt(x), we can regress a vector field v✓(t, x) parameterized by a
neural network with learnable parameters ✓ using the Flow Matching objective

LFM (✓) = Et,pt(x)||v✓(t, x)� ut(x)||. (1)

While we generally do not have access to a closed form of ut because this ob-
jective is intractable, Lipman et al. [41] showed that we can acquire the same
gradients and therefore efficiently regress the neural network using the coupling
Flow Matching (CFM) objective, where we can compute ut(x|z) by efficiently
sampling pt(x|z),

LCFM (✓) = Et,q(z),pt(x|z)||v✓(t, x)� ut(x|z)||, (2)

with z as a conditioning variable and q(z) the distribution of that variable. We
parameterize v✓ as a U-Net [60], which takes the data sample x as input and z
as conditioning information.
Naiv̈e Flow Matching We first assume that the probability density path
bridges the a random Gaussian distribution and the data distribution p1, and
let the corresponding sample from that distribution be x1. We smooth the data
sample with a Gaussian with minimal variance N (x1,�2

min) following [41]. Given
the conditioning z := x1, the transportation path can then be formulated as
follows:

pt(x|z) = N (x|tx1, (t�min � t+ 1)2I), (3)

ut(x|z) =
x1 � (1� �min)x

1� (1� �min)t
; �t(x|z) = (1� (1� �min)t)x+ tx1. (4)

The resulting FM loss takes the form of

LFM (✓) = Et,z,pt(x|z)||v✓(t,�t(x0))�
d

dt
�t(x0)||

= Et,z,p(x0)||v✓(t,�t(x0))� (x1 � (1� �min)x0)||.
(5)

Data-Dependent Couplings In our case, we also have access to the represen-
tation of a low-resolution image generated by a DM at inference time. It seems
intuitive to incorporate the inherent relationship between the conditioning sig-
nal and our target within the Flow Matching objective, as is also stated in [5].
Let x1 denote a high-resolution image. Instead of randomly sampling from a
Gaussian distribution in the naïve Flow Matching method, the starting point
x0 = E(x1) corresponds to an encoded representation of the image, with E being
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a fixed encoder. The conditioning z consequently encompasses information from
both x0 and x1.

Similar to the previously described case, we smooth around the data sam-
ples within a minimal variance to acquire the corresponding data distribution
N (x0,�2

min) and N (x1,�2
min). The Gaussian flows can be defined by the equa-

tions
pt(x|z) = N (x|tx1 + (1� t)x0,�

2
minI), (6)

ut(x|z) = x1 � x0; �t(x|z) = tx1 + (1� t)x0. (7)

Notably, the optimal transport condition between the probability distribu-
tions p0(x|z) and p1(x|z) is inherently satisfied due to the data coupling. This
automatically solves the dynamic optimal transport problem in the transition
from low to high resolution within the Flow Matching paradigm and enables
more stable and faster training [72]. We name these Flow Matching models with
data-dependent couplings Coupling Flow Matching (CFM) models, and the CFM
loss then takes the form of

LCFM (✓) = Et,z,p(x0)||v✓(t,�t(x0), x0)� (x1 � x0)||. (8)

Noise Augmentation Noise Augmentation is a technique for boosting gener-
ative models’ performance introduced for cascaded Diffusion models [20]. The
authors found that applying random Gaussian noise or Gaussian blur to the
conditioning signal in super-resolution Diffusion models results in higher-quality
results during inference. Drawing inspiration from this, we also implement Gaus-
sian noise augmentation on x0. Following variance-preserving DMs, we noise x0

according to the cosine schedule first proposed in [52]. In line with [20], we empir-
ically discover that incorporating a specific amount of Gaussian noise enhances
performance. We hypothesize that including a small amount of Gaussian noise
smoothes the base probability density p0 so that it remains well-defined over
the higher-dimensional space. Note that this noise augmentation is only applied
to x0 but not to the conditioning information z, since the model relies on the
precise conditioning information to construct the straight path.
Latent Flow Matching In order to reduce the computational demands as-
sociated with training FM models for high-resolution image synthesis, we take
inspiration from [59] and utilize an autoencoder model that provides a com-
pressed latent space that aligns perceptually with the image pixel space similar
to LDMs. By training in the latent space, we get a two-fold advantage: i) The
computational cost associated with the training of flow-matching models is re-
duced substantially, thereby enhancing the overall training efficiency. ii) Leverag-
ing the latent space unlocks the potential to synthesize images with significantly
increased resolution efficiently and with a faster inference speed. On the other
hand, our method learns a path from low-resolution to high-resolution images
in comparison to Dao et al. [13], which starts from noise. This optimization ac-
celerates training and enables sampling at a significantly higher efficiency, as
discussed in Section 4.5.
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3.3 High-Resolution Image Synthesis

Our FMBoost approach integrates all aforementioned components into a cohe-
sive pipeline, as depicted in detail in Fig. 2. We start from a DM for content
synthesis and move the generation to a latent space with a pretrained VAE en-
coder, which optimizes memory usage and enhances inference speed. To further
alleviate the computational load of the DM and achieve additional acceleration,
we adopt a compact DM to produce compressed information. Subsequently, the
FM model maps the compressed information to a high-resolution latent image
with a straight conditional probability path. Finally, we decompress the latent
space using a pre-trained VAE decoder. Note that the VAE decoder performs
well across various resolutions, we show addtional proof in the appendix.

The integration of FM with DMs in the latent space presents a promising ap-
proach to address the trade-off between flexibility and efficiency in modeling the
dynamic image synthesis process. The inherent stochasticity within a DM’s sam-
pling process allows for a more nuanced representation of complex phenomena,
while the FM model exhibits greater computational efficiency, which is useful
when handling high-resolution images, but lower flexibility and image fidelity as
of yet when it comes to image synthesis [41]. By combining them in the pipeline,
we benefit from the flexibility of the DM while capitalizing on the efficiency of
FM as well as a VAE.

4 Experiments

4.1 Metrics and datasets

For quantitative evaluation, we use the standard Fréchet Inception Distance
(FID) [18], SSIM [77], and PSNR to measure the realism of the output dis-
tribution and the quality of the image. The general dataset we use for initial
experiments and ablations is FacesHQ, a compilation of CelebA-HQ [29] and
FFHQ [31], as used in previous work [15,62] for high-resolution synthesis tasks.
However, as highlighted in [11], standard FID struggles to capture detail and
measure fidelity at higher resolutions due to the downsampling inherited from
Inception network [71]. To remedy this, we also report patch FID (p-FID) [11]
for a more comprehensive evaluation, especially when images contain objects at
different scales, such as LHQ [66], which contains 90k high-resolution landscape
images and offers a more diverse scale of scenes/objects presented in the image
compared to FacesHQ. These two datasets serve as the basis for the evaluation.

For general T2I image synthesis, we train on the Unsplash dataset [2], which
provides diverse and high-quality images for training our model. To show our
generalization ability, we evaluate on a high-resolution subset of LAION-5B [64].

4.2 Boosting LDM with CFM

FMBoost combines LDM with CFM to achieve an optimal trade-off between
computational efficiency and visual fidelity. We demonstrate the time taken by
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Fig. 3: Uncurated samples from the Coupling Flow Matching model on top of SD
1.5 [59] using a classifier-free guidance scale of 7.5. Samples are generated in 642 latent
space and up-sampled with CFM from 642 to 1282. The resulting images have a reso-
lution of 1024⇥ 1024 pixels. Best viewed via zoomed-in.

LDM and FM, respectively, to synthesize 1k resolution images in Fig. 4, where
LDM’s inference time scales quadratically with increasing resolution, and infer-
ence is nearly impractical for real-time inference for a latent space of 1282. To
ensure a fair comparison within the limited time frame, we compare our combina-
tion to the LCM-LoRA SDXL model [48,69], which is known for its significantly
faster inference than the original SDXL model. Tab. 1 shows that our approach
with a standard SD baseline model yields superior performance in terms of FID
and inference speed. Note that we apply attention scaling [27] on SD to synthe-
size images for varying resolutions and finetune the models, with more details in
the Appendix. We present a selection of image samples from the baseline SD1.5
model and CFM 642 ! 1282 in Fig. 3. We can equally upscale the LCM-LoRA
SD1.5 model from 512 to 1k resolution images with our CFM model. We present
our synthesized results in Fig. 1. The inference time for a batch of four samples
is 1.388 seconds on an NVIDIA A100 GPU. The LCM-LoRA SDXL model fails
to produce images with similar fidelity at the same resolution within the same
time.

We further demonstrate the effectiveness of our approach by comparing it
to state-of-the-art models [54,55,83] in image synthesis on COCO 1024⇥ 1024,
including CogView3 [83]. We reduce the computational cost of the diffusion com-
ponent by using a lower resolution and fewer steps while offloading the remaining
steps to our CFM module. This approach significantly reduces the inference time
and maintains a good trade-off between speed and accuracy, as shown by the
FID in Tab. 5 in the Appendix. In summary, we achieve a competitive FID at a
faster inference speed than the counterpart diffusion models.
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Table 1: Quantitative comparison for 10242 image synthesis using SD v1.5 [59] plus
our Coupling Flow Matching (CFM) method against a state-of-the-art diffusion speed-
up method. The numbers after CFM symbolize the starting and ending resolutions in
pixel space. FID and p-FID are computed for 5k samples. We use the fixed step-size
Euler ODE solver with 40 NFE for CFM. For LCM-LoRA SDXL [48] we use 4 sampling
steps.

Zero-shot LAION-5k 1024⇥1024
Model CLIP " FID # p-FID # time (s/im) #

SD1.5 + CFM 2562 ! 10242 23.75 25.47 23.31 0.62
SD1.5 + CFM 5122 ! 10242 26.14 21.67 15.96 3.16
LCM-LoRA SDXL [48] 24.51 28.98 24.00 1.83

4.3 Baseline Comparison

We compare our CFM model to three baseline methods on the FacesHQ and
LHQ datasets. For a fair comparison, we fix the UNet architecture and hyper-
parameters so that the models only differ in their respective training objectives.
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1Fig. 4: Comparison of 1k image synthesis performance using different architectures. We
utilize SD v1.5 as our base model for LDM and adapt its resolution based on [27]. LDM’s
inference time grows quadratically with higher resolutions, making real-time inference
nearly impractical at a 1282 resolution latent space. In contrast, the integration of
Coupling Flow Matching (CFM) with 50 function evaluations exhibits consistently
faster inference, highlighting its efficiency in high-resolution image synthesis.

Regression Baseline. Similar to [62], we compare simple one-step regression
models with L1 and L2 loss, respectively. The input is the low-resolution latent
code and the target is the corresponding high-resolution latent code of the pre-
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GT NFE=1 NFE=2 NFE=4 NFE=10 NFE=50

Fig. 5: Sample quality for different number of function evaluations (NFE). From left to
right, 1st column represents the ground truth, high-resolution image. From 2nd column
on, we show the results for NFE = 1, 2, 4, 10, 50 with the Euler ODE solver.

Low-Res L2 FM CFM

Fig. 6: Results for different baseline methods, increasing resolution from 2562 px to
10242 px. Low-Res corresponds to bi-linear upsampling of the low-resolution image, L2
refers to the L2 regression baseline. FM and CFM correspond to Flow Matching and
Coupling Flow Matching, respectively. Best viewed when zoomed in.

trained KL autoencoder. In contrast, our method is trained with L2 loss on
intermediate vector fields. Tab. 2 shows that CFM yields superior metric results.
This is also reflected qualitatively, as visualized in Fig. 6, where the images from
the regression baseline are visually blurry due to the mode-averaging behavior
of the MSE regression. CFM excels at adding fine-grained, high-resolution detail
to the image. We conclude that simple regression models trained with L1 or L2
loss are not sufficient to increase resolution in latent space.
Diffusion Models. Based on optimal transport theory, the training of a con-
stant velocity field presents a more straightforward training objective when con-
trasted with the intricate high-curvature probability paths found in DMs [13,41].
This distinction often translates to slower training convergence and potentially
sub-optimal trajectories for DMs, which could detrimentally impact both train-
ing duration and overall model performance. Fig. 7 shows that within 100k
iterations and for different numbers of function evaluations (NFE) after conver-
gence, we consistently achieve a lower FID compared to the DM. In particular,
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Table 2: Metric results for L1 and L2 regression, diffusion-based (DM ) similar to [62],
Flow Matching (FM ) [41], and our Coupling Flow Matching (CFM ) on 5k samples
from FacesHQ and LHQ high-resolution datasets, respectively.

FacesHQ LHQ
Model SSIM" PSNR" FID# p-FID# SSIM" PSNR" FID# p-FID#

L1 0.86 31.78 4.52 6.51 0.72 26.99 4.88 6.54
L2 0.85 31.48 5.73 9.07 0.72 26.87 6.02 8.59
DM 0.73 23.68 2.72 4.71 0.61 19.94 4.29 4.55
FM 0.82 30.46 1.37 2.10 0.68 25.50 2.31 2.61

CFM (ours) 0.82 30.40 1.36 1.62 0.69 25.69 2.27 2.38

the CFM model shows a faster reduction of the FID and provides better results.
Tab. 3 shows that the combination of DM and CFM outperforms the cascaded
DMs across the board.

Taken together, these results underscore the training efficiency of our CFM
model over DMs and its superior performance on the up-sampling task after
fewer training steps.

Fig. 7: Comparison of a diffusion-based [62] and our Coupling Flow Matching (CFM)
module over the training for 4⇥ up-sampling of the latent codes from 322 ! 1282.
The decoded output resolution is 10242. We report FID and p-FID for a) different
numbers of function evaluations (NFE) and b) throughout training. Architecture and
hyperparameters are kept fixed. FID evaluated on 5k samples from the LHQ validation
set. We use 50 steps for both DDIM [68] sampling and the Euler ODE solver.

Naïve Flow Matching. Lastly, we compare to Naïve Flow Matching (FM).
Similar to the DM, FM is conditioned on the low-resolution latent code and starts
with Gaussian noise, but uses an optimal transport-based objective to regress
the vector fields. In contrast, our CFM method directly starts from the low-
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Table 3: Quantitative comparison for 10242 px image synthesis using SD1.5 [59] for
sampling and either our Coupling Flow Matching (CFM) method or a diffusion-based
latent space up-sampling model (DM) [62]. FID and p-FID are computed for 5k sam-
ples. We use the Euler ODE solver for CFM and DDIM sampling for the DM.

Zero-shot LAION-5k 1024⇥1024
2562 ! 10242 5122 ! 10242

Model Steps CLIP " FID # p-FID # time (s/im) # CLIP " FID # p-FID # time (s/im) #

Diffusion 4 22.92 35.22 50.53 0.19 25.68 26.53 25.20 2.72
CFM (ours) 4 23.77 27.54 24.02 0.19 26.16 21.61 15.83 2.72
Diffusion 40 23.55 26.67 24.16 0.62 26.05 22.29 16.36 3.16
CFM (ours) 40 23.75 25.47 23.31 0.62 26.14 21.67 15.96 3.16

Fig. 8: FID (left) and p-FID (right) for our model when applying different degrees of
noise augmentation. Evaluated on 5k samples.

resolution latent code and regresses the vector field towards the high-resolution
counterpart. Due to data-dependent coupling, we have optimal transport guar-
anteed during training. All methods have the low-resolution latent code avail-
able as conditioning throughout the full generation trajectory. We evaluated the
aforementioned two variants quantitatively (Tab. 2) and qualitatively (Fig. 6),
where we observed that the CFM model with data-dependent coupling read-
ily outperforms the ones without. We provide more information about the noise
augmentation in Fig. 8. Notably, in the specific upsampling scenario from 2562 to
10242, we observe an optimal configuration with a noising timestep of 400. The
introduction of Gaussian noise proves beneficial as it imparts a smoothing effect
on the input probability path, resulting in improved performance. However, ex-
cessive Gaussian noise can lead to the loss of valuable information, subsequently
deteriorating the data-dependent coupling and reverting the model’s behavior
to FM’s Gaussian assumption of p(x0). This finding underscores the delicate
balance required in incorporating noise for optimal model performance.

4.4 CFM for Degraded Image Super-Resolution

Our model is originally intended to render image synthesis with existing diffusion
models more effectively by enabling them to operate on a lower resolution while
increasing pixel-level resolution. However, our method can also be generalized to
work on super-resolution tasks which usually include image degradations [75] for
low-resolution images. By fine-tuning our method, we can achieve state-of-the-
art results on two common benchmark datasets on a 4⇥ upsampling task from
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1282 to 5122 pixels. We provide quantitative (Tab. 4) and qualitative (Fig. 12)
results in the Appendix.

4.5 CFM Model Ablations

Upsampling Methods Since the dimensionality of the samples from both
terminal distributions must be consistent for CFM, we need to upsample the
low-resolution latent code x0 to match the resolution at x1. In this context,
we perform an ablation study comparing three different upsampling methods:
nearest neighbor upsampling, bilinear upsampling, and pixel space upsampling
(PSU). The first two methods operate in latent space, while PSU requires the
use of the KL autoencoder to upsample in pixel space. Denoting the latent en-
coder as E , the decoder as D, and the bilinear upsampling operation as UP, the
upsampling operation PSU can be represented as E(UP(D(·))). We empirically
find that upsampling in latent space works well, but introduces artifacts that
make distribution matching with CFM more difficult. In contrast, PSU yields
faster and better model convergence at minimal additional cost (cf . Fig. 19 in
the Appendix) and also makes our approach invariant to the autoencoder used.
Therefore, we use PSU unless otherwise stated.
Noise Augmentation We systematically investigate the impact of varying lev-
els of noise augmentation. Fig. 8 shows the FID and p-FID for different noise
augmentation steps, with higher values corresponding to more noise. The high-
est amount of noise eradicates all information at x0 and approximates [13]. Our
findings suggest that noise augmentation is crucial for model performance, albeit
being robust to the amount of noise. Empirically, we discovered that t = 400
yields the best results overall.
Intermediate Results along the ODE Trajectory In Fig. 16 we show in-
termediate results along the ODE trajectory. It can be seen that the CFM
model gradually transforms the noise-augmented image representation to its
high-resolution image counterpart.

5 Conclusion

Our work introduces a novel and effective approach, termed FMBoost, to high-
resolution image synthesis, combining the generation diversity of Diffusion Mod-
els, the efficiency of Flow Matching, and the effectiveness of convolutional de-
coders. Strategically integrating Flow Matching models between a standard la-
tent Diffusion model and the convolutional decoder enables a significant reduc-
tion in the computational cost of the generation process by letting the expen-
sive Diffusion model operate at a lower resolution and up-scaling its outputs
using an efficient Flow Matching model. Our Flow Matching model efficiently
enhances the resolution of the latent space without compromising quality. Our
approach complements DMs with their advancements and is orthogonal to their
recent enhancements such as sampling acceleration and distillation techniques
e.g., LCM [48]. This allows for mutual benefits between different approaches and
ensures the smooth integration of our method into existing frameworks.
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