
Supplement: Photorealistic Object Insertion with
Diffusion-Guided Inverse Rendering

In the supplement, we provide additional ablation for diffusion guidance
(Sec. A), implementation details (Sec. B), additional results on user study and
tone-mapping (Sec. C), and discuss broader impact (Sec. D). Please refer to the
accompanied video for more qualitative results.

A Diffusion Personalization and Score Distillation

An intuitive approach to understanding the diffusion guidance is to directly
visualize the text-to-image generation result of the diffusion model. In this
section, we provide additional analysis and ablative visualization on our design
choices of LoRA personalization (Fig. S1) and concept preservation (Fig. S2).

Personalizing diffusion model. Due to the high stochasticity in the diffusion
denoising process, the images generated by a pre-trained diffusion model often
cannot be tailored to a specific input image. However, in the setting of using the
diffusion model for solving the inverse rendering problem of the given scene, it
is important to preserve the key context (e.g., shapes, lighting, and shadowing
effects) from the unseen input background image. In Fig. S1, we visualize the
effect of LoRA personalization. After personalization, the diffusion model can
generate images in a similar domain to the target scene.

Source background image SD21 w/o LoRA SD21 w/ LoRA

Fig. S1: Illustrations of text-to-image generation results. “SD21 w/o LoRA” shows
our best-effort prompting results for outdoor street scenes from off-the-shelf Stable
Diffusion 2.1. “SD21 w/ LoRA” directly uses the training prompt “a scene in the style
of sks rendering”. LoRA personalization enables generating images in a similar domain
to the target scene.
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          Personalized w/ concept preservationPersonalized w/o concept preservation

Fig. S2: Text-to-image generation results with prompt “a black SUV car in the style
of sks rendering”. Concept preservation can facilitate the high-quality generation of
both the object and the background scene.

Concept preservation. For the task of virtual object insertion, it is important
to ensure the personalized diffusion model does not completely overfit the input
background image, and can generalize when inserting new objects into the scene
through additional text conditions. Personalizing diffusion model (DM) along with
some generated class images is inspired by the original DreamBooth paper [11]
which shows that adding in-class images for concept preservation can avoid
concept drift and improve the output diversity.

In Fig. S2, we visualize the text-to-image generation results with and without
using concept preservation. The results show that only personalizing with the
input image does not generalize well when adding additional concepts into the
text prompt – Diffusion model does not faithfully follow the additional prompt to
synthesize images with “a black SUV car” in it. The reddish car color is heavily
affected by the car shown in the input background image. The results of concept
preservation show the benefits of retaining the appearance of newly inserted
objects.

LDS loss design. The original SDS loss tends to generate over-saturated images.
Recent work [7, 16] observes that the classifier score δ = ϵθ(zt, t, c)− ϵθ(zt, t,∅)
dominates the optimization direction, and directly distilling the classifier score
can provide much better quality. Our LDS loss (Eq. ??) is inspired by the classifier
score distillation and adapts it to the personalized diffusion model. The delta term
in LDS loss is calculated between LoRA fine-tuned conditional denoising term
ϵ(θ+∆W )(zt, t, c) and non-adapted unconditional denoising term ϵθ(zt, t,∅). The
intuition of not “using the LoRA fine-tuned model in both terms” is to encourage
gradient towards the personalized model with scene-specific knowledge, while not
overly biased by the small amount of training data used in personalization. We
empirically observe our LDS loss is more stable and leads to better quality. We
ablate this design choice in Fig. S3 and defer rigorous theoretical understanding
of this loss to further work.
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Ours: ϵ(θ+∆W )(c) − ϵθ(∅) ϵ(θ+∆W )(c) − ϵ(θ+∆W )(∅)

Fig. S3: Ablation on unconditional denoising term in LDS loss.

B Implementation Details

Diffusion Model We use Stable Diffusion 2.1 as our pre-trained diffusion models
throughout experiments. To reduce memory overhead and accelerate the training,
we use PyTorch’s FP16 mixed floating point training for diffusion models by
default. The whole optimization can be run on a GPU with more than 12GB
VRAM.

Rendering and image formation. The differentiable rendering framework
is built on Mitsuba 3 [6]. We use 128 samples per pixel, and spawn 4 rays each
for multiple importance sampling (MIS) [1] of BSDF and emitters. The output
resolution is 256× 384, which we crop and bilinearly upsample to 512× 512 to
feed into the personalized diffusion model.

The tone-mapping function for the input image is often unknown, and thus
we use the default Reinhard tone-mapping [10] for the inserted virtual object
Ifg = Reinhard(IHDR). As described in the main paper, the rendered pixels
are then passed into the single-channel optimizable tone correction function
Ĩfg = f(Ifg;θfg). The tone correction function f(·) is an optimizable spline curve
that differentiably maps real values from the range [0, 1] to [0, 1], which aims to
learn the residual of the default Reinhard tone-mapping. The shadow ratio is
directly multiplied onto the tone-mapped input image, and thus we do not apply
additional tone-mapping and directly pass it into the tone correction function
β̃shadow = f(βshadow;θshadow). All notations in the main paper and supplement
operate in linear RGB space following graphics conventions, and we finally convert
with gamma correction (γ = 2.2) to produce sRGB output.

Environment map fusion. Following the description in the main paper, we
initialize two sets of optimizable Spherical Gaussian (SG) parameters and compute
two separate environment maps, Lfg,Lshadow ∈ RH×W×3, to light the foreground
inserted object and cast shadows respectively.

The additional capacity can improve quality and stabilize the training in
the early stage of optimization, and we aim to progressively fuse them into a
single environment map at the end of optimization. Let L̃* ∈ RH×W denote the
luminance of each environment map, we compute the fused environment map
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Lfused ∈ RH×W×3 by adjusting the luminance of the foreground environment
map:

Lfused = Lfg ·
L̃fused

L̃fg
(1)

where the target luminance of the fused environment map is computed by blending
the two environment maps:

L̃fused = (1− r) · L̃fg + r · L̃shadow (2)

r =
L̃fg

max(L̃fg)
· L̃shadow

L̃fg + L̃shadow
. (3)

Here r ∈ RH×W is the per-pixel blending ratio which encourages the fused
luminance to favor Lshadow at high luminance pixels and Lfg at low luminance
pixels.

As the optimization progresses, the fused environment map Lfused is linearly
scheduled to replace the two environment maps Lfg,Lshadow for the rendering of
Ifg and βshadow:

Ifg = PathTrace(X ,L
′

fg, D) (4)

βshadow =
PathTrace(X ∪ P,L

′

shadow, 1)

PathTrace(P,L
′
shadow, 1)

(5)

where the scalar value s is scheduled to linearly increase from 0 to 1:

L
′

fg = s · Lfused + (1− s) · Lfg (6)

L
′

shadow = s · Lfused + (1− s) · Lshadow (7)

such that L
′

fg = L
′

shadow = Lfused at the end of optimization.

3D assets. We use 6 licensed 3D car models from Turbosquid and 3DModels.org
for experiments on Waymo outdoor street scenes, and 11 assets from Sketchfab
and PolyHaven for PolyHaven HDRI scenes.

Running time overhead. The total running time is about 26 min (∼13 min
for LoRA DM finetuning + ∼13 min for distillation sampling) on an RTX A6000
GPU with FP16 mixed precision inference.

C Additional Results

In this section, we provide further experimental details and additional results.
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Fig. S4: Visualization of interface for user study.

C.1 User Study

User study is a standard approach for assessing perceptual realism of virtual
object insertion [2–4,13,15]. Following prior works, we conduct a user study on
Amazon Mechanical Turk to compare with prior methods and ablate our design
choices.

User interface. Participants receive a pair of two object insertion results: one
generated using our proposed method, the other one using a baseline approach.
Participants are instructed to evaluate the differences between the two images,
focus on the lighting effects of the inserted objects, and select the image they
deemed to be more realistic:

An artificial intelligence agent is trying to insert a virtual object into
an image in a natural way. It aims to make the virtual object look as
if it is part of the scene. There are two results: Trial 1 and Trial 2, and
the virtual object is roughly in the center of each image, can you find it?
Please zoom in to look at the differences between the two images, and
pay attention to the lighting effects such as the reflections and shadows.
Which one looks more realistic?

The participants are required to use a 24-inch or larger monitor to view the
results, and the images are shuffled in a random order to prevent bias. The user
interface is visualized in Fig. S4.

Statistics. We invited 9 different users for each experiment setting, and repeated
each experiment 3 times. For benchmarking experiments, there are 48 scenes
on the Waymo dataset to compare with 4 baselines, and 11 scenes on the
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Table S1: User study: benchmark on Waymo outdoor street scenes. We
report the percentage of images and user selections that our method is preferred over
baselines. A preferred percentage > 50% indicates Ours outperforming baselines.

% images Ours is preferred Daytime Twilight Night All scenesSunny Cloudy

DiffusionLight [8] 80.4± 12.2% 68.9± 20.4% 55.6± 11.1% 71.4± 14.3% 70.8± 3.6%
Hold-Geoffroy et al . [5] 60.8± 6.8% 66.7± 13.3% 74.1± 25.7% 85.7± 24.7% 68.8± 2.1%
NLFE [13] 80.4± 6.8% 73.3± 11.5% 44.4± 11.1% 52.4± 21.8% 67.4± 3.2%
StyleLight [12] 76.5± 15.6% 91.1± 10.2% 66.7± 22.2% 66.7± 8.2% 77.8± 12.6%

% user selection Ours is preferred Daytime Twilight Night All scenesSunny Cloudy

DiffusionLight [8] 63.4± 4.0% 61.2± 7.6% 53.9± 8.7% 59.3± 8.1% 60.3± 1.9%
Hold-Geoffroy et al . [5] 56.4± 1.6% 54.1± 7.5% 61.7± 9.8% 68.8± 12.1% 58.5± 1.9%
NLFE [13] 65.4± 1.1% 58.3± 4.1% 50.6± 1.2% 56.6± 2.4% 59.1± 1.2%
StyleLight [12] 60.6± 8.2% 68.9± 8.5% 61.7± 6.5% 59.8± 10.3% 63.3± 6.0%

Table S2: User study: benchmark on PolyHaven scenes. We report the
percentage of images and user selections that our method is preferred over baselines. A
preferred percentage > 50% indicates Ours outperforming baselines.

Methods % images Ours is preferred % user selection Ours is preferred

DiffusionLight [8] 66.7± 5.2% 57.2± 0.6%
Wang et al . [14] 84.8± 18.9% 66.3± 1.5%
StyleLight [12] 75.8± 5.2% 60.6± 5.2%

PolyHaven dataset to compare with 3 baselines. This results in a number of
48× 4× 9× 3 = 5184 and 11× 3× 9× 3 = 891 user selections for each dataset.
For the ablation study, we randomly select a subset of 18 scenes from the Waymo
dataset to reduce cost, and compare with 6 ablated versions of our method. The
number of user selections for the ablation study is 18× 6× 9× 3 = 2916. The
total number of user selections for all experiments is 8991.

Metrics and additional results. Our primary evaluation metric is the per-
centage of images that our method was preferred over the baseline, following [13].
Specifically, for each sample, we collect the binary selection from 9 different users
and do majority voting from the 9 users to determine which method is more
preferred on this sample. The majority voting can efficiently filter the effects of
random users, and we report this as the primary metric in the main paper. The
full experiments are repeated three times to calculate the mean and standard
deviation. We additionally report the standard deviation in Table S1, S2, S3.
Note that the standard deviation reflects the consistency in user evaluations after
majority vote, where a high standard deviation suggests the compared methods
performed on par on some of the examples.

We also report the percentage of user selections that our method is preferred
over the baselines in Table S1, S2, S3. Our method consistently outperforms
baseline methods and ablated versions of our method.
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Table S3: User study: ablation study on Waymo outdoor street scenes. We
report the percentage of images and user selections that our method is preferred over
baselines. A preferred percentage > 50% indicates Ours outperforming the ablated
versions.

Methods % images Ours is preferred % user selection Ours is preferred

Ours (dataset update) 85.2± 25.7% 67.9± 10.2%
Ours (SDS [9]) 74.1± 12.8% 64.0± 5.0%
Ours (SDS [9] w/o LoRA) 90.7± 8.5% 71.6± 9.6%
Ours (w/o concept preservation) 64.8± 14.0% 56.0± 5.8%
Ours (w/o tone curve) 68.5± 12.8% 56.2± 6.5%
Ours (w/o env. map fusion) 66.7± 9.6% 57.6± 6.6%

foreground curve shadow curve

(a) w/o optimizing tone curves

foreground curve shadow curve

(b) w/ optimizing tone curves

Fig. S5: Qualitative ablation on tone-mapping curve optimization. The optimizable
tone-mapping curve provides the capacity and flexibility to match the scale and color
of the shadows. (The visualized foreground curve considers gamma correction γ = 2.2.)

C.2 Additional Qualitative Results

Fig. S7 and Fig. S8 show the additional qualitative comparison against other
baseline methods. Our method consistently performs well in various background
images with challenging light conditions, while the baseline models often fail to
capture the correct lighting direction or intensity scale. We also include more
insertion examples in Fig. S9 and Fig. S10. Video examples can be found on the
project page.

C.3 Tone-mapping Curve

In Fig. S5, we visualize the optimized tone-mapping curve and ablate the effect
of the optimizable tone-mapping curves in our method. Comparing the results,
the optimizable tone-mapping curve can effectively adjust the color and scale of
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the rendered shadow, and be blended more naturally in the background image.
The foreground curve learns a residual from Reinhard tonemapping and is often
close to identity mapping.

C.4 Failure Case Analysis

In Fig. S6, we show examples for the limitations mentioned in Sec. ??. a) Shiny
reflection. Our insertion of a shiny sphere correctly captures the general highlight
direction, but cannot get all high-frequency details due to the limitations of
SG lighting; b) Color drift. The inserted dustbin is relatively brighter than the
reference. This is because DM’s data prior tends to assume a “recycle dustbin"
with a bright green color; c) Double shadowing. Our current method does not
handle double shadowing with local occlusion, which can be improved when
combined with 3D reconstruction methods.
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Shiny reflection Color drift Double shadowing
Fig. S6: Failure case examples.

D Discussion

Broader impact. This paper introduces a novel approach to producing virtual
object insertion in images leveraging the power of diffusion models and inverse
rendering techniques. It could benefit digital content creation by providing
filmmakers and game developers with a powerful tool to create novel scenarios
and reducing costly manual editing. Its application in AR and VR can enhance
user experiences, making digital interactions feel more natural and engaging. On
a broader scale, this work contributes to the field of computer vision and graphics,
and showcases the potential of combining powerful diffusion models with classic
rendering techniques.

Similar to other photorealistic image editing technologies such as “deep fakes”,
there is also the potential for misuse, e.g . it might potentially be used to cre-
ate misleading content and propagate misinformation. Related technology on
identifying and filtering out such content can mitigate these negative applications.
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Ours DiffusionLight [8] StyleLight [12] NLFE [13] H-G et al. [5]

Fig. S7: Additional visual comparisons on inserting virtual car assets into Waymo
driving scenes.
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Reference Ours DiffusionLight [8] StyleLight [12] InvRend3D [14]

Fig. S8: Additional visual comparisons on inserting objects into cropped HDRIs from
PolyHaven.
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Fig. S9: Additional car insertion examples on Waymo driving scenes.
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Fig. S10: Additional object insertion examples on cropped PolyHaven HDRIs.
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