GAReT: Cross-view Video Geolocalization with
Adapters and Auto-Regressive Transformers

Supplementary Material

1 Overview

We organize our supplementary material into the following sections: Sec.
presents our implementation details comprehensively. In Sec. [3] we showcase
the retrieval performance of our method followed by Sec. [5} where we compare
and contrast GPS trajectories obtained using the nearest neighbor retrieval and
our proposed TransRetriever. In Sec. 4] we present additional experiments and
ablations for our method. Finally, in Sec. [f] we visually examine the attention
outputs of our GeoAdapter module to gain a deeper understanding of our frame-
work.

2 Implementation Details

2.1 General

We implement our method using PyTorch [1]. We use DeiT [6] as the image
encoders for both views. For stable training, we utilize ASAM with Adam as the
base optimizer with p = 2.5, weight decay of 0.03, and a learning rate of 107%.
We also employ the global sampling strategy from [9H11]| during training. All the
models are trained for 50 epochs. For image pretraining, the street-view input
resolution is (216 x 384) while the aerial-view input resolution is (256 x 256).

2.2 Architecture diagram of TransRetriever

Fig.[T] presents the architecture diagram of our proposed TransRetriever module.

2.3 Baseline 1 & Baseline 2

We use the DeiT transformer to implement both baselines. For Baseline 1, we
individually obtain embeddings for all frames in a video and compute the average
pooling operation to obtain the video embedding. As discussed in Sec. 3.3 (main
paper), the large aerial images are preprocessed to form a sequence of inputs. For
Baseline 2, we utilize the street-view branch of the image-pretrained model and
add our GeoAdapter module. As for the aerial branch, we solely use the aerial-
view branch of the image model and train it (without the adapter) entirely with
the resized large aerial image as input. Note that, for Baseline 2, the large aerial
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image is considered as one single image and is resized to 512 x 512 resolution
before passing to the encoder.

As discussed in Sec. 4.3 (main paper), Baseline 1 performs well in Sequence-
to-Image inference, but it doesn’t generalize back to the Frame-to-frame infer-
ence. This is because the encoders in this baseline are trained entirely on the
video data. In contrast, our approach freezes the encoders while the adapters
are responsible for aggregating the temporal information. This procedure en-
sures that we can easily reuse the encoders for Frame-to-Frame inference by
disengaging the GeoAdapter module.

Model R@1 (1) R@5 (1) Ra@I10 (1) R@1% (1)
Baseline 1 25.01 45.67 55.22 70.43
Ours (T) 54.64 70.45 76.36 91.92

Table 1: Top-k retrieval recall score for frame-by-frame geo-localization on the GAMa
dataset. For both methods, we construct the gallery G using the top 10 large aerial
images. (Symbols follow the definition in Tab. 1 (main paper) )

2.4 Dominant Sets strategy

To implement the dominant sets strategy for our problem, following [5], we
consider each small aerial image candidate as a graph node and create an affinity
matrix A = w;;. As discussed in Sec. 3.4 (main paper), each node or vertex z;; of
the graph belongs to a cluster of neighborhoods N;. These vertices are connected
such that, no two vertices from the same cluster are connected, only the vertices
of the temporally subsequent neighborhood are connected to the previous one
and the distance between two connected vertices is less than ¢ miles assuming
that the motion between two subsequent video frames will not be more than ¢
miles (we use ¢t = 1 in all our experiments). Formally, we have an ordered set,
P = (Ny,...Np—1, Ny). Two vertices z;; € N; and zx; € N, are connected if and
only if:

— N;NNpy=0ori#k

i<k

— d(xij,mkl) < t where d(xij,xkl) is the great-circle distance between two
vertices (reference aerial image).

Following [5], we define the edge weight w;; x; € W between vertices x;; and xy,
as:

(1)

Wi — d(zij, Tpt) + m, if (vij,2m) € E
Y 0, otherwise

where 0 < d(z;;, k) < 1 is the scaled great-circle distance. Similar to previous
works, we use replicator dynamics algorithm [2L[3] to select a dominant set from
the graph nodes. The final prediction of GPS is obtained using nodes from the
dominant set.
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3 Visualization of Retrievals

In this section, we present qualitative examples to illustrate the retrieval perfor-
mance of our method during inference. Fig. [2] showcases the top-5 large aerial
images retrieved by our method given a street-view video (Sequence-to-Image
inference) while Fig. |3] we present the top-5 small aerial images retrieved given
a street-view video frame (A), both by nearest neighbor (1-5) and our proposed
TransRetriever module (B) (Frame-to-frame inference). Correct predictions are
highlighted with a outline, and the arrow designates the small aerial image
chosen as the final prediction by our TOPS-based retrieval. Each column rep-
resents the predictions for a street-view frame. It’s worth noting that there can
be more than one correct prediction for a street-view frame due to the overlap
discussed in Sec. 4.4 (main paper). For future reference and effective compari-
son, we provide the video-id for each example. The results here indicate that our
TransRetriever module significantly outperforms nearest neighbor counterpart,
improving the recall rate nearly 5 times in this scenario.

3.1 Retrieval with varying distance threshold

To further strengthen the efficacy of our approach, we compare the retrieval
performance of our approach with |7] in Frame-to-frame inference in varying
distance thresholds. Tab. [2| compares top-1 retrieval score of our method with
GAMa |7] in Frame-to-frame inference with varying distance threshold. Following
previous works, we show results when the distance threshold is 0.1,0.2,0.5, and
1.0 mile. As expected, the performance improves as we increase the distance
threshold, and our method consistently outperforms previous SOTA.

Model R@0.1 (1) R@0.2 (1) R@0.5 (1) RQLO (1)
GAMa-Net [7] 19.6 23.0 28.7 36.1
GAMa-Net (Hierarchical) |7] 23.5 27.8 34.9 43.6
Ours (T) 60.73 65.34 70.19 74.68

Table 2: Top-1 retrieval recall score for frame-to-frame geo-localization on the GAMa
dataset with varying distance threshold. R@k represents the recall score when the
distance threshold is k& miles. (Symbols follow the definition in Tab. 1 (main paper) )

4 Additional Experiments & Ablations

We perform an ablation experiment on the recall rate with varying numbers
of street-view frames to establish the importance of the number of frames while
adapting to video inputs. Tab. 3| (a) shows the result on the GAMa dataset when
2, 4, and 8 frames are used while optimizing our proposed GeoAdapter module.
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We also compare our method with CVLNet [4] in Tab. |3|(b). To demonstrate the
significance of [START] in our proposed module TransRetriever, we have made
modifications to the module, leaving only the decoder and eliminating global
context (GC) learning. Tab. [d|(a) shows that the model performs poorly without
the global context encoded in the [START] token. In Sec. 4.3 (main paper), we
discussed how Baseline 1 performs well in large aerial inference. However, the
encoders used for this purpose are trained exclusively on video data. Therefore,
after localizing the larger aerial region, the same encoder cannot be used for
frame-by-frame matching. We can see this demonstrated in Tab. [4| (b), where
we attempt frame-to-frame localization using the trained Baseline 1 encoder.
Finally, to evaluate the generalization abilities of our model, we perform cross-
dataset comparison, similar to [8], of our method. Tab. [5 shows the results of
the comparison on the GAMa and SeqGeo datasets.

Frames R@1 R@5 R@10 R@1%
2 746 19.90 33.05 59.95
4 25.66 48.39 62.42 84.08
8 50.69 81.77 88.71 98.26
(a) (b)
Table 3: (a) Recall with varying number of street-view frames, (b) Retrieval recall of
our method compared to CVLNet [4]

Model R@1 R@5 R@10 R@100
Ours 18.39 43.67 57.82 93.53
CVLNet 21.80 47.92 64.94 99.07

Methods R@1 R@5 R@10
Baseline 1 21.45 39.27 48.49
Ours 54.64 70.45 76.36

(a) (b)

Table 4: Frame-to-frame retrieval on GAMa dataset

NN Owurs w/o GC Ours w/ GC
54.64 58.40 67.66

Paradigm R@1 R@5 R@10 RQ@1%
GAMa — SeqGeo
No Training 0.96 3.95 7.05 25.02
From Scratch 3.34 11.19 17.18  44.39
Finetuning  4.07 14.17 21.51 52.44

(a) (b)

Table 5: Cross-dataset evaluation

Paradigm R@1 R@5 R@10 RQ@1%
SeqGeo — GAMa

No Training 8.44 2730 40.03  58.02

From Scratch 50.69 81.77 88.71 98.26
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5 GPS Trajectories

The primary objective of Cross-view Video Geo-localization (CVGL) is to obtain
a GPS trajectory given a street-view video. In this section, we explore the qual-
ity of the trajectory obtained using our method, with and without our proposed
TransRetriever module. Fig. [d] presents some examples of the trajectory obtained
using our method when we use top-5 large aerial image during Sequence-to-Image
inference. The first column depicts trajectories utilizing nearest neighbor (NN)
retrieval, while the second column employs TransRetriever for retrieval. Note
that the aerial images shown in the figure don’t all have the same Ground Sam-
pling Distance. As the NN predictions are way off from each other, we adjust
the zoom level to incorporate the entire trajectory in the image. Our TransRe-
triever module, as expected, significantly stabilizes the trajectories and produces
temporally consistent output.

To further establish the efficacy of our method, we compare the predicted
trajectories with ground truth in Fig. [5] and [} Our entire pipeline with GeoAd-
apter and TransRetriever predicts GPS trajectories with incredible precision.
In Fig. [6] we can see our method filtering inconsistent predictions to obtain
stable trajectories.

6 Attention Visualization

To have a deeper look at our proposed GeoAdapter module, we visualize the
temporal attention maps computed in the final block of the unified model U.
In Fig. [7] for each street-view frame, we compute the temporal attention maps
and overlay them on the large aerial image (shown below). Each square block
is a patch (I;,) of the aerial image as described in Sec. 3.3 (main paper). The
lighter regions depict higher similarity between the patch and the street-view
frame, while darker regions depict lower similarity.

To compute the attention maps for each street-view frame, we first obtain
its class token feature along with the class token features of all patches using
respective feature encoders. Then we calculate self-attention by using the street-
view feature as the query vector and the aerial patch features as the key and
value vectors. We utilize the attention parameters from the penultimate block
of the aerial-view transformer encoder. It can be inferred from these attention
maps that our aggregation module finds relevant patches from large aerial image
before aggregating the features to obtain the final embedding.



6 Supplementary

].hl ]fz

argmax argmax
p1 P2
A A
I I
‘ ‘ Cross-Attention Layer ‘
[
histarny | A haa o haegchog oo hoe) L hn2 oo hat X © { |z
E ‘ Transformer Encoder ‘ ‘ Self-Attention Layer
T T T T T T T Transformer Decoder
[START] 11 @12 ...%1...To2... L ... Tp2 .o Tt histem +PEo  hy; +PE; D
(B) T T T (A)
STIRPEL 7 Tor R PE, Tu1 R PE, -
ria+PE [ To2+PE, ! TnatPE, Vi o )
El _ﬂ Aerial-view
. * L e Transformer
T+ PEL " To +'PEy \_Tnt +'PEn (GPS,,GPsy) v
N Ny N, I 75 = [UTM,, UTM,, Si;]

Fig. 1: Architecture of our TransRetriever module. (A) We begin by obtaining a 3-
dimensional representation for each small aerial image I S“j. Precisely, given a street-view
frame V;°, we obtain ¢ nearest neighbor small aerial images from the gallery. For each
aerial image [ gj, we first convert its GPS coordinates to UTM coordinates, followed
by computing the cosine similarity C's between its embedding and the embedding of
the street-view frame V;°. The converted coordinates and the similarity score S;; are
concatenated to form a 3-dimensional vector r;; for the aerial image. (B) We follow
this procedure for all n street-view frames in a video to obtain n clusters of ¢ elements
each. We append a learnable token [START] and obtain input tokens to the encoder
by adding positional embeddings to each cluster IV;. Note that elements of the same
cluster are added with the same positional embedding. This ensures that the positional
information is based on the ordering of the cluster and not the individual elements.
The tokens are encoded using the transformer encoder E to obtain hAstarry and {hs;}.
(C) The token hrsmrr is added with positional embedding and passed through the
decoder D to obtain a probability distribution p;. To make predictions in the decoder,
two types of attention layers are used. First, a causal self-attention layer is computed
which helps to predict tokens based on the previous tokens. Second, a cross-attention
layer is used to take encoded tokens from corresponding clusters that are needed to
make the prediction. For instance, to predict the first token, the cross-attention layer
will be computed across the encoded tokens of cluster N;. p1 represents the probability
of each encoded token in N7 to be selected. The selected encoded token is then added
with the next positional embedding and passed through the decoder to obtain the
predictions for the second frame and so on.
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Fig. 2: Top-5 large aerial images retrieved using our method for a given street-view
video. The green outline indicates correct predictions. For effective comparison in future
works, we have provided the video-id for each sample we present here.
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Fig. 3: Top-5 small aerial image retrieved given street-view video (c1a07cae-67a51c91)
frames (A) by both nearest neighbor (1-5) and our proposed TransRetriever module
(B) retrieval. The correct predictions are highlighted with a green outline. The arrow
represents the small aerial image chosen as the final prediction using our TransRetriever
module. Each column represents the predictions for a street-view frame.
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Prediction using NN Prediction using TransRetriever
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Fig. 4: Example trajectories obtained using our method when we use top-5 large aerial
images in Sequence-to-Image inference. The first column depicts trajectories utilizing
nearest neighbor (NN) retrieval, and the second column employs our TransRetriever
module. Note that the aerial images shown here don’t all have the same Ground Sam-
pling Distance due to the NN predictions being way off from each other. Our proposed
TransRetriever module significantly stabilizes the trajectories, yielding temporally con-
sistent output.
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Prediction using NN Prediction using TransRetriever Ground Truth

0677163-613b410

Fig. 5: Example trajectories obtained using our method compared with ground-truth
trajectories. Note that the aerial images shown here don’t all have the same Ground
Sampling Distance due to the nearest neighbor (NN) predictions being way off from
each other. Here, it’s evident that our proposed TransRetriever can effectively recover
temporally faithful trajectories with remarkable precision, even in cases where the
nearest neighbor approach terribly fails to converge.
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Prediction using NN Prediction using TransRetriever Ground Truth
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Fig. 6: Example trajectories obtained using our method compared with ground-truth
trajectories. Here, we can see that our proposed TransRetriever module is able to filter
temporally inconsistent predictions and stabilize the trajectory.
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A patch of the aerial
image

Fig. 7: The attention visualization computed for our proposed GeoAdapter module.
The first row shows a matching pair of large aerial image and street-view video. For
each street-view frame, we compute the temporal attention maps and overlay them
on the large aerial image (shown below). Each square block is a patch (I,;) of the
aerial image as described in Sec. 3.3 (main paper). The lighter regions depict higher
similarity between the patch and the street-view frame, while darker regions depict
lower similarity.
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