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Abstract. Cross-view video geo-localization (CVGL) aims to derive
GPS trajectories from street-view videos by aligning them with aerial-
view images. Despite their promising performance, current CVGL meth-
ods face significant challenges. These methods use camera and odom-
etry data, typically absent in real-world scenarios. They utilize multi-
ple adjacent frames and various encoders for feature extraction, result-
ing in high computational costs. Moreover, these approaches indepen-
dently predict each street-view frame’s location, resulting in temporally
inconsistent GPS trajectories. To address these challenges, in this work,
we propose GAReT, a fully transformer-based method for CVGL that
does not require camera and odometry data. We introduce GeoAdapter,
a transformer-adapter module designed to efficiently aggregate image-
level representations and adapt them for video inputs. Specifically, we
train a transformer encoder on video frames and aerial images, then
freeze the encoder to optimize the GeoAdapter module to obtain video-
level representation. To address temporally inconsistent trajectories, we
introduce TransRetriever, an encoder-decoder transformer model that
predicts GPS locations of street-view frames by encoding top-k near-
est neighbor predictions per frame and auto-regressively decoding the
best neighbor based on the previous frame’s predictions. Our method’s
effectiveness is validated through extensive experiments, demonstrating
state-of-the-art performance on benchmark datasets. Our code is avail-
able at https://github.com/manupillai308/GAReT.
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1 Introduction

Recently, there has been significant interest in cross-view video geo-localization
(CVGL), driven by its applications in vision-guided navigation, autonomous
driving, and robot manipulation [2,4,7]. Like its image counterpart [25,40,41,44,
46], the objective of CVGL is to obtain the GPS trajectory of a video by matching
every frame of a query street-view video with a reference aerial-view gallery. Prior
art primarily tackled CVGL from a coarse Sequence-to-Image [28, 43] matching
perspective. In this setting, the objective is to obtain a single GPS coordinate
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by matching a sequence of street-view images (typically ∼ 7) [43], sampled from
a street-view video with geo-tagged aerial images in the reference gallery. How-
ever, this coarse localization may not be optimal for many real-world appli-
cations [5]. Hence, [32] extends CVGL to a more fine-grained Frame-to-Frame
setting, where each frame of a street-view video is matched with a correspond-
ing reference aerial image (frame-level association). Particularly, [32] proposes
a hierarchical approach and a hierarchical dataset, where they first localize a
street-view video to a larger geographical area before obtaining the final frame-
by-frame predictions. Thus, following [23, 28, 32, 43], tackling CVGL at both
coarse (sequence-to-image) and fine (frame-to-frame) levels is the primary focus
of this work.

While existing works on CVGL have demonstrated promising performance,
they are not without notable drawbacks. Firstly, these approaches often rely on
camera intrinsic parameters and odometry data to model the temporal relation in
the street-view video and to effectively match it with a reference aerial image [28],
which are not always available, especially in videos captured in uncontrolled envi-
ronments. Secondly, to improve performance, prior work [32] utilizes contextual
information from multiple adjacent street-view frames (0.5-second short ‘clip’)
to obtain a feature representation for the center street-view frame. This design
leads to additional computational overhead for obtaining per-frame features and,
hence, is not optimal for real-time applications. Lastly, and most importantly, ex-
isting works on CVGL suffer from temporally inconsistent GPS predictions due
to modeling per-frame localization as independent nearest-neighbor retrieval op-
erations [28,32]. However, while obtaining the GPS predictions for each frame in
a street-view video, the predictions should follow temporal closeness consistent
with the input video. In this work, we aim to address these limitations of existing
CVGL approaches.

To this end, we extend TransGeo [44], a versatile transformer-based method
for cross-view image geo-localization, to the video setting and propose GAReT,
a fully transformer-based method for cross-view video geo-localization. We hy-
pothesize that in the context of video geo-localization, the temporal reasoning
requirement, though important, is not as critical as in other video tasks (like
action recognition). Following this assumption, we hypothesize that in order to
geo-localize a street-view video, the representations from a model capable of
geo-localizing street-view images can be efficiently aggregated to obtain video-
level representation. Towards this, we propose a transformer-adapter-based strat-
egy (GeoAdapter) to aggregate image-level representations of an image geo-
localization method and adapt it to video inputs. The advantage of this strategy
is two-fold: (i) As the image geo-localization method is grounded on matching
frame-level representations, a learnable aggregation module can effectively fuse
the representations to obtain representation for video geo-localization. (ii) The
efficiency of adapters allows our model to be more computationally lightweight
than traditional video models [3, 18] as well as previous works [28, 32]. Addi-
tionally, our method tackles the problem of CVGL in two hierarchical stages (as
opposed to four in [32]), where we first localize a street-view video to a large aerial
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region (using the video representation) and then individually localize each frame
of the video within the larger region. As transformers can model view-specific
feature attributes without explicit view transformations (e.g., polar transform
or projective transform) [44], our method does not require any knowledge of
camera intrinsic or odometry. Furthermore, to ensure temporal consistency in
frame-to-frame predictions, we propose an encoder-decoder transformer model
(TransRetriever) that encodes the top-k nearest neighbor predictions for each
frame and auto-regressively decodes the best result based on previous frames.

We summarize our contributions as follows:

– We propose a fully transformer-based method (GAReT) for cross-view
video geo-localization that doesn’t rely on explicit viewpoint information
like odometry and camera intrinsic.

– We employ a novel transformer adapter (GeoAdapter) for CVGL that adapts
an image geo-localization encoder for video inputs, outperforming dedicated
video models on benchmark datasets.

– To ensure temporally consistent frame-to-frame GPS predictions, we present
the first learnable transformer-based model (TransRetriever) that models the
independent frame retrievals through an auto-regressive decoder.

2 Related Works

Cross-view geo-localization represents an active field of research in computer
vision with various applications in real-world systems. Diverse endeavors have
been undertaken in the realm of cross-view image geo-localization with lim-
ited efforts in its video counterpart. Cross-view Image geolocalization: In
cross-view image geo-localization, the aim is to obtain a GPS coordinate for a
street-view image by matching it with aerial reference images. In [25], a polar
transform of aerial images was used to align views, alongside the introduction
of the Spatial-Aware Feature Aggregation (SAFA) module for learning embed-
dings with spatial correspondence between views. To align views, [17] proposed
using an orientation mask that provides geometric orientation correspondence to
the feature extractor. In [26, 27], the authors introduce Cross-DSM, a dynamic
similarity matching (DSM) module to compute a rough estimate of the azimuth
angle before performing matching. [35] showed polar transform of aerial images
is not necessarily required for better performance and introduced a transformer
encoder with self-cross attention layers. [45] identified key factors in cross-view
image geo-localization, especially the need for orientation alignment of street-
view and aerial-view image pairs. VIGOR [46] dataset was introduced to ad-
dress the lack of challenging benchmark datasets. Following this, [44] proposed
the first pure transformer-based architecture that performed significantly bet-
ter than CNN counterparts without explicit view-specific transformation. [42]
propose a novel disentangled feature learning framework that outperforms other
methods on cross-area benchmarks. Recently, a new direction in cross-view image
geo-localization has emerged. The goal is to accurately determine the location
of the street-view camera and estimate its pose [11,16,24,33,34].
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As previously mentioned, the research landscape for video geo-localization
is considerably limited. Cross-view Video geolocalization: [28] developed a
cross-view video-based localization approach using street-and-aerial geometric
correspondences. Another work [43] proposes a novel temporal feature aggrega-
tion technique to learn better global representations of street-view video. Though
promising results were obtained for both these works, they tackled the problem
of CVGL from a Sequence-to-Image standpoint. [32] introduced the most recent
work in Frame-to-Frame CVGL, inspired by [23]. Their contribution entailed a
pioneering hierarchical approach for cross-view video geo-localization where the
query street-view videos are first localized to a larger aerial region, then localizing
each video frame within the larger region. They employ different models for each
localization stage, resulting in increased computational complexity. Additionally,
existing approaches in CVGL adhere to the nearest-neighbor paradigm for in-
ference, where the best match from the reference set (aerial images) is taken as
the nearest neighbor of the query (street-view video frame). This greedy nearest-
neighbor strategy yields a suboptimal local solution by independently retrieving
matches for rather temporally related frames. Several works have shown im-
provement over this standard local optimum by posing a global constraint or
gain on the retrieval task [29, 38, 39], but all of them are heuristic-based ap-
proaches. In this work, our primary focus centers on mitigating these issues.
We demonstrate how a purely transformer-based approach, equipped with our
proposed GeoAdapter module, can surpass current state-of-the-art methods by
a significant margin. Furthermore, to ensure a temporally consistent solution,
we propose the first transformer-based approach, TransRetriver, that models
independent frame retrievals through an auto-regressive transformer decoder.

3 Methodology

We first present the problem formulation and an overview of our approach
in Sec. 3.1. Then, we introduce the different components of our method in
detail in Sec. 3.2 and Sec. 3.3. Finally, we present TransRetriever, our novel
transformer-based learnable architecture for temporally consistent frame-to-frame
predictions in Sec. 3.4.

3.1 Problem Formulation & Approach

We focus on CVGL in a frame-to-frame setting. Given a query street-view video,
we need to geo-localize each frame individually by visually matching the frames
to geotagged aerial reference images. Formally, given a set of query street-view
videos {V s} and aerial-view reference images {Ia}, our objective is to learn an
embedding space where every frame of query street-view videos is close to its
corresponding ground-truth aerial image. Following the frame-to-frame setting
proposed in [32], we assume that each street-view video V si is associated with
a large aerial image in addition to aerial images (small) corresponding to each
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street-view video frame. The large aerial image facilitates the hierarchical ap-
proach of localizing an entire street-view video to a larger geographical region
(sequence-to-image) before individually obtaining the predictions for each frame
(frame-to-frame). Precisely, each video V si of n frames will have n ground-truth
small aerial images (denoted hereon by {Iai

sj }
n
j=1) and one ground-truth large

aerial image (denoted hereon by Iai

L ).
As shown in Fig. 1, we propose a hierarchical solution towards CVGL. During

training, we optimize our feature encoder with image and video inputs to learn a
unified model (U) for feature extraction. Our unified model is a combination of a
vision transformer (ViT) (T) as in [44] equipped with our proposed GeoAdapter
(GA) module, i.e., U = {T,GA}. We begin by optimizing the ViT parame-
ters with image pairs (street-view frame and small aerial image) as inputs while
keeping the adapter module frozen. Then, we take video pairs (street-view video
and large aerial image) as inputs and freeze the transformer encoder parameters,
and optimize the adapter module. During inference, we localize a given street-
view video to a larger region using our unified model and then independently
obtain frame-to-frame predictions using the vision transformer (without the pro-
posed GeoAdapter) encoder within the localized larger region. Finally, instead
of independently retrieving frame-to-frame predictions through nearest-neighbor
retrieval, we use our proposed TransRetriever (TAR) to autoregressively predict
GPS coordinates for each frame by selecting matching small aerial images from
a set of possible candidates (see Sec. 3.4).

3.2 Image Representations for CVGL

Following [44], we use DeiT [30] as image encoder for our unified model U.
Note that, for simplicity, we consider one pair of street-view and aerial images
(V si , Iai) and ignore subscripts in notations.

Given a pair (V s, Ia), we sample every kth second frame from V s and obtain
corresponding matching Iask ∈ R256×256. For each view-specific input, similar
to [25,40,41,44,46], we train two separate image encoders, i.e., Ta,Ts to generate
embedding features. Specifically, we divide an input image (V s

k or Iask) of size
H,W into P non-overlapping patches of size p× p. Each patch is flattened and
fed into a trainable linear projection layer to generate token representations.
The tokens are prepended with a learnable token representation called [CLS]
token to learn global features from the image. Each token is then added with
positional embeddings [31] and goes through multiple transformer blocks. The
encoded [CLS] token representation after the last transformer block is passed
through a linear projection layer to obtain the final embedding of the input
image (additional details are provided in the supplementary material).

The encoders are optimized through contrastive learning [22] to facilitate the
model in learning embeddings where matching pairs are encoded closer together
while non-matching pairs are encoded farther apart. Formally, we optimize the
encoders on soft-margin triplet loss [12] as given below:

L1 =
∑
V s

∑
k

log (1 + e
α(||Ts(V

s
k )−Ta(I

a
sk

)||2−||Ts(V
s
k )−Ta(I

a
si̸=k

)||2)) (1)
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Fig. 1: Overview of our proposed approach GAReT. (A) We begin by optimizing our
image transformer encoders Ta,s (B) with street-view frame V s

k and matching small
aerial image Iask pair. (C) Then, for adapting our image encoder to video inputs, we
add our GeoAdapter GA module and only optimize the adapter parameters with video
pairs as inputs, i.e., a street-view video V s and corresponding large aerial image IaL.
For training, we sample every kth frame from the street-view video and partition the
large aerial image into non-overlapping patches. (D) In GA, we apply temporal self-
attention (TSA) computation only on the CLS tokens. For TSA computation, we reuse
the spatial self-attention weights. (E) During inference, we first perform a Sequence-to-
Image inference procedure, where given a query street-view video, our unified module
U = {T,GA} produces feature embeddings for both the V s and IaL. Then, using the
embeddings, we retrieve the t nearest neighbor large aerial images (here we show t =
1) and construct a small aerial image gallery G. (F) Finally, GA is removed, and
feature embeddings for Iask and V s

k are obtained. These features are then passed to
our TransRetriever TAR model to obtain final frame-by-frame GPS predictions to
construct a GPS trajectory.

where, || · ||2 denotes l2 norm and Ta,s : RH×W×3 → Rd.

3.3 GeoAdapter: Adapting to Video for CVGL

In order to localize a street-view video to a larger geographical region, we extend
our image geolocalization model Ta,s to video inputs. We propose GeoAdapter
(GA), the second and final component of our unified model U to efficiently ag-
gregate the representations of Ta,s to obtain video embeddings. GA is a trans-
former adapter module inspired by [20, 36] which consists of two 2-layer MLPs
with GeLU activation function, separated by a temporal self-attention (TSA)
layer. The TSA layer models the temporal relation between frames of the input
video by leveraging self-attention across the temporal dimension of the input.
Furthermore, to induce temporal ordering in tokens, we add temporal positional
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embeddings to each of the tokens before computing TSA. To effectively learn
rich contextual information from the video in different levels, we add our pro-
posed module to every block of the transformer encoder Ta,s. Formally, in block
l of our unified model U = {T,GA}, we have,

ĥl = hl−1 + SA(LN(hl−1))

hl = ĥl +GA(ĥl,TE)

hl = hl +MLP(LN(hl))

(2)

where GA(ĥl,TE) = F2(TSA(LN(F1(ĥ
l +TE)))), hl−1 is output of block l− 1,

SA,LN and TE is self-attention, layer-norm and temporal positional embedding
respectively. F1,2 is 2-layer MLPs with GeLU activation function. Not that for
TSA computation, we reuse the spatial self-attention weights similar to [20,36].
Discussion. As compared to [20, 36], our adapter module has two major dif-
ferences. (1) As the image transformer encoder Ta,s is trained using frames of
the video, we don’t need to perform any spatial adaptation. (2) As discussed
in Sec. 1, the temporal modeling for CVGL can be greatly relaxed due to the
simplicity of the task. Particularly, to model temporal relations, we do not need
to compute temporal attention with every patch of every input frame. Instead,
we can use the global representation of every frame ([CLS] token) and attend
them across the temporal dimension. To facilitate this, we compute the spatial
self-attention prior to computing TSA in every block, which is in reverse order
to [36]. We experimentally demonstrate that, for CVGL, computing TSA on
[CLS] tokens outperforms TSA on all patches in terms of retrieval performance
and computational efficiency (see Sec. 4.6).

Adapting the aerial encoder Ta: In order to extend the aerial encoder Ta to
obtain embeddings for larger geographical regions, we perform a pre-processing
step before adding GA. Since each large aerial image covers approximately 49
times (for GAMa dataset [32]) more area than a small aerial image, to ensure
that there is no distribution shift in the encoder Ta, which has been trained
on small aerial images, we divide the large aerial image into 49 non-overlapping
patches. Each patch is of the same size as the small aerial image. Formally, given
IaL ∈ Rkn×kn with Ias ∈ Rn×n, we break IaL into k2 non-overlapping patches of size
n× n, i.e., IaL = {Iapi

}k2

i=1. These patches of images can be considered analogous
to the street-view frames but for the aerial encoder. Note that there is no one-
to-one correspondence between the aerial patch Iapi

and street-view frame V s
k .

We only know matching pairs of street-view videos and large aerial images.
Similar to Sec. 3.2, the unified model U is trained using contrastive learning

with soft-margin triplet loss. We freeze the encoders Ta,s and optimize only the
added GeoAdapter modules GA. Given street-view videos and large aerial im-
ages, our unified model learns to embed matching pairs closer to each other while
pushing non-matching pairs farther apart. Formally, we optimize the following
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objective:

L2 =
∑
i

log (1 + eα(||Us(V
si )−Ua(I

ai
L )||2−||Us(V

si )−Ua(I
ak ̸=i
L )||2)) (3)

where, || · ||2 denotes l2 norm and Ua,s : RN×H×W×3 → Rd.

3.4 TransRetriever: Temporally Consistent Retrieval

Given Vs, we obtain the k nearest neighbor large aerial images in the embedding
space of U. Using the obtained k large images, we create a small aerial reference
gallery G, similar to [32]. For each frame V s

i of the street-view video, we obtain
t nearest neighbor small aerial images in the embedding space of T from G.
In order to obtain final temporally consistent frame-to-frame GPS predictions,
we formulate the retrieval task as the Generalized Traveling Salesman problem
(GTSP) [19]. Precisely, given V s = {V s

1 , V
s
2 , ..., V

s
n } with N = {N1, N2, ..., Nn}

where Ni = {Ias1 , I
a
s2 , ..., I

a
st} is the set of t small aerial nearest neighbor of V s

i , we
want to predict one small aerial image from each set Ni such that, the prediction
from Ni and Ni+1 is in closer proximity to each other.

Overview: Similar to [6], we cast our GTSP problem as a ‘translation’ prob-
lem where the source ‘language’ is the set N (analogous to clusters of cities),
and the target ‘language’ is n small aerial images, one from each Ni (analo-
gous to one city from each cluster). Analogous to translation architectures in
NLP [8], our proposed TransRetriever has an encoder-decoder architecture, i.e.,
TAR = {E,D}. The source ‘language’, i.e., the set N , is encoded by the en-
coder, and the decoder autoregressively predicts the target small aerial images
using the encoded representations. Since the elements of the set N are ordered
(as the frames of V s are ordered), we use positional encoding to induce the or-
dering before encoding. To obtain a global context before decoding, we append
a learnable token [START] (analogous to [CLS] token in VIT [10]) to the set N .
The decoder takes the encoder representation of the [START] token to begin the
decoding phase, where at every iteration i, we obtain a small aerial image that
is the final prediction for street-view frame V s

i . A comprehensive architecture
diagram for TAR is provided in the supplementary material.

Methodology: We begin by obtaining a 3-dimensional representation for each
small aerial in N . Precisely, for all Ni ∈ N , for all Iasj ∈ Ni, we convert its
GPS coordinate to UTM coordinates and obtain its similarity score Sij =
CS(Ta(I

a
sj ),Ts(V

s
i )), where CS is cosine similarity. Each small aerial image

Iasj ∈ Ni is then represented by a 3-D vector rij = [UTMx,UTMy, Sij ]. We
will refer to rij as tokens from hereon for simplicity. Since each Ni represents a
set of neighbors for street-view frame V s

i , an inherent ordering exists for all Ni

and Ni+1. To induce such an ordering in the encoding phase, we add positional
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embedding to each rij based on the Ni it belongs to. Specifically, we add a posi-
tional embedding PEi to every rij in Ni. Note that all the tokens belonging to one
neighbor set Ni will be added with the same positional embedding PEi, e.g., r12
and r13 will be added with PE1 while r23 and r21 will be added with PE2 and so
on. The resulting tokens xij = rij +PEi along with the learnable token [START]
is encoded through the encoder E(·) to obtain [h[START], hij ] = E([[START], xij ]).

Next, we utilize the encoded representation h[START] as a starting token for
the decoder to predict the small aerial image for the first street-view frame V s

1 .
Similar to the encoding phase, to induce ordering as well as to enforce position-
specific decoding, we add the encoded representation with its corresponding
positional embedding before passing it to the decoder. Formally, in the decoder
D(·), to predict the small aerial image for the ith street-view frame V s

i , we
add the encoded token h(i−1)j (the prediction of the previous frame V s

i−1) with
positional embedding PEi and pass it to the decoder and compute causal self-
attention (masked self-attention) [6, 31] to induce autoregressive conditioning
followed by a cross-attention with only the encoded representations rij ∈ Ni.
This enforces that the prediction of the ith street-view frame comes only from
set Ni. The decoding starts with h0j = h[START]. For each input token hij , the
decoder predicts a probability distribution pi that represents the probability of
each encoded token in Ni to be selected. During inference, we take the token
with the highest probability as prediction and pass it to the next iteration of
the decoder. Formally, we have, pi = D(h(i−1)j + PEi, [hi1, hi2, ..., hit]) with
ĵi = argmax(pi) and h(i+1)j = hiĵi

. Evidently, the prediction for the ith street-
view frame V s

i will be riĵi which we convert back to GPS coordinates to obtain
the final GPS predictions.

4 Experiments and Results

4.1 Training and Implementation details

We use DeiT-m [30] as our image transformer architecture and use PyTorch [21]
to implement our framework. We train the models T and GA for 100 epochs
with a batch size of 64 and 8, respectively. For both models, we use Adam [15]
optimizer with a learning rate of 1e-4 and default settings for other parameters.
We use pre-trained weights from ImageNet to initialize our image encoder T and
initialize all the parameters in the GA module with 0. For our proposed Tran-
sRetriever architecture TAR, we have a 6-layer encoder with a 2-layer decoder
with embedding dimension 128 and feed-forward dimension 512. Following [6],
we use Batch Normalization [13] instead of Layer Normalization [1]. We use
sinusoidal positional embedding [31] and train the model for 500 epochs.

4.2 Datasets

GAMa: GAMa [32] dataset is a cross-view video geo-localization (CVGL)
dataset that aims to provide a comprehensive benchmark for evaluating CVGL
methods in a frame-to-frame setting. The datasets provide ∼ 40 seconds long
street-view videos from the BDD100K [37] dataset with matching aerial images
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corresponding to each geo-tagged street-view frame of the video. Additionally,
each video is accompanied by a large aerial image that helps to localize the en-
tire video to a larger geographical region before obtaining frame-by-frame pre-
dictions. The dataset provides 45029 street-view videos and large aerial image
pairs with 1.68 million frame-level matching aerial images.

SeqGeo: SeqGeo [43] dataset is an image sequence geolocalization dataset con-
sisting of high-resolution frontal camera street-view images of 1920×1080 resolu-
tion with a field-of-view of approximately 120◦. Each street-view image is a part
of a video shot at 1 FPS, with the distance between each frame (or capture point)
at approximately 8 meters. Additionally, each street-view image accompanies a
GPS location and camera heading (compass direction) angle. The total number
of street-view images is 118,549, grouped into sequences of ∼ 7 images covering
50 meters of ground distance per sequence. Each sequence includes an aerial
image of the region covered by the street-view images. In total, there are 38,863
pairs of aerial images and street-view image sequences covering approximately
500 kilometers of roads in Vermont.

4.3 Sequence-to-Image Inference

To assess the effectiveness of our approach, we initially showcase the perfor-
mance of our method in retrieving large aerial images given a street-view video.
We use our trained unified model U to encode the given street-view video and
find the best matching large aerial image by calculating the nearest neighbor in
the feature space. Following previous works [28,32,43], we report top-k retrieval
recall at k = 1, 5, 10, and 1% to compare our model with other state-of-the-art
methods. A match is correct if the retrieved k nearest neighbours consists the
correct large aerial image. We compare our proposed approach on the GAMa [32]
dataset against Screening Network from [32], CVLNet [32] (since CVLNet re-
quires ground-truth camera parameters, we compare our method with the "Ours
w/o GVP (Unet)" and "Ours w/o GVP" variants for fairness.), and general-
purpose video models VideoSWIN [18] (initialized with pretrained weights of
Kinetics400 [14]), TimeSformer [3](initialized with pretrained weights of Ima-
geNet [9]). To further establish the effectiveness of our GeoAdapter module GA,
we compare our method with two additional baselines that are extensions of
TransGeo [44] to video inputs.
Baseline 1: As the first baseline, we train the image encoder Ta,s with video
inputs without our proposed adapter GA. Specifically, we perform the pre-
processing step on the large aerial image IaL (see Sec. 3.3) and encode each
patch individually using the encoder Ta. The embedding of the large aerial im-
age is thus the average of the individual embeddings of each patch, Iapi

. Precisely,

fL = 1
k2

∑k2

i=1 Ta(I
a
pi
), where k2 is the total number of non-overlapping patches

of the large aerial image IaL. Similarly, the embedding for a street-view video
V s is obtained by computing the average of the individual embeddings of each
frame V s

i , i.e., fV = 1
n

∑Ts

i=1(V
s
i ), where n is the total number of frames in V s.

We train the encoders Ta,s with Eq. (3) with fV and fL as video and large
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aerial embeddings. Note that, for a fair comparison, we initialize the encoders
Ta,s with weights obtained after pretraining with the images following Sec. 3.2.
Baseline 2: To establish the effectiveness of our preprocessing step during adap-
tation of Ta with our GeoAdapter module (see Sec. 3.3), we compare our ap-
proach with another baseline. In this, we perform the adaptation of only the
street-view encoder Ts and train Ta (without the adapter) by resizing the large
aerial image to size 512 × 512. Additional details about these experiments can
be found in supplementary material.
Tab. 1 shows the quantitative result of our approach on large aerial inference.

The baseline 1 performs better than both general-purpose video models, estab-
lishing the advantage of image-level pretraining in CVGL. Also, our method
with both T and GA performs superior to all other methods, achieving a top-1
recall rate of 50.69. To further demonstrate the performance, we compare our
method against the state-of-the-art cross-view sequence geo-localization bench-
mark SeqGeo [43]. Note that even though SeqGeo is an image sequence dataset
(sequence-to-image), our method can be applied here without loss of generality.
Specifically, instead of ∼ 40 street-view images (as in GAMa), SeqGeo consists
of ∼ 7 street-view images per aerial image. As it can be inferred from the results
that, our method also performs significantly better on the SeqGeo benchmark
nearly doubling the state-of-the-art achieving a top-1 recall rate of 3.34.
Discussion. It is important to note that while Baseline 1 excels in large aerial
inference, the encoders used to achieve this are entirely trained on video data.
Therefore, once the larger aerial region is localized, the same encoder cannot be
used for frame-by-frame matching. Whereas, with our proposed approach, once
the large aerial region is obtained, we can disengage the adapter GA in the en-
coder and use it for frame-by-frame matching. Further details on this behavior
can be found in the supplementary material.

(A) (B) (A) (B)
Trajectory 1 Trajectory 2

Fig. 2: Examples of trajectories obtained using NN (A) based retrieval and our pro-
posed TransRetriever (B). NN-based retrieval heavenly suffers from temporally in-
consistent predictions depicted by the jumps in the trajectory while TransRetriever
predictions are globally consistent which preserves the temporal coherence of the pre-
dictions.

4.4 Frame-to-frame inference

After localizing a given street-view video to a large aerial region, similar to [32],
we create a small aerial image reference gallery G. To obtain predictions for
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Model R@1 (↑) R@5 (↑) R@10 (↑) R@1% (↑)

GAMa dataset
TimeSformer [3] 20.10 44.47 55.58 83.46
VideoSWIN [18] 20.37 45.86 59.94 88.02
CVL-Net [28] 0.36 1.33 2.66 15.35
GAMa(Screening-Network) [32] 12.2 - 35.3 49.3
Baseline 1 40.07 70.76 79.72 94.04
Baseline 2 15.39 38.48 51.36 83.16
Ours (T+GA) 50.69 81.77 88.71 98.26

SeqGeo dataset
VIGOR [46] 0.54 2.52 4.48 18.55
SAFA [25] 0.63 2.83 5.03 21.51
SeqGeo [43] 1.80 6.45 10.36 34.38
Ours (T+GA) 3.34 11.19 17.18 44.39

Table 1: Top-k retrieval recall score for large aerial image localization. Our ap-
proach (T + GA), achieves superior top-1 recall performance of 50.69 on the GAMa
dataset, surpassing both baseline models and state-of-the-art methods. Additionally,
our method significantly improves upon the state-of-the-art SeqGeo benchmark, achiev-
ing a top-1 recall rate of 3.34. (Arrows represent more (↑) or less (↓) is better, ‘-’ denotes
scores not provided in respective works)

each street-view frame of the input video, we use our image encoder model
Ta,s to retrieve nearest neighbor small aerial images from the gallery G. Similar
to Sec. 4.3, we report top-k retrieval recall at k = 1, 5, 10 and 1%. Due to
high degree of overlap in aerial images of subsequent video frames, following
the previous work [32], we consider a match correct if the predicted GPS is
within the range of 0.05 miles of the ground-truth location. We compare our
framework against GAMa-Net [32], L2LTR [35], VIGOR [46] and [25]. Tab. 4
shows the quantitative results of our method in comparison to other methods.
Note that the recall rate for GAMa-Net uses top-1% large aerial images for
creating the small aerial reference gallery, while our method uses top-10 large
aerial images. Our proposed framework achieves significant improvement over
state-of-art scoring 54.64% top-1 recall rate on the validation split of the GAMa
dataset.
4.5 Retrieval with TransRetriever

Following Sec. 3.4, we compare our proposed TransRetriever with nearest neigh-
bor (NN) retrieval and Dominant sets (DS) strategy from [cite]. For predicting
using NN, we obtain the nearest small aerial image to a given street-view frame
individually and predict its GPS coordinates as the final prediction. For DS and
TransRetriever, we obtain the k nearest small aerial image candidates for each
frame and predict the GPS coordinates by selecting one small aerial image from
each k neighbor (see Sec. 3.4). Additional information on how we implement
the DS strategy for our use case can be found in the supplementary material.
In Tab. 2, we show the top-1 recall rate of our method compared to NN and DS
for k = 10 and k = 20. Fig. 2 shows examples of the GPS trajectory obtained for
a street-view video using NN and TransRetriever. The red point represents the
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GPS prediction for a frame in the video, and lines connect adjacent frame predic-
tions. NN-based retrieval heavenly suffers from temporally inconsistent predic-
tions depicted by the jumps in the trajectory. At the same time, TransRetriever
predictions are globally consistent, reducing inconsistencies and preserving the
temporal coherence in the predictions.

Method R@1 (↑)
k = 10 k = 20

Nearest Neighbor 54.64
Dominant Sets [29] 56.09 60.67
TransRetriever (TAR) 67.66 70.70

Table 2: The top-1 frame-by-frame recall
rate of our method with nearest neighbor,
dominant sets, and our proposed Tran-
sRetriever with k = 10 and k = 20. (Sym-
bols follow the definition in Tab. 1)

Adapter R@1 (↑) R@5 (↑) R@10 (↑)
AIM [36] 48.06 80.50 88.25
ST-Adapter [20] 34.29 69.98 80.75
Ours 50.69 81.77 88.71

Table 3: Top-k retrieval recall score
of Sequence-to-Image inference with
AIM [36], ST-Adapter [20], and our
proposed GeoAdapter (Ours) as adapter
modules. (Symbols follow the definition
in Tab. 1)

Model R@1 (↑) R@5 (↑) R@10 (↑) R@1% (↑)
Shi et al. [26] 9.6 18.1 26.6 71.9
L2LTR [35] 11.7 20.8 28.2 87.1
GAMa-Net [32] 15.2 27.2 33.8 91.9
GAMa-Net (Hierarchical) [32] 18.3 27.6 32.7 -
Ours (T) 54.64 70.45 76.36 91.92

Table 4: Top-k retrieval recall score for frame-by-frame geo-localization on the GAMa
dataset. For our method, we construct the gallery G using the top 10 large aerial
images, while other methods use the top 1% images. Compared to the state-of-the-art,
our method achieves significant improvement achieving a final score of 54.65 on frame-
to-frame cross-view geo-localization. (Symbols follow the definition in Tab. 1)

4.6 Analysis
In this section, we present additional analysis experiments to provide further
support for our proposed architecture.
Variants of GA: Following the discussion in Sec. 3.3, we compare our pro-
posed GeoAdapter architecture with two other variants. Precisely, in GALL

A , we
compute temporal attention across every patch of every input frame. While in
GASYM

A , we compute temporal attention across [CLS] tokens in the aerial branch
but compute temporal attention across all the patches of every input frame in
the street-view branch. In Fig. 3, we compare both these variants with our
proposed GA where we compute temporal attention across the [CLS] tokens in
both branches. It can be inferred from the figure that out of all three variants,
the [CLS] token-based temporal attention is best suited for CVGL.
Effect of Top-k large aerial images: To further understand the effect of dif-
ferent numbers of large aerial images used to create a small aerial gallery G. Fig. 4
shows the top-k recall rate of frame-by-frame inference using our method when
multiple large aerial images are taken to create the gallery.
Comparison with other Adapters: In order to showcase the efficacy of our
proposed GeoAdapter module GA, we compare the Sequence-to-Image inference



14 M. Pillai et al.

performance of our methodology using adapters from [36] and [20]. Specifically,
we replace our adapter module with AIM and ST-Adapter without modifying
any other component. Tab. 3 shows the top-k retrieval recall score for Sequence-
to-Image inference with different adapters. It should be noted that the AIM
adapter performs comparably to GALL

A variant due to its similarity in temporal
attention computation. In addition to better recall rate, the temporal attention
computation in our method can be computationally lighter than in AIM or other
variants of GA because we only compute attention across [CLS] token of each
input frame instead of all input tokens. Additional experiments showing our
method’s recall rate with varying distance thresholds and runtime analysis are
presented in the supplementary material.

Variant R@1
GALL

A 48.4
GASYM

A 50.0
Ours (GA) 50.7

Fig. 3: Comparison of our proposed
GeoAdapter module with different vari-
ants of architectural design. With a top-1
recall rate of 50.7 (50.69), our proposed
architecture best suits CVGL.

No. of IaL R@1 (↑) R@5 (↑) R@10 (↑)
1 52.59 59.71 61.29
5 57.37 71.25 75.91
10 54.64 70.45 76.36

Fig. 4: Top-k retrieval recall score
of frame-by-frame inference using our
method when multiple large aerial images
are taken to create the gallery.

5 Conclusion

In conclusion, this work introduces GAReT, a fully transformer-based method
for cross-view video geo-localization (CVGL) that, unlike prior works, doesn’t
rely on camera parameters or odometry. We proposed GeoAdapter, a transformer-
adapter to aggregate image-level representations of an image geo-localization
method and adapt it to video inputs, making our method computationally
lightweight than existing works. Additionally, to ensure temporally consistent
GPS predictions, we proposed TransRetriever, an encoder-decoder transformer
model that encodes the top-k nearest neighbor predictions for each frame and
auto-regressively decodes the best result based on the previous frame’s predic-
tions. Extensive experimental evaluations demonstrate the effectiveness of our
approach, showcasing state-of-the-art performance on benchmark datasets.
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