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A Appendix

A.1 Details of Baseline Backdoor Attacks and Defenses

In this section, we provide the details of leveraged baseline backdoor attacks and
defense methods.
Backdoor Attacks. We evaluate on 14 prominent backdoor attacks, following
the original trigger patterns and poisoning strategies, with a fixed poisoning rate
of 10%. Figure 7 provides visualizations of different backdoor triggers, where
we displays images stamped with triggers in the first rows and the differences
between poisoned images and their source versions in the second rows.

BadNets Trojan CL Dynamic IA Reflection SIG

Blend WaNet ISSBA LIRA Instagram DFST Adap-Blend

Fig. 7: Backdoor trigger examples

– BadNets [20] introduces backdoor attacks by incorporating a small percentage
of poisoned samples into the training data using standard data-poisoning.
During inference, images stamped with the trigger are misclassified to the
specified target label.

– Trojan [40] injects the backdoor by manipulating selective internal neurons,
ensuring the trigger activates these neurons with high values, causing targeted
misclassification.

– CL [65] proposes a clean-label attack that poisons only samples of the target
class during training. It introduces adversarial perturbations to target inputs,
misclassifying them to other classes before applying data-poisoning.
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– Dynamic backdoor [53] leverages a trigger generator to inject various triggers
randomly into different inputs.

– IA [48] utilizes two trigger generation networks to create trigger masks and
patterns based on the inputs, establishing a unique one-to-one mapping
between the input and its trigger.

– Reflection [41] blends inputs with another image to produce a reflection effect.
– SIG [3] perturbs input images with strip effects. It also operates as a clean-

label attack.
– Blend [6] applies small random perturbations and blends them with the input

to create the trigger.
– WaNet [47] uses a complex wrapping function to induce a line-bending effect

on inputs as the trigger.
– ISSBA [37] injects an invisible trigger using an image-to-image transforming

network.
– LIRA [15] employs a network to inject sample-specific perturbations into

inputs as the trigger.
– Instagram [39] uses Instagram filters to introduce the trigger.
– DFST [7] utilizes a CycleGAN to apply a sunshine effect on inputs as the

trigger. It also incorporates a detoxification process to eliminate low-level
trigger features, directing the model’s focus to high-level features.

– Adap-Blend [51] leverages asymmetric and low-confidence training to reduce
the latent distance between clean and poisoned samples, enhancing the
stealthiness and robustness of the attack against existing defenses.

Backdoor Mitigation Baselines. We compare our technique UNIT with 7
state-of-the-art defenses given the same number of clean training data. We follow
the original implementation to conduct experiments and tuning parameters to
acquire best performance.

– Standard Fine-Tuning (FT) retrains the model using the given clean data.
We perform fine-tuning for 20 epochs with an initial learning rate of 10´2 and
reduce the learning rate by a factor of 10 every 4 epochs. Data augmentation
techniques, including random cropping, rotation, and horizontal flipping, are
applied to enhance model generalization.

– Fine-Pruning (FP) [38] first prunes dormant neurons with low activation
values on clean inputs (potential backdoor neurons) and then applies standard
fine-tuning to the model.

– NAD [35] distills the knowledge from the teacher model to the student model.
The teacher model is derived from the backdoored model after standard
fine-tuning. The backdoor effect is removed through the distillation to the
student model, only based on clean representations.

– ANP [69] observes that backdoor neurons are sensitive to small perturba-
tions in weight values. It prunes the most sensitive neurons based on this
observation.

– NC [66] reverse-engineers backdoor triggers and applies adversarial training
to neutralize the effectiveness of the generated triggers.
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– I-BAU [74] introduces a min-max formulation to eliminate backdoors and
leverages implicit hypergradients to optimize the balance between removal
efficiency and effectiveness.

– SEAM [83] leverages the catastrophe forgetting assumption [31] by first
retraining the model on clean samples with randomly assigned labels to forget
both clean and backdoor behaviors. It then fine-tune the model on samples
with the correct labels to restore the clean performance.

Table 3: Evaluation results on the latest backdoor attacks and defenses

Attacks
No Defense CLP FST RNP FT-SAM Super-FT UNIT

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets 94.82 100.0 92.37 1.18 92.50 0.00 92.18 0.64 91.75 0.86 91.58 0.90 92.48 0.78

Instagram 94.62 99.59 91.69 48.08 91.93 8.55 90.05 14.50 90.96 9.91 90.55 6.83 91.43 4.98

Reflection 93.29 99.59 92.06 36.16 91.46 7.58 89.59 84.30 90.58 53.96 91.02 48.07 91.44 6.63

NARCISSUS 92.67 95.48 87.98 84.64 86.86 41.49 89.17 79.96 89.12 43.61 89.31 59.48 88.74 37.97

COMBAT 94.00 88.74 90.07 50.93 91.66 73.79 90.99 72.57 89.22 62.42 90.61 59.31 90.13 48.58

A.2 Additional Evaluation on the Latest Backdoor Attacks and
Defense Mechanisms

We compare UNIT with five additional state-of-the-art baselines, CLP [80],
FST [45], RNP [36], FT-SAM [82] and Super-FT [54]. CLP identifies and prunes
backdoor neurons by examining the channel Lipschitzness to reduce the backdoor
effect. It is based on the observation that backdoor neurons tend to have high chan-
nel Lipschitz values. FST actively deviates the weights of the classification layer
(e.g., the last fully connected layer in ResNet-18) from the originally compromised
weights. It then fine-tunes the feature extraction weights to calibrates the shifted
classification weights, aiming to destroy the backdoor correlation. RNP identifies
malicious neurons by unlearning using clean samples with randomly shuffled
labels and then recovering using the ground-truth labels. Malicious neurons
stand out as they are sensitive to this change and RNP prunes them accordingly.
FT-SAM leverages sharpness-aware minimization to achieve better unlearning
while Super-FT design a special learning rate scheduler to enhance the backdoor
unlearning. We consider three typical backdoor attacks, BadNets [20], Instagram
filter [39] and Reflection [41]. In addition, we include two latest backdoor attacks,
NARCISSUS [75] and COMBAT [29], which are both robust clean-label attacks.
The experiments are conducted using the ResNet-18 model and CIFAR-10 dataset,
with 5% of the original training samples available for defense. Results, presented
in Table 3, indicate that while all defense techniques are effective against conven-
tional attacks like BadNets, they perform less effectively against more complex
and recent attacks, particularly NARCISSUS and COMBAT. UNIT consistently
surpasses other state-of-the-art methods in mitigating backdoor effects, at the
comparable cost to clean accuracy. However, it is important to note that while
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UNIT demonstrates superior performance, it still falls short against the latest
clean-label attacks. This may be due to the extremely subtle distribution dif-
ferences between poisoned and clean activations introduced by these attacks,
making them difficult for UNIT to approximate. Our future work will focus on
improving UNIT’s effectiveness against these robust clean-label attacks.
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A.3 Parameter Sensitivity Analysis

We take three typical baselines to illustrate that existing methods are sensitive to
their parameters and require sophisticated parameter tuning to ensure the good
performance. However, UNIT is parameter-efficient and outperforms the existing
methods. We conduct experiments using CIFAR-10 dataset and ResNet-18 net-
work. We inject CL [65] backdoor into the model and apply FP [38], NAD [35] and
ANP [69] to mitigate the attack. For each defense, we take two key parameters
and evaluate the performance for different parameter values. Specifically, we take
the pruning ratio (pr) and learning rate (lr) for FP, distillation strength (�)
and learning rate (lr) for NAD, and adversarial perturbation (✏) and pruning
coefficient (↵) for ANP. Results are presented in Figure 8, Figure 9 and Fig-
ure 10, where the y-axis denotes the parameter values while the x-axis presents
the performance in percentage (accuracy or ASR). For each parameter setting,
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we visualize the performance using two bars, i.e., resulting ASR (top bar) and
Acc. (lower bar). The red and blue dashed lines represents the resulting ASR
and accuracy after applying UNIT. Observe that the performance of existing
methods are significantly sensitive to parameter tuning, with large fluctuation
over slightly different parameters. On the contrary, UNIT is parameter-efficient
and outperforms the three baselines, indicating its practical applicability.

In addition, we take the state-of-the-art pruning method RNP [36] to defend
against the Reflection backdoor [41]. Figure 11 shows that as the pruning threshold
increases (more neurons are pruned), both accuracy (blue curve) and ASR (red
curve) degrade similarly. This indicates that some neurons handle both clean
and backdoor tasks, and no matter how the parameters are tuned to control
the pruning rate, it is fundamentally difficult to eliminate the backdoor effect
without a non-trivial accuracy cost (Section 3). In contrast, UNIT achieves
91.44% accuracy and reduces ASR to 6.63% by precisely tightening the neural
distribution.

A.4 Adaptive Attacks

In this section, we discuss three adaptive attack scenarios in detail.
Activation Suppression. To tamper UNIT’s effectiveness, an adversary may
attempt to bridge the gap between benign and backdoor activation. Specifically, an
adaptive loss is incorporated during training to suppress the backdoor activation:

Loss “ LpMpxq, yq ` LpMpx ‘ T q, yT q ` ↵ ¨
Lÿ

l“1

||F lpxq ´ F lpx ‘ T q||22, (6)

Here, M denotes the model, x and y denote clean images and their labels, x ‘ T
denote their poisoned versions and yT is the attack target class. F lpxq represents
the activation value of x at the l-th layer as defined in Section 4.1. The adaptive
loss term ||F lpxq ´ F lpx ‘ T q||22 uses Mean Squared Error (MSE) to reduce the
difference between benign and poisoned activation. The parameter ↵ controls
the trade-off between the adaptive loss term and the normal cross-entropy loss
L. The experiment is conducted on CIFAR-10 and ResNet18 using BadNets
as the backdoor attack. We evaluate five ↵ values: 0, 0.1, 1, 10, 100. Table 4
presents the results, where the first column shows ↵ values, the second and third
columns present accuracy and ASR without defense, the fourth column shows the
adaptive loss, and the last two columns present accuracy and ASR after applying
UNIT. Observe that with the increase of ↵, the adaptive loss decreases, signifying
successful activation suppression. However, UNIT continues to effectively reduce
the ASR to less than 1.07%. The reason is that despite the reduced backdoor
activation, UNIT can still effectively clip the slightly higher malicious activation.
Label-specific Backdoor. Attackers may employ label-specific strategies to
impact the efficacy of UNIT. In label-specific backdoor attacks, the backdoor
exclusively influences samples belonging to the victim class. Samples stamped
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Table 4: Evaluation against activation suppression

↵
No Defense UNIT

Acc. ASR Adap-Loss Acc. ASR

0 94.84% 100.00% 0.1108 93.05% 1.07%

0.1 94.25% 100.00% 0.0433 92.52% 0.84%

1 94.13% 100.00% 0.0137 92.42% 0.73%

10 93.77% 100.00% 0.0034 91.85% 1.02%

100 93.42% 100.00% 0.0015 91.35% 0.90%

with the trigger but not from the victim class will not be misclassified into
the attack target class. Consequently, label-specific backdoor attacks rely on
normal features and could potentially impact the difference between clean and
malicious activation distributions. We conduct experiments on CIFAR-10 using
ResNet18 and utilized BadNets as a representative attack. When poisoning
the model, we not only introduce images of the victim class stamped with the
trigger and labeled as the target class but also incorporate negative samples to
achieve label-specificity. Negative samples consist of images from classes other
than the victim class, stamped with the trigger and labeled as their source
labels. These negative samples aid the model in learning the correlation between
the backdoor trigger and the victim class. Table 5 presents the results, with
the first column denoting the attack victim-target pair, the second and third
columns representing clean accuracy and ASR without defense, the fourth column
illustrating the effectiveness of label-specificity (ASR of images stamped with the
trigger from non-victim classes), and the last two columns displaying the results
after applying UNIT. Observe that negative samples facilitate label-specificity,
reducing the ASR of non-victim classes from 100% to nearly 3%, while the ASR
of the victim class remains high at approximately 98%. After applying UNIT, the
clean accuracy remains high with only about a 2% degradation, while the ASR
decreases to less than 4.40%, demonstrating the effectiveness of UNIT against
label-specific attacks. The reason is that even if the backdoor relies on benign
features, it still necessitates reasonably large activation values to be triggered.
UNIT identifies and mitigates these large activation values, rendering it effective
against label-specific attacks.

Table 5: Adaptive attack through leveraging label specificity.

V-T Pair
No Defense Specificity UNIT

Acc. ASR Non-victim ASR Acc. ASR

0-9 94.62% 98.60% 100.00% Ñ 2.88% 92.31% 1.50%

8-3 94.83% 98.60% 100.00% Ñ 2.51% 92.64% 0.90%

2-4 94.71% 97.90% 100.00% Ñ 3.20% 92.74% 4.40%

6-5 94.89% 98.40% 100.00% Ñ 3.04% 92.60% 0.00%

7-1 94.79% 98.20% 100.00% Ñ 2.06% 92.97% 0.00%

Trigger-specific Backdoor. Attackers may exploit trigger-specificity to dynam-
ically impact UNIT. Trigger-specificity entails that the backdoor is activated only
when a specific pattern is presented in the image. In other words, a ground-truth
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trigger stamped with some noise will not induce the backdoor effect. The potential
impact on the effectiveness of UNIT arises from the model’s potential use of
benign neurons to extract high-level features of the trigger pattern. This could
lead to a reduction in the difference between benign and backdoor activation
distributions. We conducte experiments on CIFAR-10 using ResNet18 and employ
BadNets as an example attack, utilizing a yellow flower as the backdoor trigger. In
addition to poisoned samples stamped with the trigger and relabeled as the target
class, we introduce negative samples to establish trigger-specificity. We added
Gaussian noise to the trigger pattern, stamping the noisy pattern onto certain
training images while keeping their ground-truth labels. This approach help the
model learn the high-level trigger pattern instead of some low-level features.
Table 5 presents the results, where the first column denotes the noise level added
to the negative samples, the second and third columns represent clean accuracy
and ASR without defense, the fourth column illustrates the effectiveness of
trigger-specificity (ASR of images stamped with noisy triggers), and the last two
columns display the results after applying UNIT. Observe that the noisy ASR in
the fourth column is significantly reduced when the noise level is 0.05, 0.1, 0.5, 1.0,
indicating that negative samples effectively realize trigger-specificity. Notably, in
the last two columns, UNIT still reduces the ASR from 100% to nearly 1%, while
maintaining high clean accuracy. UNIT proves effective against trigger-specific
attacks because even if the model learns the high-level backdoor trigger pattern,
it cannot circumvent the separation between clean and malicious distributions.
This discrepancy is leveraged by UNIT to mitigate the backdoor effect.

Table 6: Adaptive attack through leveraging trigger specificity.

Level
No Defense Specificity UNIT

Acc. ASR Noisy Trigger ASR Acc. ASR

0.01 94.65% 100.00% 100.00% Ñ 99.98% 92.55% 1.01%

0.05 94.79% 100.00% 100.00% Ñ 6.84% 92.85% 0.86%

0.1 94.70% 100.00% 100.00% Ñ 0.59% 92.58% 1.06%

0.5 94.64% 100.00% 77.08% Ñ 0.64% 92.65% 0.87%

1 94.99% 100.00% 36.50% Ñ 0.76% 92.65% 0.92%

A.5 Ablation Study

In this section, we perform a series of experiments to assess the performance of
UNIT under different attack and defense settings. Additionally, we conduct an
ablation study on the design choices and hyper-parameters of UNIT.

Different Activation Functions There are different types of activation func-
tions used in deep neural networks. We evaluate UNIT on BadNets-poisoned
models using different activation functions. CIFAR-10 and ResNet18 are used
for the study. We replace the standard activation function (ReLU) with five
commonly used functions, LeakyReLU [43], SELU [32], ELU [12], TanhShrink [49],
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Table 7: Evaluation on different activation functions

Activation
Original UNIT

Acc. ASR Accuracy ASR

ReLU 94.82% 100.00% 92.46% 0.78%

LeakyReLU 94.17% 100.00% 92.02% 0.96%

SELU 90.89% 99.93% 89.66% 1.06%

ELU 91.24% 99.98% 90.52% 0.99%

TanhShrink 89.80% 100.00% 89.21% 1.13%

Softplus 88.08% 99.97% 87.19% 1.58%

Sigmoid 80.43% 99.80% 77.62% 5.31%

Tanh 90.95% 99.98% 88.14% 6.03%

Table 8: Ablation study on different number given clean training samples

Attacks
No Defense 10% 5% 1% 0.1%

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets 94.82% 100.00% 92.81% 1.09% 92.48% 0.78% 90.60% 1.59% 88.01% 2.63%

Trojan 94.73% 100.00% 92.44% 1.65% 92.38% 2.17% 91.07% 1.96% 89.93% 2.73%

CL 94.58% 98.46% 92.36% 0.93% 92.21% 1.09% 89.98% 1.81% 90.90% 8.09%

Dynamic 95.08% 100.00% 92.34% 1.28% 92.77% 1.54% 88.48% 2.01% 90.29% 2.14%

IA 91.15% 97.96% 90.78% 1.82% 89.93% 1.03% 87.66% 2.11% 89.38% 3.45%

Reflection 93.29% 99.33% 91.64% 2.74% 91.44% 6.63% 88.82% 7.47% 83.02% 0.46%

SIG 94.97% 99.80% 92.45% 0.41% 92.48% 1.74% 89.30% 0.46% 86.88% 1.18%

Blend 94.62% 100.00% 91.75% 1.55% 91.99% 1.18% 88.77% 2.06% 90.86% 0.61%

WaNet 94.36% 99.80% 91.09% 1.83% 91.02% 2.44% 89.53% 9.90% 82.96% 3.68%

ISSBA 94.55% 100.00% 91.96% 1.19% 91.84% 1.57% 89.53% 1.86% 88.10% 2.53%

LIRA 95.11% 100.00% 92.65% 0.82% 92.29% 0.58% 89.49% 1.93% 82.76% 1.17%

Instagram 94.62% 99.59% 91.71% 4.05% 91.43% 4.98% 91.07% 11.66% 86.25% 21.64%

DFST 93.25% 99.77% 91.83% 3.54% 91.64% 4.02% 88.59% 3.90% 88.97% 8.80%

Adap-Blend 94.22% 82.80% 91.35% 18.39% 90.84% 15.03% 88.78% 47.64% 87.64% 58.57%

Average 94.26% 98.39% 91.94% 2.95% 91.77% 3.20% 89.41% 5.88% 87.57% 8.41%

Softplus [79], Sigmoid [22], and Tanh [17]. Table 7 shows the results. UNIT is
effective in all the cases, reducing the ASR from near 100.00% to less than 1.6%.
The impact on the clean accuracy is negligible (less than 2% degradation). This
is attributed to the distinct separation between clean and poisoned activation
distributions, a phenomenon that persists across various activation functions.
Hence, UNIT is able to ensure robust performance irrespective of the activation
function utilized.

Different Numbers of Clean Training Data. We study the impact of different
numbers of given clean training samples on UNIT. Table 8 presents the results,
comparing UNIT’s performance when provided with 10%, 5% (default), 1%, and
0.1% of training data for defense. The experiments are conducted on CIFAR-10
and ResNet-18. Observe that in general, UNIT exhibits better performance
(higher clean accuracy and lower ASR) when given more clean samples. This is
expected as UNIT requires clean samples to approximate a tight distribution
and eliminate malicious activation. More samples allowing for a more precise
approximation of the real distribution. Obtaining clean samples is generally
feasible, even from the internet, supporting the argument that UNIT is generally
effective and suitable for real-world applications. Moreover, even with access
to only 0.1% of samples (totally 50 images in CIFAR-10 dataset), UNIT still
effectively reduces ASR to an average of 8.41%, albeit with a sacrifice of around
7% in accuracy.
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Table 9: Evaluation on different low poisoning rates

Attacks
No Defense FP NAD ANP UNIT

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets (1%) 93.87 100.0 89.78 52.32 88.69 38.62 88.15 7.56 92.72 0.85

BadNets (0.1%) 94.05 100.0 89.66 99.84 89.72 49.05 86.45 37.27 90.22 1.44

Blend (1%) 93.92 99.92 89.43 29.69 89.64 0.07 88.16 0.10 92.96 0.00

Blend (0.1%) 93.88 99.89 88.87 41.56 88.64 0.20 87.51 0.48 92.14 0.11

WaNet (1%) 93.59 94.91 89.01 5.77 91.31 10.43 89.93 1.48 90.97 2.19

WaNet (0.1%) 93.80 93.75 89.79 9.89 90.22 21.39 90.26 1.44 90.08 4.07

Acc. UNIT 
ASR UNIT

Fig. 12: Ablation study on different poi-
soning rates

Acc. UNIT 
ASR UNIT

Fig. 13: Ablation study on different target
labels

Different Poisoning Rates. We study the impact of various poisoning rates on
defense performance. Utilizing CIFAR-10 and ResNet-18, we introduce BadNets
triggers with poisoning rates of 1%, 5%, 10%, 25%, and 50%. Figure 12 illustrates
the results, with the x-axis representing poisoning rates and the y-axis denoting
performance. Notably, UNIT consistently reduces the ASR from 100.00% to
approximately 1%, with minimal accuracy sacrifice (less than 2%). This highlights
the robustness of UNIT across different data poisoning rates.

Additionally, we compared UNIT with three baselines on CIFAR-10 and
ResNet-18 at extremely low poison rates (1% and 0.1%). Table 9 shows that
while baseline performance degrades at lower poison rates, UNIT remains robust
and outperforms them.

Different Target Labels. We investigate the influence of different target labels
on defense performance of UNIT. We use CIFAR-10, ResNet-18 and BadNets
trigger to conduct the experiments and employ labels 1, 3, 5, 7, and 9 as the
targets. Figure 13 illustrates the results, where the x-axis represents the target
classes, and the y-axis indicates performance. Remarkably, UNIT consistently
reduces the ASR from 100.00% to 0.30%-2.47% without significantly impacting
clean accuracy, underscoring the robustness of UNIT across various target labels.

Time cost for different model scales. We evaluate the time cost of UNIT
for different model scales. Results are shonw in Figure 14. For larger models, e.g.,
ResNet-101, UNIT reduces ASR to below 2% with only a 3% accuracy drop. The
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Table 10: Ablation study on different design choices

Attacks
No Defense Current Setting Act. Rejection First Two Layers Last Two Layers

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets 94.82% 100.00% 92.48% 0.78% 90.52% 1.97% 92.88% 3.19% 90.74% 1.42%

Trojan 94.73% 100.00% 92.38% 2.17% 90.93% 4.67% 91.88% 5.29% 90.95% 2.48%

Reflection 93.29% 99.33% 91.44% 6.63% 90.77% 23.89% 91.39% 74.80% 90.43% 7.95%

Instagram 94.62% 99.59% 91.43% 4.98% 91.10% 12.03% 91.93% 78.40% 91.34% 7.17%

DFST 93.25% 99.77% 91.64% 4.02% 91.39% 8.62% 92.14% 76.58% 90.99% 34.76%

Adap-Blend 94.22% 82.80% 90.84% 15.03% 90.82% 39.93% 91.84% 78.69% 90.39% 57.76%

Average 94.26% 98.39% 91.77% 3.20% 90.92% 15.19% 92.01% 52.83% 90.81% 18.59%

time cost increases with model size (blue bars), but even for ResNet-101, UNIT
completes in about 1 minute. To enhance efficiency, we can optimize only on key
layers, e.g., each residual block in ResNets. This adaptation reduces the time
cost by 25% (green bars) while still being effective. This demonstrates UNIT’s
efficiency even for large-scale models.

Comparison Between Clipping and Rejection. We conduct a comparison
of two approaches within UNIT for handling maliciously large activation values
after the distribution approximation, i.e., clipping and rejection. Clipping reduces
large values to the distribution boundary value, while rejection directly sets outlier
values to zero. Our experiment is performed on CIFAR-10 and ResNet-18, with
results presented in the first half of Table 10. The first column denotes different
attacks, Columns 2-3 present the attack performance without defense, Columns
4-5 denote the defense performance of the current setting of UNIT (activation
clipping), and Columns 6-7 show the performance using activation rejection.
Notably, clipping generally provides superior performance, resulting in higher
accuracy and lower ASR compared to rejection. The underlying reason is that
rejection, similar to neuron pruning, is coarse-grained. Specifically, for neurons
responsible for extracting both benign and backdoor features, rejection harms
accuracy while not rejecting retains the backdoor effect. In contrast, clipping
eliminates only the higher values while allowing the extraction of benign features.
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Table 11: Ablation study of different customized accuracy degradation.

Degradation Accuracy ASR

No Defense 94.73% 100.00%

0.01% 94.08% (-0.65%) 4.01%

0.1% 93.89% (-0.84%) 3.56%

2% 92.38% (-2.35%) 2.17%

5% 88.36% (-6.37%) 1.40%

10% 84.21% (-10.52%) 1.12%

Table 12: Ablation study of different optimization steps and learning rates.

Config No Defense 10 & 0.01 10 & 0.001 50 & 0.01 50 & 0.001

BA 93.51% 91.79% 91.31% 92.14% 91.41%

ASR 100.00% 4.76% 5.49% 3.82% 4.91%

Comparison of Operating on Different Layers. We examine the impact of
applying UNIT to different layers: (1) All layers (current setting), (2) Only the
first two layers, and (3) Only the last two layers. The results are presented in the
last half columns of Table 10. Observations indicate that applying UNIT to all
layers, the current setting, generally yields the best performance compared to
operating only on the first two or last two layers. Notably, for simple backdoors
such as BadNets and Trojan, where most features are extracted in the first
few layers, applying UNIT to the first two layers is sufficient to eliminate the
backdoor effect while preserving clean accuracy. However, for complex backdoors
like Reflection and Instagram, where backdoor features are extracted in later
layers of the network, applying UNIT to the last few layers achieves better
performance. Additionally, advanced attacks such as DFST and Adap-Blend,
which tend to hide backdoor extraction across almost all layers, can only be
effectively defended against by applying UNIT to all layers.

Effect of Setting Different Accuracy Degradation. We examine the impact
of different accuracy degradation expectations for UNIT. In our experiment,
we assess 5 accuracy degradation values (default is 2%). The evaluated attack
model is trained on CIFAR-10 using ResNet18 and injected with the Trojan [40]
backdoor. The results in Table 11 indicate that as the degradation increases,
both accuracy and ASR decrease. This reveals a trade-off between sacrificed
clean accuracy and remaining ASR. Users seeking high clean accuracy with some
tolerance for backdoor may opt for a low accuracy degradation, and vice versa.

Effect of Different Optimization Steps and Learning Rates. We study
the effect of different optimization steps (S) and learning rates (⌘). The evalu-
ated attack model is trained on CIFAR-10 using ResNet18 and injected with
the Blend [6] backdoor. The results are shown in Table 12, where “10 & 0.01”
means S “ 10 and ⌘ “ 0.01. We observe that UNIT demonstrates consistently
good performance across various reasonable parameter settings, showcasing its
robustness and efficiency in parameter tuning.
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