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Abstract. Deep neural networks (DNNs) have demonstrated effective-
ness in various fields. However, DNNs are vulnerable to backdoor attacks,
which inject a unique pattern, called trigger, into the input to cause
misclassification to an attack-chosen target label. While existing works
have proposed various methods to mitigate backdoor effects in poisoned
models, they tend to be less effective against recent advanced attacks. In
this paper, we introduce a novel post-training defense technique UNIT
that can effectively eliminate backdoor effects for a variety of attacks. In
specific, UNIT approximates a unique and tight activation distribution
for each neuron in the model. It then proactively dispels substantially
large activation values that exceed the approximated boundaries. Our
experimental results demonstrate that UNIT outperforms 7 popular de-
fense methods against 14 existing backdoor attacks, including 2 advanced
attacks, using only 5% of clean training data. UNIT is also cost efficient.
The code is accessible at https://github.com/Meguml/UNIT,
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1 Introduction

As deep learning (DL) continues to reshape industries, spanning from transporta-
tion to healthcare, the practical impact of DL is becoming increasingly apparent.
However, DL faces significant security issues, particularly backdoor attacks. Back-
door attacks typically embed a unique pattern (the backdoor trigger) into the
training data, which establish a correlation between this pattern and a specific
target label. Consequently, a model trained on such data misclassifies inputs
containing the trigger as the target label. Researchers have proposed a range
of backdoor attacks [3,6,/7,[37,47,/48,53|, along with countermeasures aimed at
detecting and mitigating backdoors in poisoned models [21,/23}/351/64,/66.691/71}[78|.
However, without knowing the trigger pattern, it’s challenging to accurately
identify whether a model or dataset has been compromised, and the trigger
pattern is typically not accessible until the attacker initiates the attack.
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This paper focuses on backdoor mitigation [35}38}/69]. The goal is to remove
the backdoor effect in a model such that trigger-inserted inputs cannot cause
the target prediction. Backdoor mitigation usually assumes access to a few clean
(usually < 5%) training samples without knowledge of the trigger pattern. Existing
backdoor mitigation techniques [35,38,/66,(69,/74,83] are effective against prior
attacks [3,/6,[20140}/47,/48]. However, they fall short in eliminating backdoor effects
caused by advanced attacks [7,/51]. This is because these methods either retrain
the entire model without precise guidance for reducing backdoor effects |35./66.83]
or directly prune some specific neurons [38,/69]. Such coarse-grained approaches
fail to counter recent advanced attacks. For instance, advanced attacks may
hide backdoor behavior within benign neurons that primarily process normal
features. In such cases, pruning these neurons would undesirably impact benign
utility. On the other hand, retaining these neurons would preserve the backdoor
behavior in the model. To address the above challenge, we propose a novel
backdoor mitigation method, UNIT. It is based on the observation that, for
various backdoored models, there exists a set of backdoor neurons, responsible
for backdoor behaviors. The activation values of these neurons for poisoned
inputs are significantly higher than those for clean samples. Note that backdoor
neurons may also play a role in benign feature extraction. Given the absence
of poisoned samples for accurately identifying backdoor neurons, we propose
to approximate a clean distribution on each individual neuron using a small
set of clean samples. The approximation bounds the maximum activation value
on each neuron. During inference, our defense UNIT clips activations with a
substantially large value to the approximated boundaries. A straightforward
idea is to apply a uniform percentile boundary, e.g., a threshold covering 98%
values, to bound the activation for all neurons. Our result in Figure 4] (Section
reveals its limitation against advanced attacks, because it overlooks the fact that
different neurons have various contributions. While some neurons might be fully
compromised, others could remain entirely benign. To address this challenge,
UNIT employs an optimization process that tailors a unique boundary for each
neuron. The optimization is guided by a proxy accuracy measure on a small set
of clean samples, serving as an approximation of the real accuracy on the test set.
This is to precisely bound the accuracy degradation caused by the clipping. This
approximation is generally accurate, as evidenced by a ablation study detailed in
Section The process allows UNIT to meticulously tighten the boundaries to
mitigate backdoor effects while ensuring the accuracy aligns with the defender’s
expectation.

Our main contributions are summarized as follows:

— We introduce UNIT (“AUtomated Neural Dlstribution Tightening’), an
innovative backdoor mitigation method that approximates unique distribution
boundary for each neuron, which is used to effectively dispel maliciously large
activation caused by the backdoor.

— UNIT utilizes an optimization technique to dynamically refine and tighten
unique boundaries for different neurons. This process is guided by the proxy
accuracy on a few clean samples, which approximates the real test accuracy.



UNIT: Automated Neural Distribution Tightening 3

— Extensive experiments demonstrate UNIT’s effectiveness against 14 existing
attacks, including 2 advanced attacks, outperforming 7 baseline defenses.
Additionally, UNIT is generalizable to different datasets, network structures,
and activation functions. We further show that UNIT is resilient to 3 adaptive
attacks.

Threat Model. Our threat model aligns with the existing literature [35}38}(69],
where the adversary provides a model that may potentially contain a backdoor
to the user. The adversary holds the complete control over the training process
and can deploy advanced attacks |7,/51] to circumvent existing defenses. Prior to
utilizing the model, the user applies defense techniques to mitigate any potential
backdoor. The defender has access to a small portion (5%) of the clean training
data. She has no prior knowledge of the poisoned data. The defense objective is
to eliminate the backdoor effect without compromising the normal functionality,
such as classification accuracy.

2 Related Work

Backdoor Attack. Recent literature has introduced a variety of backdoor attacks
on image classification models. Early works [20140] stamp static image patches on
a small portion of training samples and mislabel them as the target class to poison
the training dataset. Clean label attacks [52}/59,/65] manipulate backdoor samples
in feature space and leave their labels unchanged. Recently, more sophisticated
transformations are utilized as backdoor triggers [6[101/37,41,/47,|63]. In addition,
sample-specific backdoors generate different triggers for different inputs via
generative models [7,48,[53], making them more stealthy and harder to detect.
Backdoor attacks can also be launched in a wide range of applications as well,
such as natural language processing [5,50,/57], self-supervised learning [18,30],
federated learning [2,77,78] and even diffusion models |1,|11]. In this paper, we
focus on the image classification task.

Backdoor Defense. Various defenses have been proposed from multiple per-
spectives to safeguard AI models against backdoor attacks. Our approach falls
under the category of Backdoor Mitigation |35[38L61L62}/69L70L/74L/76], which is
widely acknowledged as a promising strategy. The primary goal is to cleanse the
backdoor effect while retain the benign functionality of a given model. Orthogonal
to this, training-time defense [23,/28,(34,64,/68,/72] defenses distinguish between
poisoned and clean samples based on their internal discrepancies/behaviors and
sanitize the training set. Trigger inversion [8}/9,/21[391/55/561/661/67] aims to detect
whether a given model is poisoned or not via reverse-engineering the backdoor
triggers. Running time defenses |14}/19] are designed to reject samples potentially
carrying triggers during model inference.

3 Limitation of Existing Backdoor Mitigation Methods

Various methods have been proposed to address the challenge of mitigating the
backdoor effects in poisoned models. They primarily fall into two categories: (1)
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Fig. 1: Limitation of existing backdoor mitigation methods

Unlearning and (2) Pruning [38}/69,80]. Unlearning methods

utilize training-based techniques, such as fine-tuning , distillation , and
cloning , to eradicate the backdoor behaviors. These approaches are grounded
in the catastrophe forgetting assumption @, positing that neural networks
naturally tend to forget specific behaviors while continuously learning other
patterns. For example, NAD employs standard fine-tuning to create a teacher
model and then conveys only benign knowledge to the student model through
knowledge distillation . In contrast, pruning methods involve the identification
and removal of malicious neurons. They speculate that there exists a small subset
of neurons responsible for backdoor behaviors, and the removal of these neurons
eliminates the backdoor impact. For instance, ANP ﬂ@] identifies malicious
neurons based on sensitivity analysis on clean samples and effectively prunes
them. In the following, we delve into the limitations inherent to both unlearning
and pruning methods and introduce our idea to address the challenges.

Coarse-grained Repair. Recent advanced attacks E,@ manage to conceal
backdoor behavior within benign neurons, creating hybrid neurons that withstand
existing mitigation methods. A prevalent limitation in current techniques lies in
their coarse-grained nature, which is inadequate against advanced attacks. Essen-
tially, these methods struggle to operate inside individual neurons to eliminate the
backdoor component while preserving the benign portion. In addition, an implicit
requirement in backdoor mitigation is the preservation of benign functionality.
In other words, the benign accuracy of the repaired model should not suffer
significant degradation. This constraint limits the efficacy of both unlearning and
pruning methods. For example, pruning may either remove or leave an entire neu-
ron untouched. When dealing with hybrid neurons, directly pruning them would
significantly diminish clean classification performance. Conversely, retaining such
neurons would maintain the backdoor behaviors. Figure [1| conceptually illustrates
such limitation of existing methods. The left dashed box shows the mitigation
of an advanced attack E@ The left half presents the process of a poisoned
image (depicted as a panda with a red trigger at the top-left) in a backdoored
model. Notably, the model comprises three types of neurons: (1) Benign neurons
(depicted as cartoon pandas) primarily extracting benign features, (2) Backdoor
neurons (depicted as red devils) processing backdoor behaviors, and (3) Hybrid
neurons (depicted as half panda and half devil) serving both purposes. Following
the model inference, the output corresponds to the misclassified attack target
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label, indicated by a red cross. The right half of the left figure portrays the model
after repair through unlearning and pruning. Observe that backdoor neurons
are effectively unlearned or pruned, whereas hybrid neurons, which exhibit both
benign and malicious behaviors, remain unaffected. This is because eliminating
these hybrid neurons could lead to a substantial decrease in accuracy for benign
tasks. However, the presence of these hybrid neurons can still contribute to the
persistence of a high attack success rate due to their involvement in backdoor
behaviors. This highlights the limitations of current mitigation techniques.

Heavily Dependent on Meticulous Parameter Tuning. Existing approaches
heavily rely on meticulous parameter tuning to achieve optimal performance
against various attacks. For instance, pruning techniques demand a careful
determination of the pruning rate, adjusted on a case-by-case basis. The extent of
neuron removal directly influences the model’s overall accuracy; excessive pruning
can deteriorate performance, while insufficient pruning may not adequately
counteract the backdoor effect. Our empirical analysis, detailed in Appendix
highlights the pronounced sensitivity of the existing methods to parameter
adjustments. This sensitivity presents a notable limitation, undermining the
generalizability and practical applicability of these methods.

Our Idea: Automated Neural Distribution Tightening. We introduce a novel
technique UNIT, which automatically approximates and tightens a unique dis-
tribution boundary for each neural activation. Subsequently during inference, it
clips activation values that exceed the boundary, targeting potential backdoor
activation. UNIT employs an optimization based method to automatically refine
the activation boundary for individual neurons. It is guided by a proxy accuracy
measured on a small set (<5%) of clean samples, which approximates the real test
accuracy. This approximation is generally accurate, as evidenced by a ablation
study detailed in Section The process involves a dynamic adjustment of
boundaries: if the observed proxy accuracy degradation is below the defender’s
expectation, the boundary is further tightened. Conversely, the boundary is
relaxed to restore the accuracy. This ensures a balanced approach to maintaining
benign accuracy while eliminating backdoors. UNIT operates with a high degree
of granularity, analyzing and adjusting unique boundaries for individual neurons.
The right figure in Figure |1| visualizes positive outcomes achieved through UNIT.
Notably, both backdoor neurons and the backdoor portion of hybrid neurons are
deactivated.

Moreover, compared with existing methods, UNIT is an automated technique
that does not require meticulous parameter tuning. The defender is only required
to specify a bound of accuracy degradation to balance benign accuracy and
backdoor mitigation. The parameter-efficient characteristic of UNIT emphasizes
the generalizability and practicality of UNIT.
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Fig. 2: Neural activation distribution for benign and poisoned samples

4 Design of UNIT

4.1 Notations

We provide formal notations of deep neural network operations before delving
into our methodology. Following existing works @,|8__1], we consider a typical
neural network for a classification task of C' classes. The dataset D is composed of
numerous pairs (z,y) ~ D, where each sample 2 € R? and its corresponding label
y € {1,2,---C}. The input dimension d can be complex, e.g., d = d. x dy, X dj,
for RGB images, where d, d,,, and dj represent the number of channels, width,
and height, respectively. The training objective is to derive a classifier M : R? —
{1,2,---,C}. Consider a deep neural network consisting of L layers:

M:go¢ofLo-~-o¢oflo~--o¢ofl, (1)

where f! denotes the feature extraction function at I-th layer (1 < [ < L),
¢ represents the non-linear activation function, e.g., ReLU @, and g is the
fully connected layer following the extraction layers, responsible for aggregating
features for class prediction.

Neural Activation. To analyze the internal statistics of the model, we further
define the sub-network that terminates at the I-th activation layer as F':

Fl=¢oflo.-..ogof! (2)

Therefore, given an input sample z, its activation value at I-th layer is F'(z).
This activation value is typically multi-dimensional. If the I-th layer consists of
K neurons, the neural activation of the k-th neuron in this layer is denoted as

4.2 Key Observations of Neural Activation

The backdoor behavior can be activated by the trigger on backdoored models. To
illustrate how such input pattern flips the output prediction, we delve into the
model internals, particularly examining the neural activation values of both clean
and poisoned samples. We use the CIFAR-10 dataset and ResNet18 architecture
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as our subject and visualize the neural activation distribution of a clean model
and a range of backdoored models by various attacks, including BadNets [20],
Trojan [40], IA [48], SIG |3]|, WaNet [47], ISSBA [37], LIRA |15], Reflection [41],
Instagram |40, DFST |[7], and Adap-Blend [51]. To gain insights into the influence
of poisoned samples on model behavior, we utilize Shap [42], a deep learning
interpreter, to identify 1% of the most important neurons in the 12th layer of each
model when processing poisoned samples. These selected neurons, designated
as backdoor neurons, are responsible for the backdoor behavior. Subsequently,
our analysis involves comparing the activation values of these neurons across
1,000 clean and 1,000 poisoned samples. It’s worth noting that as there is no
predefined trigger for the clean model, we employ the BadNets trigger to generate
dummy poisoned samples for analysis. By applying PCA [44] for dimensionality
reduction, we visualize the neural activation distributions in Figure [2. The
blue plots represent the activation distributions of clean inputs, while the red
plots depict the distributions of poisoned samples. Observe that the neural
activation distributions of clean and poisoned samples are indistinguishable in
the clean model. Conversely, in models subjected to backdoor attacks, it is
evident that there exists a large distribution shift between clean and poisoned
samples. Notably, the neural activation values for poisoned inputs are significantly
greater than those for clean inputs. This disparity underscores that backdoor
triggers significantly change the neural activation distribution for specific backdoor
neurons, subsequently leading to the target misclassification.

Distinguished Fine-grained Observation. Existing papers [4,51,/64] have
observed the latent separability between clean and poisoned samples, primar-
ily focusing on the features of the entire layer. Nonetheless, recent advanced
attacks [51] and the adaptive attacks detailed in Section manage to dimin-
ish this layer-level feature distinction. However, these approaches fall short in
eliminating separability at the neural activation level, as shown in Figure [2| This
highlights a clear distinction between our fine-grained observation and existing
literature.

4.3 Overview of UNIT

Our observation reveals a substantial increase in neural activation compared to
benign ones on backdoor neurons given poisoned samples. Building upon this
insight, we introduce UNIT, a novel approach that approximates a tight benign
distribution for each neuron based on a small subset of clean training data. UNIT
then strategically clips activation values that surpass the distribution boundary.
The necessity for this approximation stems from the unavailability of poisoned
samples in typical scenarios. Hence, it is challenging to precisely identify the
backdoor neurons. To deal with the problem, UNIT applies its approximation
across all neurons, including both benign and backdoor ones. Furthermore, we
refine the approximated benign distribution to be as tight as possible, aiming to
effectively mitigate the backdoor behavior. The overview of UNIT is depicted
in Figure |3] using a typical neuron as an example. The x-axis represents neural
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Fig. 3: Overview of UNIT .
ping

activation values for different samples, while the y-axis denotes sample density
corresponding to these values. In this depiction, the benign neural activation is
shown in blue, and the poisoned neural activation is in red. UNIT approximates
a tight distribution based on a few clean samples, as illustrated in the green
region. To mitigate the backdoor effect during model inference, UNIT constrains
the neural activation values by clipping those that exceed the approximated
boundary. In the zoomed-in plot, rather than allowing activation values to extend
along the red lines (which represent maliciously large values), UNIT ensures
that values remain within the green boundary. While this strategy might entail
a minor compromise in accuracy for clean samples, it is remarkably effective in
neutralizing the backdoor effects of poisoned samples, thereby enhancing the
model’s security and integrity.

4.4 Design Detalils

In this section, we formally present the design of UNIT. Specifically, we detail
the process of automatically tightening the neural distribution based on a small
portion of clean training samples. The goal is to effectively eliminate maliciously
high neural activation, which represents the backdoor behavior.

Objective. Following the notation of neural activation in Section 4.1} we formally
define the objective of UNIT. For any input z and its neural activation at I-th
layer and k-th neuron F}(z), UNIT derives an upper bound value ot such that
its neuron activation is bounded as

F;i(:c) = boL(F/i(l")) = {Flli(f) if Fl(z) <o,

o otherwise.

3)

Note that of can be a feature map when F! is a convolution layer. Then the
classifier defined in Equation (1| can be reformatted as:

M, = gobyropoflo - obuodofoobuogofl, (4)
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Algorithm 1 Automated Neural Distribution Tightening

1: Input: Subject model M, Accuracy drop expectation €, Training data {(x}, y!)}",,
Validation data {(z7,y;)};=,, Initial benign distribution boundary oo, Initial trade-
off coefficient ap, Optimization steps S, and Learning rate n.

2: Imitialize: 0 = 0" = 09, a = o
> Calculate original accuracy on validation samples

8 Po= 230 1(M(a)) = y))

4: for s = 1 to S do

> Cross-entropy loss plus boundary penalty
5 L= 30 Lop(Ma(7),y:) + - |lofh

nt

6: c=0—-1-" gﬁ
> Calculate accuracy when applying current bound
T P = N WMo (i) = i)
8: if P, — P’ > ¢ then
9: a=qf2
10: else
11: a=qo-2
12: end if
> Update the best boundary value
13: if P> Py —eand ||o||1 < ||o*||: then
14: ot =0
15: end if
16: end for

17: Return: o*

where ¢! denotes the bounding value at the I-th layer. Suppose there are K
neurons at this layer, then o! = {ot, 0}, - -+ ol }. Similarly, o = {01,052, ,oL}.
The objective of UNIT is to mitigate the backdoor effects while preserve the
benign utility. Therefore, for any input x of class y and its poisoned version t@®T

with the attack target label yr, where T denotes the backdoor trigger,
My(z) =y, Ms(z@T)# yr. ()

A straightforward idea is to employ a uniform percentile threshold for all neural
activation values. However, it can be inaccurate and coarse-grained as different
neurons vary in their contributions to backdoor effects. Figure [4] demonstrates the
effectiveness of this approach against the DFST [7] attack (launched using CIFAR-
10 and ResNet-18), where the original model achieves a clean accuracy of 92.25%
and an ASR of 99.77%. The x-axis represents various uniform clipping percentiles
while the y-axis shows the corresponding accuracy and ASR after clipping. "Max"
indicates setting the boundary at each neuron’s maximum activation value. In
other cases, we assume a Gaussian distribution of the activation and employ the
Z-score for percentile approximation. For example, "Z=3.0" signifies setting the
boundary at the mean activation value plus three times its standard deviation,
aligning with the 0.98 percentile. We can observe that even with a moderate clean
accuracy of 90% (Z=3.5), the ASR remains notably high at 20%. Conversely,
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reducing the ASR to 4% (Z=1.5) leads to a drastic decrease in accuracy, down
to 40%. This highlights the method’s limitation against advanced attacks.

Our approach, on the other hand, utilizes an optimization-based technique
to meticulously approximate and tighten a unique boundary for each individual
neuron, which outperforms the straightforward approach as illustrate in the blue
and red dashed lines in Figure [. Note that UNIT is able to reduce the ASR
to 4.0% while maintain a high accuracy as 91.6%. The details of UNIT are
outlined in Algorithm [I} which comprises two main stages: (1) Initialization (Line
1-3), where clean training samples are gathered to approximate a loose benign
boundary, and (2) Automated Tightening (Line 4-16), dedicated to refining the
approximated boundary with the guidance of clean accuracy.

Initialization. Lines 1-3 present the initialization stage, where input variables
are defined, with M representing the model for defense, and € indicating the
customized accuracy drop expectation (defaulted to 2%). Following the threat
model in Section [I, the defender has access to a small set of clean training
samples for the defense process. The data is further split into training samples
{(«t,yh)}it, and validation samples {(z¥,y?)}*;, where n; and n, denote the

Ny

number of training and validation samples, respectively. Typically, the ratio
is set to i. The split training samples are used for optimization, while validation
samples guide the tightening strength. A loose distribution for clean samples
is approximated, initializing the distribution boundary of each neuron as oy.
This initial boundary is set as the mean activation value over the training
sample plus four times the standard deviation (Z-score=4 in the straightforward
approach). The initial trade-off coefficient between benign accuracy and the
tightened distribution boundary is denoted as ag, with a default value set to
0.001. This value signifies that the tightening process starts with low strength.
Additionally, S represents the number of optimization steps, and 1 denotes
the learning rate. Typically, 50 steps prove sufficient to approximate a suitably
tight boundary. For optimization, we utilize the Adam optimizer with a learning
rate set to 7 = 0.001, a standard configuration. Line 2 initializes the optimized
distribution boundary o, optimal boundary ¢*, and trade-off coefficient oy with
their default values. In Line 3 calculates the initial accuracy (Pp) of model M on
validation samples, where 1(M (z¥) = y¥) denotes the number of samples which
are correctly classified by M.

Automated Tightening. Lines 4-16 outline the optimization procedure for
tightening the benign distribution. In each optimization step, the goal is to
tighten the boundary while maintaining benign accuracy within the specified
expectation e. Line 5 calculates the loss, consisting of two terms: the cross-entropy
loss on the training samples and the penalty on boundary scale. We use L-1 norm
of o to measure the tightness of the current boundary. A small value of ||o]|;
means a tight boundary. The trade-off between these two loss terms is controlled
by a. The boundary o is optimized using gradient descent in Line 6. Lines 7-12
dynamically adjust the trade-off value o based on the accuracy on validation
samples. In Line 7, the current accuracy P’ on validation samples is calculated
given the optimized o. If the accuracy drop Py — P’ exceeds the expectation
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¢ (Line 8), the trade-off coeflicient « is reduced by half (Line 9), prioritizing
the restoration of benign accuracy. Otherwise, « is increased twice to further
tighten the benign distribution boundary (Line 11). Lines 13 to 15 update the
optimal boundary ¢* if it maintains benign accuracy while being more tightened.
Finally, Line 17 returns the optimal boundary ¢* and UNIT applies the optimal
boundary to the model (M,+) during inference.

5 Evaluation

In this section, we comprehensively evaluate the performance of UNIT across
diverse scenarios. In Section[5.2] we assess the effectiveness of UNIT by comparing
it against 7 state-of-the-art backdoor mitigation baselines across 14 types of
backdoor attacks. In addition, we demonstrate the generalizability of UNIT by
the evaluation on four datasets and six network architectures. We assess the time
cost of UNIT in Section and study the effect of UNIT on clean models in
Section[5.4] In Section [5.5] we present additional evaluations of UNIT against the
latest backdoor attacks and comparisons with recent baselines. We also include a
series of evaluations on adaptive attacks and ablation studies.

5.1 Experiment Setup

Baselines and Settings We employ 14 backdoor attacks, (1) BadNets [20], (2)
Trojan [40], (3) CL [65] (4) Dynamic backdoor [53], (5) IA [48], (6) Reflection |41],
(7) SIG |[3], (8) Blend [6], (9) WaNet [47], (10) ISSBA [37], (11) LIRA [15],
(12) Instagram filter [40], (13) DFST [7], and (14) Adap-Blend [51]. We use the
default configuration following the original papers, such as trigger patterns, sizes,
poisoning strategies, etc. We compare UNIT with 7 state-of-the-art backdoor
mitigation methods, (1) standard fine-tuning (FT), (2) FP [38], (3) NAD |35],
and (4) ANP [69], (5) NC [66], (6) I-BAU [74] and (7) SEAM [83]. We follow
the configuration in the original papers to conduct experiments. All the methods
have access to the same amount of training data, e.g., 5%. Details of backdoor
attack and defense baselines can be found in Appendix [A.Tl For UNIT, we set
the expected accuracy degradation as 2%.

Evaluation Metrics. We use two metrics: (1) clean accuracy (Acc.), and (2)
attack success rate (ASR). Clean accuracy measures the normal functionality of
the subject model on classifying clean inputs. ASR measures the backdoor effect,
which is the ratio of poisoned samples correctly misclassified to the target label.
A good defense shall reduce the ASR while preserving the clean accuracy.

5.2 Effectiveness of UNIT

Comparison with Existing Baselines We conducted a comprehensive eval-
uation of UNIT by comparing it with 9 baseline methods across 14 distinct
backdoor attacks on the CIFAR-10 dataset using the ResNet18 architecture for
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Table 1: Comparison of UNIT with 7 backdoor mitigation baselines against 14 backdoor
attacks. Results are measured in percentages (%). All methods have access to 5% of
the clean training data. The best results are highlighted in bold.

Attacks Original FT FP NAD ANP NC I-BAU SEAM UNIT

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets 94.82100.090.91 9.78 89.68 3.5292.41 4.79 91.35 3.2693.04 0.3491.60 3.66 91.61 1.05 92.48 0.78
Trojan 94.73 100.091.63 35.11 90.76 31.14 91.52 22.30 92.37 58.88 91.89 4.0190.73 11.58 92.28 12.69 92.88 2.17

CL 94.58 98.46 90.34 58.72 87.71 3.69 88.47 4.42 89.92 18.18 90.72 1.79 88.75 5.52 92.02 23.04 92.21 1.09
Dynamic 95.08 100.0 89.11 9.29 84.93 3.23 89.26 2.34 91.99 3.09 92.09 1.7892.48 1.63 92.61 3.2292.77 1.54
IA 91.1597.96 88.44 2.9289.71 82.2088.51 2.67 89.05 5.49 89.32 1.1289.7962.45 89.77 1.2389.93 1.03
Reflection 93.29 99.33 91.38 74.77 89.68 84.51 90.99 52.97 90.66 93.28 91.38 93.31 89.94 87.85 90.54 21.37 91.44 6.63
SIG 94.97 99.80 91.29 63.94 90.88 1.03 91.69 10.46 90.80 36.79 91.70 97.88 91.51 22.11 92.57 0.68 92.48 1.74
Blend 94.62 100.0 90.68 7.3091.47 2.0191.62 3.32 91.04 16.79 91.90 1.5391.43 3.61 91.38 1.8091.99 1.18

WaNet 94.36 99.80 90.32 2.8591.48 1.4892.36 1.9191.99 0.61 90.60 0.97 89.67 12.01 91.34 1.44 91.02 2.44
ISSBA 94.55100.091.40 4.1790.79 2.1192.45 2.43 92.42 2.9892.52 0.46 83.03 84.58 91.17 3.00 91.84 1.57
LIRA 95.11 100.091.42 15.09 89.58 14.76 91.64 2.06 91.98 47.91 92.11 1.1792.18 12.65 92.18 3.0292.29 0.58
Instagram 94.62 99.59 91.40 29.25 90.38 8.0389.50 7.17 90.10 5.10 90.19 15.88 89.25 7.24 91.35 5.8991.43 4.98
DFST 93.25 99.77 90.88 35.22 90.66 14.03 91.05 14.59 89.70 20.51 91.22 24.77 89.12 6.19 91.22 12.93 91.64 4.02
Adap-Bl. 94.22 82.8090.15 48.76 87.62 31.36 90.42 49.50 90.80 69.51 90.33 18.25 90.81 19.97 89.58 24.19 90.84 15.03

Average 94.26 98.39 90.57 28.37 89.67 20.22 90.85 12.92 91.01 27.31 91.36 18.80 90.02 24.36 91.48 8.0891.77 3.20

evaluation, with all defenses having access to 5% of the training set. Table |I
summarizes the results. The first column enumerates different backdoor attacks,
while the “No Defense” column displays the original performance of backdoored
models. The subsequent columns detail the performance of models repaired by
various defenses, with “Acc.” denoting clean test accuracy and “ASR” representing
the attack success rate of backdoor attacks. Notably, UNIT consistently outper-
forms others in reducing ASR and maintaining high clean accuracy. In instances
such as Reflection, DFST, and Adap-Blend attacks, existing defense methods
struggle to eliminate the backdoor effect, often retaining over 20% ASR. The
sophistication of these attacks, characterized by larger triggers and specialized
poisoning strategies, poses a challenge to conventional defenses. For instance, the
state-of-the-art Adap-Blend attack relaxes the latent separability assumption
and utilizes asymmetric triggers to enhance backdoor resilience. Despite the
complexity, UNIT reduces the ASR to less than 7% for Reflection and DFST,
outperforming existing methods, even mitigating the Adap-Blend attack to 15%.
However, it’s worth noting that UNIT doesn’t outperform baselines in all scenar-
ios. For instance, ANP performs better on WaNet than UNIT. This is due to the
pervasive and sample-specific triggers of WaNet attacks. They resemble natural
features and hence make the poisoned activation distribution less distinguishable
from the clean one. Despite this, UNIT still demonstrates effectiveness by miti-
gating the backdoor effect to an ASR of under 2.5%. Furthermore, we evaluate
UNIT on two latest backdoor attacks, i.e., NARCISSUS [75] and COMBAT |[29],
and compare the performance with five state-of-the-art baselines, i.e., CLP [80],
FST [45], RNP [36], FT-SAM |[82] and Super-FT [54]. The results in Appendix
demonstrate UNIT’s superior performance over these methods.

Evaluation on Various Datasets and Networks We extend the evaluation
of UNIT to include a diverse set of datasets and network architectures. The
experiments include four datasets: CIFAR-10 33|, CIFAR-100 [33], STL-10 [13],
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Fig. 5: Evaluation on different datasets and network architectures

and GTSRB , and six network architectures: VGG11 , ResNet18 ,
Densenet ﬂ2__7], Mobilenet ﬂ2__6], WideResNet ﬂ7__3], and Pre-activation ResNet34
(PRN34) [24]. 5% of the clean training data is used for defense. Results are
presented in Figure |5, with each sub-figure depicting the outcomes for a specific
dataset-network pair. In each sub-figure, the left plot illustrates clean accuracy,
while the right plot displays the ASR. The x-axis represents different backdoor
attacks, and the y-axis denotes accuracy or ASR. Bar colors in the legend distin-
guish results before and after the defense. Notably, UNIT consistently reduces
ASR from 100% to near 0% across various datasets and network architectures.
Clean accuracy degradation is minimal in most cases, demonstrating the general
effectiveness of UNIT across diverse scenarios.

Application on Transformers. Although UNIT is primarily designed for CNN
models, we investigate its performance in eliminating backdoor effects in trans-
formers. We poison the CIFAR-10 dataset with BadNets triggers and finetune
the ViT-base-patch16-224 model on it. The model achieves 98.44% accuracy
and 100% ASR. We then apply UNIT to tighten the benign distribution bound-
ary on each attention layer, which successfully reduces the ASR to 5.78%, with a
slight accuracy drop of 3.23%. These results highlight Tech’s potential utility in
protecting transformers from backdoor attacks.

5.3 Defense Efficiency

We conducted a study on the time cost of various defenses, and the results are
illustrated in Figure [6. The x-axis represents different methods, and the y-axis
indicates the time cost measured in seconds, with each bar denoting the average
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Fig. 6: Time cost of different baselines

time cost. Notably, UNIT completes its process in approximately 20 seconds as
it only needs to estimate the benign activation distributions based on a small set
of clean samples. Other cost-efficient methods, such as I-BAU and fine-tuning,
exhibit similar time costs to UNIT. However, as shown in Table |1} they fall short
in defending against a few advanced attacks.

Since UNIT modifies the activation layers, we also measure its impact on
the model inference. We feed the whole test set containing 10,000 images to the
ResNet18 model on CIFAR-10 before and after applying UNIT. The experiment
is repeated 5 times. The time cost is 2.79 + 0.35s for the original model, and
2.86 £ 0.20s for the model integrated with UNIT. The inference time difference
is negligible (around 2.5%). Such a small increase during inference is acceptable
as UNIT can effectively preclude all evaluated backdoor attacks.

5.4 Impact on Clean Models

We investigate the impact of UNIT on clean models, considering that defenders
may apply UNIT without prior knowledge of whether a model is poisoned.
Table [2 presents the accuracy before and after applying UNIT on various clean
models. Notably, the degradation of clean accuracy ranges from 0.32% to 2.83%,
highlighting the minimal impact.

5.5 Additional Evaluation of UNIT

We conduct evaluation on the latest backdoor attacks and compare UNIT with
a few more recent defenses in Appendix [A.2. We evaluate UNIT’s performance
under three adaptive attack scenarios in Appendix [A.4, showing its robustness
against them. We carry out a series of ablation studies to examine UNIT’s
resilience across various hyper-parameters and attack settings in Appendix

6 Conclusion

We present a novel backdoor mitigation technique designed to approximate a
tight distribution for each neuron. It then effectively reduce any high activation
that exceeds the established boundary. Our comprehensive evaluation illustrates
the high efficacy of UNIT, outperforming 7 baselines across 14 existing attacks.
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