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Abstract. Pre-trained on extensive and diverse multi-modal datasets,
2D foundation models excel at addressing 2D tasks with little or no down-
stream supervision, owing to their robust representations. The emergence
of 2D-to-3D distillation frameworks has extended these capabilities to 3D
models. However, distilling 3D representations for autonomous driving
datasets presents challenges like self-similarity, class imbalance, and point
cloud sparsity, hindering the effectiveness of contrastive distillation, espe-
cially in zero-shot learning contexts. Whereas other methodologies, such
as similarity-based distillation, enhance zero-shot performance, they tend
to yield less discriminative representations, diminishing few-shot perfor-
mance. We investigate the gap in structure between the 2D and the
3D representations that result from state-of-the-art distillation frame-
works and reveal a significant mismatch between the two. Additionally,
we demonstrate that the observed structural gap is negatively corre-
lated with the efficacy of the distilled representations on zero-shot and
few-shot 3D semantic segmentation. To bridge this gap, we propose a
relational distillation framework enforcing intra-modal and cross-modal
constraints, resulting in distilled 3D representations that closely capture
the structure of the 2D representation. This alignment significantly en-
hances 3D representation performance over those learned through con-
trastive distillation in zero-shot segmentation tasks. Furthermore, our
relational loss consistently improves the quality of 3D representations in
both in-distribution and out-of-distribution few-shot segmentation tasks,
outperforming approaches that rely on the similarity loss.

1 Introduction

Understanding 3D scenes is pivotal for robotics applications [19, 35], notably in
autonomous driving, where accurate navigation and decision-making depend on
precise environmental perception. Solving the perception tasks necessary for 3D
scene understanding requires the point-wise labelling of LiDAR scenes, which is
tedious, compounded by the sparsity of LiDAR data, and costly [28, 29]. These
issues result in a scarcity of large-scale, diverse point cloud datasets, particularly
those aligned with images or text, significantly hampering the development of
foundation models for 3D tasks. This shortage is particularly problematic for
few-shot or zero-shot learning approaches, which aim to achieve proficiency with
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Fig. 1: We distill 2D representations from CLIP [36] to a 3D point-cloud encoder using
the contrastive loss, similarity loss, and our proposed relational loss, and compute the
uniformity (U), tolerance (T), and modality gap (G) of the learned 3D representations.
We sample 5000 point features from each of the 16 classes defined in the nuScenes
dataset [5], apply PCA and visualize the primary components. The source U and T of
the CLIP image encoder are 1.54 and 0.73, respectively. Compared to the source, we
see that contrastive loss learns 3D representations with higher U and lower T compared
to the source, while the trends are reversed for similarity loss. Our proposed relational
loss minimizes this structural mismatch and leads to the lowest modality gap.

minimal or no labelled examples [4, 32]. Bridging this gap is vital for creating
models adept at understanding complex 3D scenes with limited data.

Contrary to the 3D domain, the 2D and language domains benefit from
the availability of large-scale, diverse, and multi-modal datasets, which facili-
tated the development of Vision Foundation Models (VFMs) [7,30], and Vision-
Language Models (VLMs) [36, 46]. These models have shown remarkable label
efficiency in 2D tasks like image classification and segmentation and have also
been used to perform label-free 2D image classification and segmentation through
language prompts during inference [26,36]. Due to these advantages, recent ap-
proaches for learning 3D representations have relied on the distillation of 2D
representations from VFMs [25, 27, 38] or VLMs [9, 33, 44] to point cloud en-
coders, and have shown encouraging results when solving few-shot and zero-shot
3D tasks.

Unfortunately, the adaptation of 2D-to-3D distillation frameworks for au-
tonomous driving (AD) datasets reveals unique challenges, notably due to the
inherent characteristics of AD data. Current frameworks, largely reliant on con-
trastive learning methods, face the issue of self-similarity [27], a prevalent phe-
nomenon in AD datasets. Self-similarity arises when a significant portion of the
training examples belong to a single semantic category (e.g. road, trees or sky in
AD data). Under the effect of self-similarity, the contrastive loss mechanism, de-
signed to be hardness-aware [41], inadvertently pushes away semantically similar
samples, which not only disrupts the local semantic coherence of the 3D repre-
sentation [24, 27, 38] but also amplifies the effects of AD datasets’ severe class
imbalance. As a result, while such frameworks may result in useful 3D representa-
tions for few-shot learning tasks, the misalignment induced by excessive pushing
of semantically similar examples undermines their efficacy in zero-shot learn-
ing scenarios, where precise cross-modal alignment is crucial. Another approach
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to distillation relies on the cosine similarity loss, which attempts to learn a 3D
representation by driving the features generated for every 3D point by a point en-
coder to its corresponding 2D feature from VFMs or VLMs. Using the similarity
loss results in 3D representations that achieve significantly better performance
on the zero-shot tasks compared to ones learned with the contrastive loss. How-
ever, we argue in Section 3 that using the similarity loss under-constrains the
pretraining when compared to the contrastive loss, resulting in sub-optimal 3D
representations on few-shot downstream tasks.

To highlight the mismatch discussed above, we provide an example visual-
ization of the 3D representation space (Fig. 1), which was obtained by distilling
from CLIP’s [36] 2D representation space using both the contrastive and similar-
ity losses. We observe that both losses result in 3D representations that diverge
from the structure of the 2D representation as measured by uniformity, tolerance,
and the modality gap, which we further explain in Section 3.

In this work, we investigate the impact of state-of-the-art 2D-to-3D distilla-
tion frameworks on the structure of learned 3D representations. We show that
the choice of loss during pretraining can result in a significant mismatch between
the structure of the 2D source representations and the distilled 3D representa-
tions. Furthermore, we demonstrate that this mismatch leads to a deterioration
in performance on downstream tasks. Our contributions are as follows:

– Quantify the Gap: We quantify the mismatch in structure when perform-
ing distillation using contrastive loss [12, 25, 38] and similarity loss [17, 33]
via the uniformity [41,42], tolerance [41], and modality gap [23], revealing a
significant gap between 2D and distilled 3D representations.

– Bridging the Gap using Relational Distillation: We address this mis-
match by imposing structural constraints that foster the learning of a 3D rep-
resentation aligned with the structure of 2D representations. To achieve this,
we employ pretraining with intra-modal and cross-modal relational losses.
These losses generalize the similarity loss, providing a more effective con-
straint on the distillation process. Our proposed losses can be applied to
pixel-based [25] and superpixel-based [38] distillation frameworks.

– Bridging the Gap Improves Downstream Performance: Our pro-
posed loss effectively minimizes the mismatch between learned 3D and 2D
representations from multiple VLM and VFM image encoders, quantified by
differences in the U, T, and G (Fig. 1). Consequently, the resulting 3D repre-
sentations significantly outperform those learned via contrastive distillation
on zero-shot segmentation tasks. Furthermore, compared to the similarity
loss, our relational loss results in 3D representations that consistently im-
prove in-distribution and out-of-distribution few-shot segmentation tasks.

2 Related Work

2.1 Cross-Modal Knowledge Distillation

Knowledge Distillation enables a student network to learn a task by mimick-
ing the output of highly-performing teacher networks [13], achieved by using
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these output as training targets for the student network [18], or by supervising
the student network using the teacher’s intermediate representations [37,40,43].
Distilling representations rather than network predictions enables knowledge
transfer across different modalities, without requiring labels. In the context
of cross-modal distillation, contrastive distillation [12, 40] has shown to be the
most effective. However, the abundance of self-similarity [27], coupled with the
hardness-aware property of contrastive losses [41] limits the effectiveness of con-
trastive losses for AD data. On the other hand, similarity losses only utilize
positive pairs for distillation, resulting in an under-constrained loss, leading to
sub-optimal performance on zero-shot tasks [12].

2.2 3D Representations for Few-Shot Learning

Few-shot learning refers to learning the underlying pattern in data from only a
few training samples [32]. Distilling 3D representations from 2D self-supervised
models [2,6,7,10,14,15] or VFMs [30,36] has shown to be effective at significantly
improving performance on 3D few-shot tasks [24, 27, 38]. PPKT [25] proposes a
pixel-based contrastive loss to distill 2D self-supervised representations to point
cloud encoders. While effective in indoor settings, PPKT [25] underperforms in
outdoor settings where point-to-pixel correspondences are sparse [38]. Inspired
by DetCon [16], SLidR [38] proposes a superpixel-based contrastive loss primarily
designed for autonomous driving scenes which constructs region-level contrastive
pairs suited for distilling scene-level images [16]. Due to the abundance of self-
similarity in AD data [24, 27, 38], contrastive distillation leads to sub-optimal
3D representations [27]. To address these challenges, ST-SLidR [27] proposes
a semantically tolerant contrastive loss leading to improved 3D representations
for 3D few-shot segmentation tasks. Finally, Seal [24] demonstrates that object
priors from VFMs like SAM [21], represented as superpixels, can improve the
quality of 3D representations for 3D few-shot segmentation tasks. In this paper,
we demonstrate that pixel and superpixel-based contrastive distillation applied
to AD data, learn 3D representations that significantly differ from the structure
of 2D representations. This leads to poor performance on zero-shot tasks and
unpredictable performance on few-shot tasks.

2.3 3D Representations for Zero-Shot Learning

Contrastive Language-Image Pre-training (CLIP) models are pre-trained on bil-
lions of webscale image-text pairs and have shown great success in solving zero-
shot image classification tasks [36]. Using frozen CLIP vision encoders, Image-
Bind [12] enables zero-shot image classification by distilling image-level repre-
sentations via a contrastive distillation framework. LidarCLIP [17] aligns LiDAR
point features to CLIP space, demonstrating effective cross-modal retrieval and
image-level zero-shot classification. PointCLIP [44] and PointCLIPv2 [47] pro-
pose a distillation-free approach utilizing CLIP vision and text encoders dur-
ing the inference stage to solve 3D zero-shot classification tasks. More recently,
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MaskCLIP [46] proposes removing the last attention pooling layer in CLIP vi-
sion encoders to enable dense feature extraction for 2D zero-shot segmentation
tasks. OpenScene [33] distills image features from CLIP models fine-tuned on
2D segmentation datasets [11, 22] to point cloud encoders. As demonstrated by
ConceptFusion [19] and LERF [20], due to fine-tuning on closed-set 2D segmenta-
tion labels, these CLIP models have poor open-set capabilities. During inference,
OpenScene fuses image and point features to solve 3D zero-shot segmentation.
In this work, we do not assume access to finetuned CLIP models or access to
image data during inference time. CLIP2Scene [9] assumes knowledge of class
names of objects in the pre-training dataset, which leads to a contrastive loss
with fewer false negatives. Requiring class names is problematic as it assumes
a dataset only consists of a predefined set of classes, preventing the transfer of
features associated with undefined classes and limiting open-set capabilities [34].

3 Methodology

3.1 Preliminaries

Our objective is to generate useful 3D representations by learning a point cloud
encoder, f : RN⇥(3+L) ! RN⇥C , through distilling 2D representations from
VFMs or VLMs (e.g., CLIP [36], DINOv2 [30]). Using camera-to-LiDAR cali-
bration matrices, we create a set of positive pairs of point, Kp 2 RN⇥C , and
pixel, Qp 2 RN⇥C , features, with the latter being generated from the pre-trained
image encoder of the foundation model, g : RN⇥3 ! RN⇥C . While distillation
methods like PPKT [25] implement distillation losses by creating pixel-point pos-
itive pairs, techniques such as SLidR [38] optimize pair formation by harnessing
boundary information from superpixels. SLidR, with M superpixels per image,
employs average pooling to group points, Kp, and pixels, Qp, into superpoint,
Ksp 2 RM⇥C , and superpixel, Qsp 2 RM⇥C , features, improving feature corre-
spondence. Superpixels are derived from unsupervised techniques like SLIC [1],
or foundation models such as SAM [21,24]. One of the most effective cross-modal
distillation losses is the contrastive loss:

Lcon (K,Q) = � 1

B

BX

i=1

log

"
e(hki,qii/⌧)

P
j 6=i e

(hki,qji/⌧) + e(hki,qii/⌧)

#
(1)

where K and Q can either be point/pixel (i.e., Kp, Qp) or superpoint/super-
pixel (i.e., Ksp, Qsp) feature vectors, B is the number of positive pairs in a
mini-batch, ⌧ is the temperature, and hki,qji is the dot product between the
`2-normalized features. The contrastive loss distills information from pre-trained
image encoders by pulling the point cloud features, K, towards their correspond-
ing (positive) image feature, Q, in representation space, simultaneously pushing
them away from all the other (negative) image features. The temperature, ⌧ ,
controls the strength of this push/pull mechanism by modifying the gradient’s
scale from the negative samples [41]. However, a significant limitation of this ap-
proach is the potential degradation in the learned point cloud representation’s



6 A. Mahmoud et al.

quality due to false negative samples [27]. These are image features incorrectly
chosen as negative, despite belonging to the same semantic class as the positive
point cloud feature, leading to opposing distillation signals.

To avoid both relying on negative examples while performing distillation, and
tuning the temperature parameter, we can use the cosine similarity:

Lsim (K,Q) =
1

B

BX

i=1

(1.0� hki,qii) (2)

The similarity loss does not rely on negative samples and thus has a much simpler
mode of action. It focuses solely on drawing each point cloud feature, ki, nearer
to its corresponding image feature, qi, effectively maximizing their dot product.

3.2 Quantifying the Quality of Distilled Representations

We investigate the quality of the distilled 3D representations as a function of the
distillation loss used during training. We hypothesize that if a distilled 3D rep-
resentation space closely captures the structure of the source 2D representation
space, our resulting 3D encoder would: 1) possess the enhanced representation
capability of the source vision/vision-language foundation model and 2) gen-
erate 3D representations that are well-aligned with the text representations of
the vision-language model, enabling zero-shot downstream tasks. To assess the
structural similarity between two representation spaces, we utilize uniformity
and tolerance, two metrics previously proposed by Wang et al. [41], for evaluat-
ing the quality of a representation space. Uniformity measures the distribution
of `2-normalized features on a hyper-sphere. Authors in [42] have demonstrated
that a high uniformity is key for high-quality representations as it quantifies that
the trained encoder has successfully utilized a substantial part of the available
feature space. Uniformity is formulated using a Gaussian potential function as:

U(f(.)) = � log E
x,y⇠pdata

h
e�t||f(x)�f(y)k2

2

i
(3)

where f(.) is the point encoder and x, y are two samples from the data-distribution
pdata. Here, x, y are point features for 3D point encoders. Similarly, we compute
the uniformity of U(g(.)) for the image encoder by setting x, y as pixel features.

On the other hand, tolerance measures the semantic clustering for the `2-
normalized output representations from a given encoder,computed as:

T (f(.)) = E
x,y⇠pdata

⇥�
f(x)T f(y)

�
· Il(x)=l(y)

⇤
(4)

where l(x) represents the class label of point x. Il(x)=l(y) is an indicator function,
having the value of 1 for l(x) = l(y) and the value of 0 for l(x) 6= l(y). A higher
tolerance indicates that the features of all points belonging to a certain class are
better clustered together on a unit sphere. Similar to uniformity, we can compute
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Fig. 2: Blue: The source representation space, with a uniformity and tolerance of
U=0.89 and T=0.66, respectively. Cyan: The predicted representation space. Here, t
denotes the number of training iterations.

tolerance for the image encoder as T (g(.)), by propagating 3D point-wise labels
to 2D image pixels.

Furthermore, to directly compare the alignment of the two representation
spaces from different modalities, we also use the modality gap as proposed in [23]:

G(f(.), g(.)) = E
x⇠p2D

[f(x)]� E
y⇠p3D

[g(y)] (5)

The modality gap measures the difference between the mean of the representa-
tion of the point features and their corresponding pixel features. We conclude
by noting that unlike G, U and T are properties of a single encoder; we show the
difference in representations by comparing the values of U(f(.)) and T (f(.)) to
U(g(.)) and T (g(.)), respectively. Closer values indicate our point cloud encoder
well-approximates the representation space of the source image encoder, which
we show in Section 4 to be beneficial for downstream tasks.

3.3 The Representations of Common Distillation Losses

Inspired by [39], we explore the structure of the learned representation space
using contrastive loss and similarity loss through a toy example. We start with
1000 uniformly distributed points over a 3D unit sphere, representing point fea-
tures before the distillation phase. Using a 2-layer MLP, we learn to align each
input point with its corresponding pixel feature from the source representation
space, defined by U and T levels of 0.89 and 0.66, respectively. We use the Adam
optimizer with a learning rate of 10�4 and train our model for 50, 000 iterations
(refer to Appendix A for detailed analysis).

Figure 2 shows a visualization of the source representation space (blue) and
the predicted representation space (cyan) at various stages of training. The top
row highlights a significant difference: the contrastive losses generate a repre-
sentation space with a high U of 1.38, but with a very low T of 0.02, differing
significantly from the source space’s U (0.89) and T (0.66). This is attributed
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to self-similarity [27], a phenomenon that occurs when points from the source
representation space are close to one another, as in our toy example. Although
the contrastive loss moves a particular prediction to its corresponding point
in the source, its hardness-awareness property [41] pushes all other predictions,
particularly close ones, away from that point. Combined with self-similarity, this
yields a uniform predicted space with a low T, and a significant modality gap. As
demonstrated in Section 4, this discrepancy hinders zero-shot task performance
due to inadequate cross-modal alignment.

On the other hand, learning with similarity loss leads to representations with
lower U (0.59) and higher T (0.80) compared to the source. This stems from the
tendency of similarity loss to form compact clusters in the predicted space, as
shown with autonomous driving data in Figure 1 and the toy example in Figure 2.
Notably, early training (t=1000) exhibits noticeable clustering that disperses
with additional epochs. Additionally, the non-uniqueness of the dot product
between the learnable point vector, ki, and the fixed pixel vector, qi, within the
framework of similarity loss (Eq. 2) results in a significant increase in the number
of learnable vectors that can achieve the same cosine similarity with the fixed
vector, qi. This growth can result in slow convergence and suboptimal predicted
representation spaces. Combined with neural network optimization complexities,
these issues lead to the observed disparity in uniformity and tolerance from the
source representation space in distillation tasks using similarity loss.

3.4 Relational Loss

Inspired by distilling relations in model compression [31], this section presents
two relational losses that impose structural constraints on the 3D representation
space. This modification disrupts the symmetry inherent in the similarity loss. It
drives the network to select solutions that, while possessing equivalent similarity
loss values to alternatives, yield a 3D representation space that more accurately
mirrors the structure of the image representation space.
Cross-modal Relational Loss We propose imposing a constraint on the struc-
ture of the learned 3D representation space to ensure that the similarities be-
tween a given predicted point feature, ki, and all source pixel features align with
the similarities between its corresponding pixel feature, qi, and all other source
pixel features in the same batch. The cross-modal relation loss is defined as:

Lcross (K,Q) =
1

N
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1
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where C = |KQT � QQT | represents the matrix of differences, capturing the
discrepancy between the predicted point-to-pixel and the source pixel-to-pixel
similarities. First, the matrix’s diagonal components, Cii, are directly linked to
the similarity loss, underscoring the necessity of aligning each point feature with
its corresponding source pixel feature. The second term of Equation 6 facilitates
learning a point feature, ki, that is not only close to its corresponding source pixel
feature, qi, but is also consistent with qi’s similarities to other pixel features,
hqi,qji, where j 6= i. These cross-modal constraints foster learning point features
that maintain the relational structure within the image representation space.

Intra-modal Relational Loss Another strategy to ensure structural similarity
between the 3D and 2D representation spaces involves directly penalizing differ-
ences in their relational graphs. A relational graph of a representation space can
be understood as a graph with the nodes representing point or pixel features,
and edges indicating the similarity between node features. We represent the re-
lational graph of the point features and the pixel features using KKT and QQT ,
respectively. Here, hki,kji represents the similarity between the ith and the jth

predicted point feature. We denote the discrepancy of the relational graphs as
U = |KKT �QQT |. Since this matrix is symmetric, and its diagonal elements,
| hki,kii � hqi,qii |, degenerate to 0, the intra-modal relational loss is expressed
as:

Lintra (K,Q) =
2

N2 �N

N�1X

i=1

NX

j=i+1

Uij (7)

The consequence of this loss on the structure of the point representation space is
simple; the similarity between a predicted point feature and other predicted point
features in a batch should match the similarity between its corresponding source
pixel feature and other source pixel features in the same batch. Our proposed
relational loss is a combination of the two losses:

Lrel (K,Q) = Lintra (K,Q) + Lcross (K,Q) (8)

Unlike the similarity loss, the proposed loss ensures learned point cloud fea-
tures align with image features in a structured manner, preserving the data’s
inherent relationships. Figure 2 reveals two key advantages of relational loss
over similarity loss: closer alignment of the predicted space’s U and T with those
of the source space, alongside a reduced G between the two spaces. Addition-
ally, the relational loss achieves faster convergence, as the visual appearance of
the predicted representation space resulting from learning with the relational
loss remains consistent from the mid-point of training (t=25000) to its conclu-
sion (t=50000). In Section 4, we further illustrate how these attributes of the
relational loss contribute to enhanced performance in downstream tasks.
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4 Experiments

4.1 Pre-training

Backbones We focus on distilling 2D representations from two vision founda-
tion models, CLIP [36], pretrained on the WIT dataset containing 400 million
image-text pairs, and DINOv2 [30], pretrained on the LVD-142 dataset con-
taining 142 million images. For CLIP encoders, we experiment with different
pre-trained architectures available from OpenAI [36]. For the 3D backbone, we
use a randomly initialized Minkowski U-Net [38]. For details on the design of
the 2D and 3D projection layers, refer to Appendix C.
Dataset In the pre-training phase we use the nuScenes dataset [5], consisting of
700 scenes. In line with previous works [24,27,38], these scenes are divided into
two subsets: 600 scenes for pre-training and 100 scenes for the determination
of the best hyper-parameters. Throughout this pre-training process, we exclu-
sively employ keyframes from the 600 scenes to train all models. For pre-training
hyperparameters and data-augmentation details, refer to Appendix B.

4.2 Evaluation

To study the effect of the distillation framework on the structure of the 3D rep-
resentations, we evaluate the average U, T, and G between the distilled 3D and
source 2D representations. For both pixel-based and superpixel-based losses, U,
T, and G are evaluated using point or pixel features. To assess the relation-
ship between the performance on downstream tasks and the difference in the
structure of the 2D and the 3D representation spaces, we use the in-distribution
3D few-shot segmentation task, where we learn a classifier by finetuning the
3D representations on 1% of the labels of the nuScenes training set. Similar
to [27,38], we also evaluate the utility of the distilled representations in the out-
of-distribution setting by fine-tuning on 1% of the SemanticKITTI [3] dataset.
The nuScenes and SemanticKITTI datasets contain 16 and 19 classes, respec-
tively. We present our results using the official validation sets for these datasets.

For DINOv2, we follow [27,38] and evaluate the Linear Probing performance
on nuScenes by freezing the backbone of the point cloud encoder and training
a linear classifier on 100% of the labels. For CLIP models, we evaluate the 3D
zero-shot segmentation tasks which can be performed with language prompts.
To enable openset scene understanding, during pretraining, we assume we have
no access to nuScenes class labels. Similar to [46], we apply prompt engineering
during inference using 85 hand-crafted prompts for each class label, and then
use the CLIP text encoder to compute an average text embedding for each class.
Each point is then assigned the label that corresponds to the highest cosine
similarity, computed between the point features and the CLIP text embeddings.
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Table 1: Evaluation of 3D representations from CLIP image encoder with source U
of 1.54, and source T of 0.73. Best results are bolded and second best are underlined.

2D
Encoder

Distillation
Loss Uniformity Tolerance Modality

Gap

nuScenes KITTI

Zero-shot Finetuning
1%

Finetuning
1%

CLIP [36]

PPKT [25] 3.5210 0.5217 0.00158 14.53 45.31 45.77
Simpl 0.5519 0.9477 0.00045 20.84 44.39 45.60
Relpl (ours) 0.9089 0.9145 0.00033 23.53 45.67 46.06
SLidR [38] 3.5090 0.4472 0.00153 16.82 46.76 46.53
ST-SLidR [27] 3.5000 0.4544 0.00150 18.54 47.13 46.84
Simspl 0.5919 0.9333 0.00040 23.93 45.63 46.42
Relspl (ours) 1.0990 0.8700 0.00019 26.03 47.22 47.52

Table 2: Evaluation of 3D representations from DINOv2 image encoder with source
U of 2.8, and source T of 0.51. Best results are bolded and second best are underlined.

2D
Encoder

Distillation
Loss Uniformity Tolerance Modality

Gap

nuScenes KITTI
Lin. Probing

100%
Finetuning

1%
Finetuning

1%

DINOv2 [30]

PPKT [25] 3.625 0.4451 0.00060 48.50 43.30 43.62
Simpl 2.176 0.6926 0.00030 49.72 45.85 48.32
Relpl (ours) 2.393 0.6588 0.00020 49.20 46.90 49.00
SLidR [38] 3.655 0.3739 0.00044 49.60 44.81 42.23
ST-SLidR [27] 3.589 0.4326 0.00042 53.00 47.11 45.61
Simspl 2.286 0.6522 0.00030 52.30 47.23 49.01
Relspl (ours) 2.504 0.6312 0.00023 52.92 48.42 49.10

4.3 Results

Baselines In Tab. 1 and Tab. 2, we present the results of distilling CLIP and
DINOv2 models using our proposed relational loss. We compare against multiple
state-of-the-art contrastive losses including PPKT [25], SLidR [38], and ST-
SLidR [27]. For superpixel-based losses, masks are generated using SAM [21]. As
an additional baseline, we report results for both the pixel-based and superpixel-
based similarity loss, which we denote as Simpl and Simspl, respectively. We
report the average over 3 runs for all metrics.
Uniformity, tolerance, and closing the modality gap Looking at distil-
lation losses from the 2D CLIP encoder in Tab. 1, we first observe that U of
3D representations distilled using contrastive loss (i.e., PPKT, SLidR and ST-
SLidR) is higher than the source U of 1.54, while U of similarity loss (i.e., Simpl,
Simspl) is lower than the U of the source. This is also observed when distilling
from DINOv2. The relational constraints (i.e., Relpl, Relspl) effectively close the
gap between 3D representations distilled by similarity loss (i.e., Simpl, Simspl)
and 2D representations. For instance, when the pixel-based loss Relpl is applied
to CLIP, relational constraints close the gap in U resulting in a 3D representation
with a U of 0.9089, instead of 0.5519, thus closer to the U of the source (1.54).
Similarly, for the superpixel-based loss, Relspl, relational constraints close the
gap in U resulting in a 3D representation with a U of 1.099, instead of 0.5919,
thus closer to the U of the source (1.54). In addition, relational losses result
in semantic clusters that are closer to the T of the source. By closing the gap
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Table 3: Performance for different CLIP backbones using pixel-based and superpixel-
based relational loss. Best results are bolded and second best are underlined.

2D
Encoder

Distillation
Loss Uniformity Tolerance Modality

Gap

nuScenes KITTI

Zero-shot Finetuning
1%

Finetuning
1%

ViT-B32

PPKT 3.5110 0.5203 0.00020 14.21 43.29 45.89
Simpl 0.5804 0.9389 0.00010 22.84 44.22 44.30
Relpl (ours) 0.9605 0.8989 0.00010 23.85 44.67 45.62
SLidR 3.5130 0.4706 0.00030 15.55 43.38 43.82
Simspl 0.6009 0.9323 0.00011 25.46 44.83 45.69
Relspl (ours) 1.2020 0.8648 0.00007 25.66 45.60 47.26

ViT-B16

PPKT 3.5210 0.5217 0.00158 14.53 45.31 45.77
Simpl 0.5519 0.9477 0.00045 20.84 44.39 45.59
Relpl (ours) 0.9089 0.9145 0.00033 23.53 45.67 46.06
SLidR 3.5090 0.4472 0.00153 16.82 46.76 46.53
Simspl 0.5919 0.9333 0.00040 23.93 45.63 46.42
Relspl (ours) 1.0990 0.8700 0.00019 26.03 47.22 47.52

ViT-L14

PPKT 3.5020 0.5203 0.00089 16.28 44.69 46.69
Simpl 0.6909 0.9257 0.00016 27.91 44.87 44.80
Relpl (ours) 0.8775 0.9027 0.00013 27.74 45.92 45.86
SLidR 3.4800 0.4403 0.00065 18.31 47.34 46.86
Simspl 0.7311 0.9102 0.00020 30.77 45.76 45.29
Relspl (ours) 0.9019 0.8873 0.00017 30.11 47.07 46.81

in U and T, relational constraints result in the lowest G for pixel-based and
superpixel-based losses. These results align well with the ones presented on the
toy example in Section 3, which further supports the validity of our analysis.
Zero-shot performance Looking at the utility of the 3D representations for
3D zero-shot segmentation in Tab. 1, we observe that the contrastive loss (i.e.,
PPKT, SLidR and ST-SLidR) has significantly worse 3D zero-shot mean IOU
when compared to the similarity loss. This is contrary to the conclusion reached
by ImageBind [12], which observed that the contrastive loss achieves 6% im-
provement on 2D zero-shot tasks compared to similarity losses. We hypothesize
that the abundance of self-similarity in AD datasets, coupled with the hardness-
aware property of contrastive loss [27], leads to pushing away semantically similar
point and pixel features. This, in turn, results in poor alignment between point
features and CLIP image features. Notably, we observe that ST-SLidR improves
zero-shot performance compared to SLidR (18.54% vs 16.82%) as it utilizes the
superpixel feature similarities to exclude a portion of the false negative samples
from the pool of negative samples. Without resorting to negative samples, rela-
tional constraints minimize the 2D-to-3D structural gap compared to similarity
loss, leading to improvements in zero-shot performance from 20.84% to 23.53%
for pixel-based losses, and from 23.93% to 26.03% for superpixel-based losses.

In Tab. 4, we compare pixel and superpixel-based relational losses to SOTA
methods. All methods distill from CLIP [36], with the performance on nuScenes
provided by [8]. Methods are further categorized based on the prior knowledge
required during the distillation phase. Some methods require class names defined
for a dataset [8, 9], while others utilize SAM to refine CLIP predictions [8].
Requiring class names assumes a dataset only consists of a predefined set of
classes, preventing the transfer of features associated with undefined classes, thus
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Table 4: Zero-shot segmentation per-
formance of relational loss compared to
state-of-the-art methods.

Method Publication Class Names
Required

Uses
SAM

3D
mIoU

MaskCLIP [46] ECCV 2022 7 7 12.80
OpenScene [33] CVPR 2023 7 7 14.60
CLIP2Scene [9] CVPR 2023 3 7 20.80

Relpl (ours) - 7 7 23.53
TLF [8] NeurIPS 2023 3 3 26.80

Relspl (ours) - 7 3 26.03

Table 5: Effect of relational loss com-
ponents. Distilling from CLIP image en-
coder with source U of 1.54 and T of 0.73.

Loss Uniformity Tolerance Modality
Gap

nuScenes KITTI

ZS Ft
1%

Ft
1%

Simpl 0.5519 0.9477 0.00045 20.84 44.39 45.59
+cross 0.6426 0.9386 0.00042 21.39 45.95 45.45
+intra 0.9089 0.9145 0.00033 23.53 45.67 46.06
Simspl 0.5919 0.9333 0.00040 23.93 45.63 46.42
+cross 0.7656 0.9086 0.00033 25.05 46.18 46.99
+intra 1.0990 0.8700 0.00019 26.03 47.22 47.52

Table 6: Improvement of finetuned mod-
els with respect to majority versus minor-
ity classes. Similar to ST-SLidR [27], We
group classes based on whether their su-
perpixels occupy more than 5% of the su-
perpixels in nuScenes training set.

2D
Encoder Loss Majority

(mIoU)
Minority
(mIoU)

CLIP

Simpl 69.16 33.35
Relpl 69.59 34.80
Gain +0.43 +1.45

Simspl 67.58 36.06
Relspl 67.75 38.77
Gain +0.17 +2.71

DINOv2

Simpl 70.89 34.24
Relpl 71.22 35.85
Gain +0.33 +1.61

Simspl 68.15 38.53
Relspl 68.80 40.20
Gain +0.65 +1.67

limiting openset capabilities [34]. Without using class information, we observe
in Tab. 4 that Relpl performs the best compared to other pixel-based losses, while
our superpixel-based relational loss, Relspl, is within 1% from state-of-the-art [8].
Few-shot performance We evaluate the effectiveness of 3D representations
in both in-distribution (namely, nuScenes) and out-of-distribution (namely, Se-
manticKITTI) settings. For representations distilled from CLIP in Tab. 1, we
observe that the limited U of representations distilled through similarity losses,
as opposed to the source, leads to comparatively weaker performance on in-
distribution tasks with few-shot learning when compared with contrastive loss.
For instance, ST-SLidR representations enhance performance on the nuScenes
dataset by +1.5% compared to Simspl. Furthermore, by applying relational con-
straints and without the need for negative samples, we can bridge the U gap. This
results in Relspl outperforming Simspl by +1.59% and +1.1% on nuScenes and
SemKITTI, respectively. When examining 3D representations distilled from DI-
NOv2 in Tab. 2, we note a source U of 2.8. Here, the similarity loss closely aligns
with the source’s U more than the contrastive loss. The contrastive loss (PPKT
and SLidR) shows significantly poorer performance compared to the similarity
loss. Additionally, 3D representations distilled by ST-SLidR attain a U of 3.589
and a T of 0.4326, aligning more closely with the source U and T of 2.8 and 0.51
than those distilled by the SLidR loss. Lastly, we find that relational constraints
narrow the G more effectively than similarity losses, thereby enhancing the few-
shot performance by +1.05% and +1.19% on pixel and superpixel-based losses,
respectively, on the nuScenes dataset compared to similarity losses.
CLIP Backbones Tab. 3 depicts the performance of contrastive, similarity,
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and relational losses when distilling from different CLIP backbones. Relational
losses achieve the lowest modality gap, surpassing both contrastive and similarity
loss across all 2D encoders. In zero-shot tasks, relational losses either match or
exceed the performance of similarity losses, whereas contrastive distillation con-
sistently underperforms. The performance of contrastive distillation on few-shot
tasks proves unpredictable. For instance, distilling from ViT-B32 using simi-
larity loss Simspl surpasses distilling using contrastive loss SLidR in mIOU by
+1.45% and +1.87% on nuScenes and SemanticKITTI, respectively. Conversely,
distilling from ViT-L14, SLidR achieves competitive performance, outperform-
ing similarity loss Simspl by +1.58% and +1.57% on the same datasets. Notably,
relational losses bridge the gap in few-shot learning while maintaining robust
zero-shot task performance. This indicates that relational losses utilize inherent
2D representation relationships, avoiding ungrounded negative samples common
in contrastive loss, which facilitates learning representations more aligned with
the source’s U, thereby enhancing few-shot task performance.
Class Imbalance We investigate the performance of finetuned models on se-
mantic segmentation using 3D representations distilled using similarity and rela-
tional losses. Similar to ST-SLidR [27], we distinguish between majority and mi-
nority classes based on the percentage of superpixels they occupy in the nuScenes
dataset. The 11 classes occupying less than 5% of the superpixels are consid-
ered to be in the minority set, while the remaining classes are in the majority
set. In Tab. 6, compared to similarity losses, relational losses learn representa-
tions that significantly improve performance on minority classes for pixel and
superpixel-based losses without degrading performance on majority classes.
Relational Loss Ablation We investigate the contribution of cross-modal and
intra-modal constraints for pixel-based and superpixel-based losses. In Tab. 5, we
observe that both constraints lead to learning 3D representations that are closer
to the source U and T, and thus result in a lower G compared to similarity losses.
Moreover, both constraints lead to improved performance on zero-shot and few-
shot segmentation tasks. Interestingly, the superpixel-based relational loss with
both constraints (last row) results in the smallest gap in U and T compared to
other losses, leading to the best performance on semantic segmentation.

5 Conclusion

In this work, we study the impact of the state-of-the-art 2D-to-3D distillation
frameworks when applied to AD datasets on the structure of the learned 3D rep-
resentation. We reveal a significant structural gap between the 2D and the 3D
representations and show that this gap is negatively correlated with the utility
of the learned 3D representations for solving 3D zero-shot and few-shot segmen-
tation tasks. Our proposed relational loss bridges this structural gap, resulting
in well-aligned 3D representations that outperform representations learned via
contrastive loss on zero-shot segmentation tasks. In addition, compared to the
similarity loss, our relational loss results in 3D representations that consistently
improve in-distribution and out-of-distribution few-shot segmentation tasks.



Image-to-Lidar Relational Distillation for Autonomous Driving Data 15

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic su-
perpixels compared to state-of-the-art superpixel methods. IEEE TPAMI 34(11),
2274–2282 (2012)

2. Bardes, A., Ponce, J., Lecun, Y.: Vicreg: Variance-invariance-covariance regular-
ization for self-supervised learning. In: ICLR (2022)

3. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall,
J.: SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Se-
quences. In: ICCV (2019)

4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

5. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. In: CVPR. pp. 11621–11631 (2020)

6. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. NeurIPS 33, 9912–
9924 (2020)

7. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: ICCV. pp. 9650–
9660 (2021)

8. Chen, R., Liu, Y., Kong, L., Chen, N., Xinge, Z., Ma, Y., Liu, T., Wang, W.:
Towards label-free scene understanding by vision foundation models. In: Thirty-
seventh Conference on Neural Information Processing Systems (2023)

9. Chen, R., Liu, Y., Kong, L., Zhu, X., Ma, Y., Li, Y., Hou, Y., Qiao, Y., Wang, W.:
Clip2scene: Towards label-efficient 3d scene understanding by clip. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
7020–7030 (2023)

10. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: ICML. pp. 1597–1607 (2020)

11. Ghiasi, G., Gu, X., Cui, Y., Lin, T.Y.: Scaling open-vocabulary image segmentation
with image-level labels. In: European Conference on Computer Vision. pp. 540–557.
Springer (2022)

12. Girdhar, R., El-Nouby, A., Liu, Z., Singh, M., Alwala, K.V., Joulin, A., Misra,
I.: Imagebind: One embedding space to bind them all. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 15180–
15190 (2023)

13. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: A survey. Inter-
national Journal of Computer Vision 129, 1789–1819 (2021)

14. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E.,
Doersch, C., Pires, B.A., Guo, Z.D., Azar, M.G., et al.: Bootstrap your own latent:
A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020)

15. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 9729–9738 (2020)

16. Hénaff, O.J., Koppula, S., Alayrac, J.B., Van den Oord, A., Vinyals, O., Carreira,
J.: Efficient visual pretraining with contrastive detection. In: ICCV. pp. 10086–
10096 (2021)



16 A. Mahmoud et al.

17. Hess, G., Tonderski, A., Petersson, C., Åström, K., Svensson, L.: Lidarclip or:
How i learned to talk to point clouds. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV). pp. 7438–7447 (January
2024)

18. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

19. Jatavallabhula, K., Kuwajerwala, A., Gu, Q., Omama, M., Chen, T., Li, S., Iyer,
G., Saryazdi, S., Keetha, N., Tewari, A., Tenenbaum, J., de Melo, C., Krishna,
M., Paull, L., Shkurti, F., Torralba, A.: Conceptfusion: Open-set multimodal 3d
mapping. Robotics Science and Systems (2023)

20. Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: Lerf: Language em-
bedded radiance fields. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 19729–19739 (2023)

21. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., Dollar, P., Girshick, R.: Segment anything.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 4015–4026 (October 2023)

22. Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven
semantic segmentation. In: ICLR (2022)

23. Liang, V.W., Zhang, Y., Kwon, Y., Yeung, S., Zou, J.Y.: Mind the gap: Under-
standing the modality gap in multi-modal contrastive representation learning. Ad-
vances in Neural Information Processing Systems 35, 17612–17625 (2022)

24. Liu, Y., Kong, L., Cen, J., Chen, R., Zhang, W., Pan, L., Chen, K., Liu, Z.: Segment
any point cloud sequences by distilling vision foundation models. In: Advances in
Neural Information Processing Systems (2023)

25. Liu, Y.C., Huang, Y.K., Chiang, H.Y., Su, H.T., Liu, Z.Y., Chen, C.T., Tseng,
C.Y., Hsu, W.H.: Learning from 2d: Contrastive pixel-to-point knowledge transfer
for 3d pretraining. arXiv preprint arXiv:2104.04687 (2021)

26. Mahmoud, A., Elhoushi, M., Abbas, A., Yang, Y., Ardalani, N., Leather, H., Mor-
cos, A.S.: Sieve: Multimodal dataset pruning using image captioning models. In:
CVPR. pp. 22423–22432 (2024)

27. Mahmoud, A., Hu, J.S.K., Kuai, T., Harakeh, A., Paull, L., Waslander, S.L.: Self-
supervised image-to-point distillation via semantically tolerant contrastive loss.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 7102–7110 (June 2023)

28. Mahmoud, A., Hu, J.S., Waslander, S.L.: Dense voxel fusion for 3d object detection.
In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. pp. 663–672 (2023)

29. Mahmoud, A., Waslander, S.L.: Sequential fusion via bounding box and motion
pointpainting for 3d objection detection. In: 18th Conference on Robots and Vision
(CRV) (2021)

30. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust
visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

31. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
pp. 3967–3976 (2019)

32. Parnami, A., Lee, M.: Learning from few examples: A summary of approaches to
few-shot learning. arXiv preprint arXiv:2203.04291 (2022)



Image-to-Lidar Relational Distillation for Autonomous Driving Data 17

33. Peng, S., Genova, K., Jiang, C., Tagliasacchi, A., Pollefeys, M., Funkhouser, T.,
et al.: Openscene: 3d scene understanding with open vocabularies. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
815–824 (2023)

34. Puy, G., Gidaris, S., Boulch, A., Simeoni, O., Sautier, C., Perez, P., Bursuc, A.,
Marlet, R.: Revisiting the distillation of image representations into point clouds
for autonomous driving. arXiv preprint arXiv:2310.17504 (2023)

35. Qian, J., Chatrath, V., Yang, J., Servos, J., Schoellig, A.P., Waslander, S.L.: Pocd:
Probabilistic object-level change detection and volumetric mapping in semi-static
scenes. Robotics: Science and Systems (2022)

36. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021)

37. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

38. Sautier, C., Puy, G., Gidaris, S., Boulch, A., Bursuc, A., Marlet, R.: Image-to-lidar
self-supervised distillation for autonomous driving data. In: CVPR. pp. 9891–9901
(2022)

39. Shi, P., Welle, M.C., Björkman, M., Kragic, D.: Towards understanding the modal-
ity gap in CLIP. In: ICLR 2023 Workshop on Multimodal Representation Learning:
Perks and Pitfalls (2023)

40. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv
preprint arXiv:1910.10699 (2019)

41. Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. In: CVPR. pp.
2495–2504 (2021)

42. Wang, T., Isola, P.: Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In: International Conference on
Machine Learning. pp. 9929–9939. PMLR (2020)

43. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. arXiv preprint
arXiv:1612.03928 (2016)

44. Zhang, R., Guo, Z., Zhang, W., Li, K., Miao, X., Cui, B., Qiao, Y., Gao, P., Li, H.:
Pointclip: Point cloud understanding by clip. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8552–8562 (2022)

45. Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3d
features on any point-cloud. In: ICCV. pp. 10252–10263 (October 2021)

46. Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from clip. In: European
Conference on Computer Vision. pp. 696–712. Springer (2022)

47. Zhu, X., Zhang, R., He, B., Zeng, Z., Zhang, S., Gao, P.: Pointclip v2: Adapting
clip for powerful 3d open-world learning. arXiv preprint arXiv:2211.11682 (2022)


