
Region-centric Image-Language Pretraining for
Open-Vocabulary Detection

Dahun Kim Anelia Angelova Weicheng Kuo

Google DeepMind

Abstract. We present a new open-vocabulary detection approach based
on region-centric image-language pretraining to bridge the gap between
image-level pretraining and open-vocabulary object detection. At the
pretraining phase, we incorporate the detector architecture on top of
the classification backbone, which better serves the region-level recog-
nition needs of detection by enabling the detector heads to learn from
large-scale image-text pairs. Using only standard contrastive loss and no
pseudo-labeling, our approach is a simple yet effective extension of the
contrastive learning method to learn emergent object-semantic cues. In
addition, we propose a shifted-window learning approach upon window
attention to make the backbone representation more robust, translation-
invariant, and less biased by the window pattern. On the popular LVIS
open-vocabulary detection benchmark, our approach sets a new state of
the art of 37.6 mask APr using the common ViT-L backbone and public
LAION dataset, and 40.5 mask APr using the DataComp-1B dataset,
significantly outperforming the best existing approach by +3.7 mask
APr. On the COCO benchmark, we achieve very competitive 39.6 novel
AP without pseudo labeling or weak supervision. In addition, we evalu-
ate our approach on the transfer detection setup, where it demonstrates
notable improvement over the baseline. Visualization reveals emerging
object locality from the pretraining recipes compared to the baseline.1

1 Introduction

Understanding and localizing all objects in the visual world is a key problem
in computer vision, crucial for applications like self-driving cars. Traditional ob-
ject detectors rely on costly human annotations, which limits scalability. Open-
vocabulary detection (OVD) [41] addresses this by pretraining on large-scale
image-text data (e.g. CLIP [28]), enabling detectors to identify objects based on
user-provided text queries unavailable during training.

Most existing open-vocabulary detection works assume the pretrained CLIP
backbone is given, and focus on techniques such as knowledge distillation [5,
10], weak supervision [46], pseudo labeling [13, 29, 43, 44], and frozen backbone
application [18], using the pretrained backbone. Consequently, during detection
finetuning, the detector heads often need to be trained from scratch. This tends
to result in sub-optimal generalization because the detector heads are trained on
1 project page: github.com/google-research/google-research/tree/master/fvlm/dito

https://github.com/google-research/google-research/tree/master/fvlm/dito
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Fig. 1: DITO overview (left): Existing image-text pretraining methods for open-
vocabulary detection [16,17] update only the vision transformer backbone and finetune
detector heads from scratch. We propose to pretrain both backbone and detector heads
directly from the large-scale image-text paired data, without a need for pseudo label-
ing or box annotations. In open-vocabulary detection finetuning, we introduce a simple
shifted-window learning method to produce more robust representations from the pre-
trained vision transformer. DITO prediction (right): LVIS results only show the
novel categories (e.g. , bulldozer, fishbowl, subwoofer, heron). While Ego4D is a real-
world and out-of-distribution data, many unseen objects are detected (e.g. , steel lid,
sticker on the wall, recycle bin). Best viewed with zoom in.

the limited vocabulary of detection datasets, while only the backbone contains
the knowledge of open-vocabulary concepts.

Several studies have integrated detection models into CLIP pretraining. For
instance, RegionCLIP [44] employs an off-the-shelf detector during CLIP pre-
training to generate pseudo region-text labels. However, their pretraining only
updates the image backbone, with the detector heads exclusively trained on de-
tection data. These pseudo labeling-based pretraining methods [25, 44] require
multi-stage training and handcrafted processing of pseudo labels, increasing com-
plexity and training costs. Similarly, approaches such as GLIP [19,42], Grounding
DINO [22], CoDet [24] and DetCLIP [38, 39] integrate detector architectures in
CLIP training, but their joint training demands additional detection and visual
grounding datasets and complex multitask learning setups.

In this paper, we propose a simple yet effective solution, Region-centric Pre-
training approach, which incorporates detector modules into CLIP pretrain-
ing without the need for pseudo labeling or box annotations. This method in-
volves generating random box regions across feature pyramid levels, followed
by feature pooling over these regions. Subsequently, an image-text contrastive
loss is applied, encouraging text-aligned region features to contribute more to
the whole image representation. Our approach not only facilitates the warm-
starting of detector heads in finetuning, but also leads to emergent representa-
tions with more localized semantic information compared to the baseline CLIP
backbone, as demonstrated in our experiments. Compared to pseudo-labeling
techniques [35,44–46], our approach can be viewed as an extension of contrastive
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models to bypass the need for offline object proposal generation, which could be
cumbersome for large-scale image-text data.

In addition, we focus on the Vision Transformer (ViT) based CLIP mod-
els. These CLIP ViTs excel in zero-shot recognition, but are less commonly
integrated into open-vocabulary detectors compared to ConvNets [18, 36, 44].
Pretraining ViT backbones on lower resolutions and then adapting them to
higher-resolution detection images poses challenges, including increased com-
putational demands and potential disruption of locality in pretrained features.
Although the windowed attention technique of ViTDet [17, 20] reduces compu-
tation and preserves locality, it introduces bias from fixed window patterns. To
address this, we propose Shifted-Window Learning (SWL) approach to enhance
information mixing across fixed windows and mitigate grid pattern bias. Unlike
the Swin Transformer [23], which applies shifted window layer by layer, SWL
applies shifted windowed attention as a separate forward pass using the same
ViT backbone. This simple strategy enhances the windowed attention represen-
tation when applied low-res trained ViT backbone to high-res images, ensuring
compatibility with vanilla ViT backbones pretrained without shifted windows.
SWL also better preserves the open-vocabulary knowledge of pretrained features
compared to full-attention ViT perhaps due to its emphasis on local cues.

Incorporating region-centric pretraining and shifted-window learning, our ap-
proach DITO (Detection-aligned Image-Text pretraining for Open-vocabulary
detection) serves to narrow the gap between image-text pretraining and open-
vocabulary detection, improving generalization. The best DITO model achieves
37.6 mask APr on LVIS benchmark, surpassing the previous best by +3.7 APr. It
achieves the state-of-the-art 40.5 mask APr when pretrained on the DataComp-
1B dataset. On the COCO benchmark, DITO achieves a very competitive 39.6
novel AP without relying on pseudo-labels or joint training.

2 Related Work

Open-vocabulary detection. Conventional closed-set object detectors per-
form well but are limited by vocabulary size. Open-vocabulary detection, in-
spired by the strong zero-shot capabilities of Vision-Language Models (VLMs)
like CLIP [28], has made notable progress. Various techniques have been ex-
plored, including knowledge distillation [10], prompt optimization [5], and the
use of pretrained CLIP backbones with new detection heads [17,18,26,36]. Many
top-performing methods [6,8,19,25,44] rely on pseudo labeling to prevent catas-
trophic forgetting during detection finetuning, but these methods often require
multi-stage training [35, 44] or extra steps to generate high-quality labels [25].
In contrast, our approach focuses on both upstream image-text pretraining and
downstream open-vocabulary detection without using pseudo labeling, leading
to significant improvements.
Region-aligned Vision-Language Models. Building on advances in align-
ing image-text representations [28, 31], several studies have integrated region-
level alignment into CLIP pretraining. For example, RegionCLIP [44] learns
region-word alignment through pseudo region-text pairs but relies on an off-
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the-shelf detector for pseudo labeling and focuses only on training the image
backbone. GLIP [19, 42], Grounding DINO [22], DetCLIP [38, 39], CoDet [24]
integrate detector architectures into CLIP training to align regions with words,
but they require additional visual grounding annotations, leading to complex
multitask learning. To our knowledge, our approach is the first to incorporate
detector modules in image-text pretraining without relying on box annotations.

Vision Transformers in open-vocabulary detection. While ViT-based
CLIP models excel in zero-shot recognition, their adaptation to open-vocabulary
detection is less explored compared to ConvNet-based CLIP models. For in-
stance, OWL-ViT [25, 26] finetunes ViT on higher-resolution detection images
with global attentions, but the full attention is computationally intensive. RO-
ViT [17] introduces region-aware positional embeddings to aid in detection fine-
tuning and uses windowed attention from ViTDet [20]. Our paper proposes
shifted-window learning to enhance information mixing across fixed windows
and reduce window-induced bias while preserving the locality structure of pre-
trained features, thereby improving open-vocabulary detection.

Self-supervised pretraining for visual tasks. Self-supervised learning has
emerged as a promising paradigm to learn object features for complex visual
tasks such as detection, given the challenge of scaling up human annotations.
Most relevant direction is contrastive learning, where the contrastive samples
can take the forms of augmented images [3], sliding windows [37], object propos-
als [34], or point samples [1]. Some alternative strategies like pseudo-labeling [45]
and pixel reconstruction [11] have also proven effective. While the majority of
these methods have focused on learning from images without textual context,
and applying to closed-vocabulary detection, DITO leverages large image-text
data to tackle the more demanding open-vocabulary detection task, without a
need for offline proposal generation [34,45].

3 Method

We address the problem of open-vocabulary object detection. At training time,
the model can access the class and box labels of base categories (CB). At test
time, the model is tasked with detecting objects from a set of novel categories
(CN ) not present in the training set. To achieve this, we leverage pretrained
vision and language models (VLMs) as in prior studies [10,17,18,44].

More specifically, we leverage recent advances in ViT-based detectors [17,20]
for their promising results. However, instead of solely taking the pretrained ViT
backbone, we demonstrate how to enhance the VLMs by integrating detector
heads into the CLIP pretraining process, referred to as Region-centric image-
text Pretraining (REP). Additionally, for detection finetuning, we propose a
Shifted-Window Learning (SWL) to enhance the adaptation of the pretrained
ViT to open-vocabulary detection task. By combining these approaches, DITO
achieves significant improvements in open-vocabulary detection over prior arts.
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Fig. 2: DITO method. Region-centric image-text pretraining (left): We train the
detector heads (e.g. FPN [20,21], Faster RCNN head [30], and RPN [30]) upon a ViT
encoder backbone with multi-level image-text contrastive loss to bridge the gap be-
tween image-text pretraining and open-vocabulary detection. Shifted-window learning
for detection (right): We roll the image and combines the shifted features with the orig-
inal features to mitigate the bias of windowed attention grid [20], and produce more
robust semantic representation.

3.1 Preliminaries

Baseline. Our baseline approach is RO-ViT [17], a state-of-the-art ViT-based
method for open-vocabulary detection. RO-ViT introduces CLIP pretraining
with a new positional embedding scheme called cropped positional embedding
(CPE). CPE involves randomly cropping and resizing the standard whole-image
positional embedding during pretraining to enhance the ViT’s generalization
onto region-level recognition task and higher resolution detection inputs down-
stream. For detection finetuning, it adopts ViTDet [20] architecture, initialized
with the pretrained ViT backbone. In the following, we describe the image-text
pretraining and the downstream open-vocabulary detection.
Image-text pretraining. We adopt dual-encoder CLIP pretraining widely
used in existing works [28,31]. The image embeddings {v} and text embeddings
{l} are the average-pooled outputs from the image and text encoders, respec-
tively. As in previous works, we compute the dot product of the embeddings in
batch B, and scale it by a learnable temperature τ before applying the InfoNCE
loss [27,28]. Mathematically, the image-to-text (I2T) loss can be expressed as:

LI2T = − 1

B

B∑
i=1

log(
exp(vili/τ)∑B
j=1 exp(vilj/τ)

). (1)

The text-to-image (T2I) loss is symmetrical by exchanging the inner/outer sum-
mation loops. The total contrastive loss Lcon is obtained by Lcon = (LI2T +
LT2I)/2. As mentioned above, we adopt the cropped positional embeddings
(CPE) following [17].
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Open-vocabulary detection finetuning. At the fine-tuning stage, our de-
tection finetuning recipe follows previous studies [10,17,18,41]. During the train-
ing phase, we use the RoI-Align [12] feature as the detection embedding for each
detected region. We replace the fixed-size classifier layer with the text embed-
dings of base categories (CB). The detection score pi is determined by calculating
the cosine similarity between the region embedding ri and text embeddings of
base categories (CB) followed by a softmax operation. We prepend an additional
background class embedding to CB and use the term “background" to represent
the background category. Any proposals that do not match to any base category
annotations are treated as background during training. It is important that the
text embeddings are computed from the same text encoder as from the image-
text pretraining. During testing, we expand the text embeddings to include the
novel categories (CB ∪ CN ), resulting in (CB ∪ CN + 1) categories including
the background. We calculate the detection scores (pi) as the cosine similarity
between the region embeddings (ri) and the expanded text embeddings. Apart
from the detection embedding (ri), we extract the VLM embedding [18] of re-
gion i by RoI-Align at the last ViT backbone feature map. The VLM score (zi)
is calculated as the cosine similarity with the text embeddings of the combined
categories (CB ∪ CN ).

To compute the open-vocabulary detection score (siens), we ensemble the
detection and VLM scores by geometric means [10,18]. The formula is as follows:

si
ens =

{
z
(1−α)
i · pαi if i ∈ CB

z
(1−β)
i · pβi if i ∈ CN

(2)

Here, α, β are floats ∈ [0, 1] that control the weighting of base versus novel
categories. The background score comes from the detection score (pi) alone,
because we observe the VLM score of “background" class is often less reliable.

3.2 Region-centric Image-Text Pretraining

Standard image-text pretraining uses classification architectures (e.g. ViT back-
bone followed by global pooling) as the language supervision occurs at the image
level rather than the region level. Subsequently, for downstream detection, new
detection heads are introduced and trained from scratch on a limited set of de-
tection categories [16–18]. To fully utilize the knowledge embedded in large-scale
image-text data, we propose Region-centric Pretraining (REP) which integrates
the detector modules during the CLIP pretraining phase. Specifically, given ac-
cess to image-text paired data but lacking box labels, our pretraining focuses on
the region-recognition pathway of a detector, encompassing components like the
backbone, FPN [20,21], RoI-Align [12], RPN-objectness [30], and Faster RCNN-
classifier [30]. Consequently, the detector heads can be warm-started from the
knowledge of large image-text data, thereby improving the generalization ca-
pability. To our knowledge, we are the first to integrate detector modules in
image-text pretraining without box labels, and our experiments demonstrate
clear benefits of our approach in open-vocabulary detection.
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Detector head learning from random regions. Fig. 2 (left) illustrates
our region-centric pretraining system. Following existing works [16,17], we adopt
SimpleFPN [20] and Faster R-CNN [30] models to remove the detector differences
and study the benefits of our region-centric pretraining. Specifically, the multi-
level feature pyramid is computed from the ViT backbone. Then, RoI-Align [12]
and Faster R-CNN classifier head are applied to these feature maps to match
the classification pathway in pretraining with the region-recognition pathway in
detection finetuning (see Table 4b for ablations).

For each level i of the feature pyramid, we randomly generate ni box regions
uniformly over the image by sampling the box size h,w ∼ Uniform(0.2, 0.5) and
aspect ratio h/w ∼ Uniform(0.5, 2.0). The ni value is set proportional to the
size of the i-th feature map so that larger feature map would be covered by more
regions. We extract the RoI-features of each region by RoI-Align, and feed them
through the region classifier head [30] to obtain the RoI embeddings.
Multi-level image-text supervision. After computing the RoI embeddings
across pyramid levels, we perform a max pooling over the RoI embeddings per-
level to obtain an image embedding for each pyramid level. Intuitively, max
pooling allows the representation to focus on salient regions and discriminative
features, thereby learning region-level information without explicit supervision.
Then we apply the standard image-text contrastive loss (see Eqn. (1)) on each
feature level separately, which aids the learning of rich semantic and object
knowledge within every feature map (see Table 4c for ablations). The losses from
all levels are weighted equally and summed together. Without explicit region-
level supervision, the max pooling over regions encourages the more salient, text-
aligned region features to contribute more to the whole image representation in
the contrastive loss. Our experiments show emergent region-text alignments from
the multi-level training, where the feature maps possess more localized semantic
information compared to the baseline CLIP [17] backbone (see Fig. 3).
Region proposal network learning. Fig. 3 shows that the learnt multi-level
representations exhibit localized semantics well-aligned with the text query, i.e.
the salient regions have higher similarity with the text relative to the back-
ground. Motivated by this, we employ the multi-level visual-text similarity as a
supervisory signal for training the Region Proposal Network (RPN) [30]. Specif-
ically, we compute the cosine similarity between each RoI embedding and the
text, and use it as the target RPN score for the center location of each RoI. Any
negative dot product value is mapped to zero to keep the target score in range
[0, 1]. We use L1 regression loss and set the loss weight equal to the multi-level
contrastive loss (see supplementary). The losses are propagated only through
the RoI centers and other pixels are ignored. Note that the box regression of the
RPN is not trained here but learnt later through the detection finetuning, as we
only use the image-text paired data without any box annotations.

3.3 Shifted-Window Learning for Detection
The CLIP ViT backbones are typically pretrained on lower resolutions (e.g.
224×224) and later adapted to higher resolution detection images (e.g. 1024×1024).
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Algorithm 1 Shifted Window backbone
x: image patch tokens + positional embeddings.
M: attention window size.
s = M // 2
y = forward_vit_with_win_attn(x, M)
x′ = np.roll(x, shift=[s, s], axis=[0, 1]) # shift
y′ = forward_vit_with_win_attn(x′, M)
y′′ = np.roll(y′, shift=[-s, -s], axis=[0, 1]) # unshift
return (y + y′′) / 2 # SWL backbone output

While detection tasks benefit from global information, directly applying the pre-
trained ViT to high-resolution inputs is computationally intensive and can dis-
rupt the locality structure of the pretrained lower-res features. Windowed at-
tention in ViTDet [20] helps reduce computation but introduces bias from the
fixed-size grid pattern. To address this, we propose the Shifted-Window Learn-
ing (SWL) approach, which improves information mixing across fixed windows
and mitigates grid pattern bias.

Network architecture. Fig. 2 (right) and Algorithm 1 describe the SWL
algorithm. The standard ViT consists of a patchifying layer and a set of trans-
former layers. After feeding the image through the patchifying layer, we obtain
a feature map x of shape (h,w, d). This feature map x is fed through the rest of
the ViT with windowed attention layers on a grid K×K, and L global attention
layers evenly spaced throughout the ViT (where L = 4) following [20], resulting
in output y. In parallel, we create another copy of x, which is rolled along both
h and w axes by s pixels. The elements that roll beyond the last position are
reintroduced from the first. We carefully design the attention masks such that
the rolled around patches would not attend to the patches on the other side of
the image (see the right figure of Algorithm 1). The shift size s is set as the
half of the attention window size M (i.e. s = M//2). Empirically, the window
size M = 16 equals the image size (e.g. 1024) divided by the product of patch
size (e.g. P = 16) and the grid size (e.g. K = 4). The shifted feature map x′

is then processed through the rest of the ViT in the same manner, resulting in
output y′ in the same shape (h,w, d) as y. We then unshift y′ and combine it
with y by averaging. We apply the above shifted window operations in detection
finetuning and inference times.

Comparison with Swin Transformer. Compared to the Swin Transformer [23],
we apply the shifted-window ideas as separate forward passes, while Swin Trans-
former applies similar ideas in an alternating manner layer by layer. Our ap-
proach requires no change to the vanilla transformer architecture and is com-
patible with any ViT backbones pretrained without shifted windows (e.g. [28]),
whereas Swin Transformer requires specialized pretraining on the same archi-
tecture. Compared to the full-attention ViT [4], we observe that shifted-window
ViT taps more effectively into the semantic knowledge of pretrained backbone
than full global attention, perhaps because the window helps the model focus
more on local cues and ignore the noises farther away.
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3.4 Distillation from Frozen ViT Backbone

While the ViT backbone adapts to the detection tasks, it may lose some of its
pretrained open-vocabulary knowledge. Therefore, we propose a simple distil-
lation approach which uses a separate frozen ViT to teach the finetuned ViT
backbone during the detection finetuning. We use a cosine distance loss that
aligns the RoI-Align embeddings extracted from the feature maps of both back-
bones. The cosine distance is computed for each RoI then averaged over all
RoIs. Empirically, we find it advantageous to add a 1×1 Conv projection layer
to the finetuned ViT backbone before the RoI-Align, allowing some flexibility
in distillation when jointly trained with other detection objectives. The auxil-
iary distillation loss is then added to other detection losses, with a loss weight
γ = 1 (see supplementary). At inference, the ViT backbone features after the
projection are used to compute the region VLM score zi (Sec. 3.1). It is worth
noting that the frozen ViT backbone is only used during training for distillation
purposes and is removed at inference.

While previous studies [2, 10] have utilized knowledge distillation from the
CLIP models, their teacher CLIP models mostly operate on image crops in an
offline process, thus needing multiple forward passes through the backbone for
all RoIs. In contrast, our distillation operates efficiently on RoIs cropped from
dense feature maps in a single forward pass during the detection finetuning with
minimal overhead.

4 Experimental Results

Baseline reproduction. As discussed in Sec. 3.1, our baseline method is RO-
ViT [17], a leading ViT-based approach for open-vocabulary detection. RO-ViT
introduces cropped positional embedding (CPE) in CLIP pretraining to enhance
the generalization of the pretrained ViT onto the downstream detection. Addi-
tionally, it adopts global average pooling of the ViT features instead of CLS-
token pooling, which simplifies the adaptation onto higher resolution inputs,
and the extraction of region features (e.g. RoI-Align) at the final layer. We re-
produce the CLIP pretraining of RO-ViT [17] using the widely adopted LAION-
2B dataset [31], as the OpenAI CLIP’s WIT [28] and ALIGN [14] datasets are
not publicly available. We trained the CLIP models from scratch, following the
same pretraining protocol and hyperparameters, including 500k iterations and
16k batch size (i.e. 8B samples seen in training), 224×224 image size, global
average pooling, and cropped positional embedding. We use the standard In-
foNCE loss (Eqn. (1)) instead of their focal constrastive loss [17]. The following
compares our reproduced CLIP with OpenAI CLIP [28] and OpenCLIP [31]:

method dataset # samples seen backbone ImageNet Top-1 Acc.

CLIP [28] WIT-400M 13B ViT-L/14 75.5
OpenCLIP [31] LAION-2B 32B ViT-L/14 75.2
RO-ViT CLIP [17] our repro. LAION-2B 8B ViT-L/16 73.9

On the zero-shot ImageNet classification benchmark, the LAION-2B pretraining
matches or slightly underperforms the OpenAI CLIP with WIT-400M.
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method pretraining
model

pretraining
data

detector
backbone

w/ pseudo
box labels

mask
APr

mask
AP

ConvNet based:
OV-DETR [40] ViT-B/32 CLIP-400M R-50 - 17.4 26.6
Kaul et al. [15] ViT-B/32 CLIP-400M R-50 - 19.3 30.6
DetPro-Cascade [5] ViT-B/32 CLIP-400M R-50 - 20.0 27.0
Rasheed [29] ViT-B/32 CLIP-400M R-50 - 21.1 25.9
BARON [35] ViT-B/32 CLIP-400M R-50 - 22.6 27.6
CoDet [24] R-50 CLIP-400M + CC3M R-50 - 23.4 30.7
EdaDet [32] R-50 CLIP-400M R-50 - 23.7 27.5
VL-PLM [43] ViT-B/32 CLIP-400M R-50 ✓ 17.2 27.0
PromptDet [6] ViT-B/32 CLIP-400M R-50 ✓ 21.4 25.3
OADB [33] ViT-B/32 CLIP-400M R-50 ✓ 21.7 26.6
RegionCLIP [44] R-50x4 CLIP-400M + CC3M R-50x4 ✓ 22.0 32.3
CORA [36] R-50x4 CLIP-400M R-50x4 ✓ 22.2bx -
Detic-CN2 [46] ViT-B/32 CLIP-400M + INet-21K R-50 WS 24.6 32.4
ViLD-Ens [10] EffNet-B7 ALIGN-1.8B EffNet-B7 - 26.3 29.3
F-VLM [18] R-50x64 CLIP-400M R-50x64 - 32.8 34.9

ViT based:
OWL-ViT [26]O+VG ViT-L/14 CLIP-400M ViT-L/14 - 25.6bx 34.7bx

OWL-ViT v2 [25]O+VG ViT-L/14 WebLI-10B ViT-L/14 ✓ 45.9bx 50.4bx

RO-ViT [17] ViT-B/16 ALIGN-1.8B ViT-B/16 - 28.0 30.2
RO-ViT [17] † ViT-L/16 LAION-2B ViT-L/16 - 32.4 32.9
CFM-ViT [16] ViT-B/16 ALIGN-1.8B ViT-B/16 - 28.8 32.0
CFM-ViT [16] ViT-L/16 ALIGN-1.8B ViT-L/16 - 33.9 36.6
CFM-ViT [16] * ViT-L/16 LAION-2B ViT-L/16 - 33.8 36.4
DITO (ours) ViT-S/16 LAION-2B ViT-S/16 - 26.2 28.8
DITO (ours) ViT-B/16 LAION-2B ViT-B/16 - 31.5 32.4
DITO (ours) ViT-L/16 LAION-2B ViT-L/16 - 37.6 36.2
DITO (ours) ViT-L/16 DataComp-1B ViT-L/16 - 40.5 38.0

Table 1: LVIS open-vocabulary detection (mask AP). DITO outperforms the
best existing approach by +3.7 mask APr. WS: uses weak supervision from ImageNet-
21K. †: reports LAION-2B results in arXiv version. *: our reproduced result using
LAION-2B. O+VG: uses extra Objects365 and Visual Genome data.

Pretraining setup. After the above-mentioned baseline CLIP training, we
apply our region-centric pretraining (REP) where we freeze the image and text
encoders trained in the first phase and introduce the detector heads. We use
the Simple FPN [20], and classification layers of Faster R-CNN and RPN [30],
where we replace the batch normalization with layer normalization. At the i-th
pyramid level i ∈ {2, 3, 4, 5}, we randomly sample ni ∈ {400, 200, 100, 50} box
regions and compute their RoI-Align features. We use a short training cycle of
30k iterations, 4k batch size, 256×256 image size, AdamW optimizer with an
initial learning rate of 1e-4 with linear decay. For both phases of image-text
pretraining, we use the publicly available LAION-2B [31] dataset.
Detection finetuning setup. As noted in Sec. 3.2, we adopt the ViTDet [20]
with SimpleFPN as our detector following the baseline works [16,17]. We follow
the same finetuning settings of [17]. Specifically, we train the detector with image
size 1024×1024 and use windowed attention in the backbone with grid size 4×4.
The learning rate for the backbone is set lower as 0.6× of the detector head layers.
We use α=0.3, β=0.65 for score combination in Eqn. (2). The text embedding
of each category is calculated as the average over the CLIP prompt templates.
We use the batch size 128, the SGD optimizer with momentum 0.9. The initial
learning rate and iterations are set to 0.18 and 36.8k for LVIS, and 0.02 and
11.3k for COCO datasets.
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method pretraining
model

pretraining
data

detector
backbone

w/ pseudo
box labels novel AP AP

ConvNet based:
OVR-CNN [41] R-50 CLIP-400M + COCO-Cap R-50 - 22.8 39.9
ViLD [10] ViT-B/32 CLIP-400M R-50 - 27.6 51.3
F-VLM [18] R-50 CLIP-400M R-50 - 28.0 39.6
OV-DETR [40] ViT-B/32 CLIP-400M R-50 - 29.4 52.7
CoDet [24] R-50 CLIP-400M + COCO-Cap R-50 - 30.6 46.6
PromptDet [6] ViT-B/32 CLIP-400M R-50 ✓ 26.6 50.6
XPM [13] R-50 CLIP-400M R-50 ✓ 27.0 41.2
OADB [33] ViT-B/32 CLIP-400M + COCO-Cap R-50 ✓ 30.0 47.2
VL-PLM [43] ViT-B/32 CLIP-400M R-50 ✓ 34.4 53.5

RegionCLIP [44] R-50x4 CLIP-400M + CC3M
+ COCO-Cap R-50x4 ✓ 39.3 55.7

EdaDet [32] R-50 CLIP-400M R-50 ✓ 40.2 52.5
CORA [36] R-50x4 CLIP-400M R-50x4 ✓ 41.7 43.8
Detic-CN2 [46] ViT-B/32 CLIP-400M + INet-21K R-50 WS 27.8 45.0

ViT based:
RO-ViT [17] ViT-B/16 ALIGN-1.8B ViT-B/16 - 30.2 41.5
RO-ViT [17] ViT-L/16 ALIGN-1.8B ViT-L/16 - 33.0 47.7
RO-ViT [17] * ViT-L/16 LAION-2B ViT-L/16 - 33.3 47.9
CFM-ViT [16] ViT-B/16 ALIGN-1.8B ViT-B/16 - 30.8 42.4
CFM-ViT [16] ViT-L/16 ALIGN-1.8B ViT-L/16 - 34.1 46.0
CFM-ViT [16] * ViT-L/16 LAION-2B ViT-L/16 - 34.3 46.4
DITO (ours) ViT-S/16 LAION-2B ViT-S/16 - 32.3 44.4
DITO (ours) ViT-B/16 LAION-2B ViT-B/16 - 36.6 48.8
DITO (ours) ViT-L/16 LAION-2B ViT-L/16 - 39.6 54.4
DITO (ours) ViT-L/16 DataComp-1B ViT-L/16 - 40.2 54.6

Table 2: COCO open-vocabulary detection (box AP50). DITO demonstrates a
very competitive novel category AP without using pseudo labeling or weak supervision
(WS). *: our reproduced result using LAION-2B.

method backbone AP AP50 AP75

Supervised [10] R-50 25.6 38.6 28.0
ViLD [10] R-50 11.8 18.2 12.6
DetPro [5] R-50 12.1 18.8 12.9
BARON [35] R-50 13.6 21.0 14.5
F-VLM [18] R-50x16 16.2 25.3 17.5
F-VLM [18] R-50x64 17.7 27.4 19.1

RO-ViT [17] ViT-L/16 17.1 26.9 18.5
CFM-ViT [16] ViT-L/16 18.7 28.9 20.3
DITO (ours) ViT-L/16 20.0 31.8 21.5

Table 3: Zero-shot transfer detection from LVISbase to Objects365 (box AP).
All models are tested on Objects365 dataset following the setup of [10].

4.1 Main Results

LVIS Benchmark. In Table 1, we report the comparison with existing meth-
ods on the challenging LVIS benchmark. The ‘frequent’ and ‘common’ classes
of the dataset belong to the base categories CB , and the ‘rare’ classes are the
novel categories CN . The primary metric is the mask AP on rare classes (mask
APr). The DITO model achieves the performance of 37.6 mask APr, which sig-
nificantly outperforms the state-of-the-art approach RO-ViT [17] with the same
ViT-L backbone by +5.1 points using the same pretraining data LAION-2B [31].
We also outperform the state-of-the-art CFM-ViT [16] by +3.6 points. Our best
performance sets a new state-of-the-art 40.9 mask APr when using DataComp-
1B [7] in pretraining. With the ViT-B backbone, DITO maintains a healthy
margin of around +2.5 APr above existing ViT-B based approaches.
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method APr AP

RO-ViT [17] 32.4 (+0.0) 32.9
RO-ViT our repro. 32.2 (+0.0) 33.0
w/REP 34.8 (+2.6) 34.9
w/SWL 35.0 (+2.8) 35.2
w/REP+SWL 36.3 (+4.1) 35.8
w/REP+SWL+FD 37.6 (+5.4) 36.2

(a) DITO framework.

pretraining method APr

RO-ViT our repro. 32.2
w/FPN 33.2
w/FPN+Head 34.2
w/FPN+Head+RPN 34.8

(b) Detector components.

RoI embedding APr

global avg/lvl 34.0
global max/lvl 33.7
multi RoIs, avg/lvl 33.8
multi RoIs, max/lvl 34.8
multi RoIs, max all 34.1

(c) RoI embedding.

Table 4: Ablation on overall DITO framework and Region-centric Pretrain-
ing (Sec. 3.2). REP: Region-centric Pretraining, SWL: Shifted-Window Learning,
FD: Frozen backbone Distillation. Best setting is in gray.

backbone APr AP

fully global attn. 33.4 33.8
baseline window attn. [17] 32.2 33.0
Swin [23] style 31.3 33.1
shifted window 35.0 35.2

(a) Shifted-window learning.

# global attn. layer base w/ SWL

0 30.7 34.6 (+3.9)
4 32.2 35.0 (+2.8)
12 32.4 34.2 (+1.8)

24 (all layers) 33.4 33.4 (+0.0)
(b) SWL w.r.t. # global attention layers.

Table 5: Ablation on Shifted-Window Learning (SWL - Sec. 3.3).

COCO Benchmark. We present the comparison on COCO benchmark in
Table 2. The main metric is AP50 of novel categories (novel AP). Without
using pseudo labeling [6, 13, 43, 44], weak supervision [46], or externally trained
detector modules [29, 35], our model demonstrates competitive results of 39.6
novel AP with LAION-2B and 40.2 with DataComp-1B. Among the ViT-based
methods, DITO outperforms recent works RO-ViT [17] and CFM-ViT [16] by a
clear margin of +6.3 and +5.3 points, respectively.
Transfer detection. We further evaluate DITO in the transfer detection set-
ting, where the open-vocabulary detector trained on one dataset (LVISbase) is
tested on another dataset (Objects365) without any finetuning. By simply re-
placing the text embeddings, Table 3 shows that DITO achieves 20.0 AP, out-
performing previous methods using ConvNet or ViT backbones of similar size.

4.2 Ablation Studies
For ablation study, we use the ViT-L/16 model pretrained with LAION-2B, and
evaluate on the LVIS benchmark and report mask APr.
DITO overall framework. Table 4a summarizes the benefits of each DITO
components. The region-centric pretraining (REP) improves the contrastive model
baseline by +2.6 APr and shifted window learning (SWL) improves the baseline
by +2.8 points. Combining both strategies brings a significant gain of +4.1 APr.
Lastly, we observe that incorporating the frozen backbone distillation leads to
an additional boost of +1.2 points. In the following, we provide ablations for
each components.
Region-centric Pretraining. In Table 4b, we ablate our region-centric image-
text pretraining by progressively adding the FPN, Faster R-CNN head, and RPN
into the pretraining. Our ‘baseline’ is the contrastive image-text pretraining with
cropped positional embedding [17]. On top of this, ‘w/ FPN’ introduces the FPN
into the pretraining, where each pyramid level (whole image) map is mean-pooled
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backbone AP APr APc APf

GT boxes given (region classification):
before det. training 48.7 56.8 51.5 42.1
after det. training 53.7 54.2 53.7 53.5

after det. training w/FD 54.8 57.7 54.3 53.2
(a) GT region recognition.

method APr AP

RO-ViT our repro. 32.2 (+0.0) 33.0
RO-ViT our repro.+FD 34.0 (+1.8) 33.6
w/ REP+SWL 36.3 (+0.0) 35.8
w/ REP+SWL+FD 37.6 (+1.3) 36.2

(b) Effect of FD on OVD.

Table 6: Ablation on frozen backbone distillation (FD - Sec. 3.4).

into an image embedding, followed by the image-text contrastive loss per level. It
improves the baseline by +1.0 APr. Adding the Faster R-CNN head further im-
proves the alignment between the pretraining and detection finetuning, showing
a gain of +2.0 APr. Incorporating all components i.e. the FPN, Faster R-CNN
and RPN heads achieves the best 34.8 APr, a significant gain of +2.6 points
over the baseline.

Table 4c shows that both global avg- and max-pooling are sub-optimal due
to the lack of saliency map (avg-pool), and the limited capacity of a single pixel
to represent semantic concepts for contrastive learning (max-pool), respectively.
Our approach combines the best of both worlds, by first avg-pooling within each
RoI, and then max-pooling over these RoI embeddings. Each embedding rep-
resents a proper RoI and the global representation captures the saliency map
through max-pooling. Pooling per pyramid level (i.e. multi-level image-text su-
pervision) outperforms pooling over all levels.

“a man riding a cart pulled by a donkey” “a crane operates amidst piles of rubble” “a person wearing blue rubber gloves is 
loading a syringe with vegetables”

“cows on the street next to people that 
are on the sidewalk”

“small white bird sits on the back of a 
horse in an open field”

“a mother and her two children sit on a 
green bench”

Fig. 3: Visual-text similarity map. For each example, we show the paired image
(left) and text (bottom) input, and the visual-text similarity map using the contrastive
model baseline [17] backbone features (middle) or our region-centric pretraining fea-
tures (right). We use Flickr30K (top row) and COCO Captions (bottom row) datasets.

Shifted-Window Learning for detection. The CLIP ViT backbones are
initially pretrained on lower resolutions and then adapted to higher resolution
detection images. In Table 5a, we assess the efficacy of the shifted-window back-
bone in open-vocabulary detection training. Although the fully global attention
model improves the detection task compared to the baseline windowed atten-
tion model [17], directly applying the pretrained ViT on high-resolution inputs
may not be optimal, potentially compromising the locality structure of the pre-
trained lower-resolution features. Our shifted-window learning approach achieves
35.0 APr by preserving the locality structure from windowed attention as well
as integrating information across fixed windows, outperforming the fully global
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attention model (33.4 APr) which is computationally intensive. Notably, OWL-
ViT [25,26] adopts the fully global attention model. In addition, naively applying
the layer-alternating shifted window as in Swin [23] leads to a performance drop
(see Sec. 3.3). Table 5b delves deeper into the behavior of SWL. The advantage
of SWL diminishes steadily with increasing number of global attention layers
in the windowed attention backbone, validating its better information mixing
enabled by the SWL.
Frozen backbone distillation. Table 6a studies the region classification ca-
pability of the CLIP ViT backbone before and after the detection finetuning.
We use the ground truth boxes and measures AP scores to evaluate the zero-
shot region classification of the base (‘frequent’ + ‘common’) and novel (‘rare’)
categories. We observe that the finetuned backbone indeed shows a notable drop
of -2.6 APr on novel classes, while overfitting to the base classes. The frozen
backbone distillation (‘w/ FD’) leads to a significant improvement of +3.5 APr

even surpassing the frozen pretrained backbone (before detection finetuning),
while maintaining performance on the base classes (APc and APf ). Table 6b
presents the open-vocabulary detection results where the frozen backbone distil-
lation brings a clear gain of +1.3∼1.8 APr. These results highlight the efficacy
of our frozen backbone distillation in detection finetuning (Sec. 3.4), as it ef-
fectively preserves the pretrained open-vocabulary knowledge while acquiring
explicit region-text alignment through detection supervision.

4.3 Visualization
In Fig. 3, we visualize the similarity maps between image features and query
text embeddings. We compare the baseline [17] contrastive model’s backbone
features with our region-centric pretrained features. We select pyramid level 4
which has the same resolution as the backbone features and apply the Faster
R-CNN head in a sliding window manner to obtain the dense feature map. We
observe that region-centric pretraining captures more localized semantic

Fig. 1 visualizes DITO outputs on LVIS novel categories and real-world out-
of-distribution data from Ego4D [9]. Using the same DITO detector trained on
LVISbase, we find that DITO effectively identifies many novel and unseen objects,
even under significant domain shifts.

5 Conclusion
We introduce DITO, a region-centric approach for open-vocabulary detection
using large-scale image-text pairs. By integrating detection architecture onto
the image backbone in CLIP pretraining, it learns locality-sensitive information
without requiring pseudo labeling or box annotations. Furthermore, we propose
a shifted-window learning method to mitigate the bias of the window attention
pattern in CLIP ViT detectors. Experiments show that DITO outperforms the
state-of-the-art by large margins on the LVIS benchmark, and is very competitive
on the COCO benchmark and transfer detection. We hope this work would
inspire the community to explore region-centric image-language pretraining for
open-vocabulary localization tasks.
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