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Abstract. Video geolocalization is a crucial problem in current times.
Given just a video, ascertaining where it was captured from can have
a plethora of advantages. The problem of worldwide geolocalization has
been tackled before, but only using the image modality. Its video counter-
part remains relatively unexplored. Meanwhile, video geolocalization has
also garnered some attention in the recent past, but the existing meth-
ods are all restricted to specific regions. This motivates us to explore
the problem of video geolocalization at a global scale. Hence, we propose
a novel problem of worldwide video geolocalization with the objective
of hierarchically predicting the correct city, state/province, country, and
continent, given a video. However, no large scale video datasets that
have extensive worldwide coverage exist, to train models for solving this
problem. To this end, we introduce a new dataset, “CityGuessr68k ” com-
prising of 68,269 videos from 166 cities all over the world. We also propose
a novel baseline approach to this problem, by designing a transformer-
based architecture comprising of an elegant “Self-Cross Attention” mod-
ule for incorporating scenes as well as a “TextLabel Alignment” strategy
for distilling knowledge from textlabels in feature space. To further en-
hance our location prediction, we also utilize soft-scene labels. Finally
we demonstrate the performance of our method on our new dataset as
well as Mapillary(MSLS) [38]. Our code and datasets are available here.

Keywords: CityGuessr · geolocalization · Self-Cross Attention · soft-
scene labels · TextLabel Alignment

1 Introduction
Geolocalization refers to the process of determining the geographic position of
a sample, which can be an image, a video or a text description of a place.
If the input sample is strictly visual, i.e., an image or a video, the problem
is also termed as Visual Place Recognition (VPR). Geolocalizing images has
gained popularity over time, witnessing substantial advancements in the field.
In contrast, video geolocalization is currently in its early stages of development.
The relevance of video geolocalization today cannot be understated. When the
origin of a video is unknown, determining the part of the world the video was
recorded in, can assist in a variety of investigative and exploratory applications.
The current transformation of social media has resulted in an explosion of video
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content, making it a valuable resource. Videos also tend to have more visual
information as compared to images, owing to the temporal context that images
lack. This makes the problem of video geolocalization even more essential.

There are different levels of granularities in geolocalization problems, right
from street identification to worldwide geolocalization, each having its own sig-
nificance. Image geolocalization has been attempted on both ends of the spec-
trum [19] [29] [41] [45] [46] [21] [23] [3], with varying levels of success using
different approaches catering to the specific problems at hand. Same isn’t the
case with video geolocalization. There has been some research at the fine-grained
level [27] [37] [43], but the same problem at the global level remains largely un-
solved. Thus, in this work we formulate a unique problem of worldwide video
geolocalization in an attempt to leverage the information affluence of video do-
main to address this issue.

Geolocalization in general can be performed in two ways. Retrieval is the
more popular approach where a query input is compared with a gallery of known
references, which gives the location of the query, provided we are able to find the
best match. Although retrieval approaches are more accurate at the fine-grained
level, they tend to be computationally expensive and depend heavily on the
domains of the queries and references. Any domain shifts tend to have massive
repercussions which can snowball quickly into larger issues. Also, constructing
a gallery that covers the entire world is not feasible. The second approach, i.e.,
classification overcomes these limitations. Classification constitutes dividing the
region of interest, which in our case is the entire world, into classes, be it in
the form of places, or literal partitions of the globe; and identifying the class a
sample belongs to. Geolocalization via classification not only decreases compute,
but also covers the entire world with ease. As an added advantage, classification
can be performed at different hierarchies (city level, state/province level, country
level, continent level, etc.), enabling the user to adjust as per their requirements.

Many recent works focusing on the problem of image-geolocalization [39] [28]
[21] [23] [3], have proposed classification-based methods for this reason. A general
classification pipeline includes an encoder backbone (CNN [17] or transformer [5]-
based) to obtain a feature embedding of the input image, and an MLP [13]
for class prediction. Previous works also have some additional components or
changes in the architecture to aid the classification task, like incorporation of
scenes. Keeping this in mind we propose a very unique way of incorporating
scenes in our model. Text on the other hand, is relatively unexplored for aid-
ing geolocalization. Intuitively, humans are more likely to identify a location,
if they can associate a name to a picture/video of that place which they have
previously seen. Consequently, it follows that distilling knowledge from text into
a geolocalization model would enhance the model’s prediction capability. This
motivates us to incorporate text from labels, i.e. city/state/country/continent
names during the training procedure by aligning the features of our model to
the text embedding of labels without the use of any additional information.

In this paper, we propose a classification-based approach for video geolo-
calization at global scale. Our objective is to predict the city in which an in-
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put video was recorded, and subsequently, the above mentioned hierarchies of
state/province, country and continent. Our proposed method comprises of a
transformer [5]-based model, with a novel Self-Cross Attention module for scene
prediction to assist with the training. We also incorporate soft-labels for comput-
ing scene prediction loss during training of our model. A TextLabel Alignment
strategy is also implemented for feature enhancement. To the best of our knowl-
edge this is the first attempt to solve this problem, and hence it can serve as a
baseline approach for future research.

An obstacle in solving this problem, is the absence of a large scale world-
wide dataset for video geolocalization. Existing video geolocalization datasets
focus only on specific regions, like BDD [42] in California and New York, USA;
KITTI [6] in Karlsruhe, Germany; Brno-Toyota [18] in Brno Czech Republic; and
Seqgeo [43] in Vermont, USA. This dense coverage of a limited area works well
for retrieval-based geolocalization approaches, but it restricts the data domain
to limited parts of the world. To train any model on the global scale, geographic
coverage is essential as it exposes the model to a diverse set of locations with
variations in environment, infrastructure and salient features instrumental in
generalization of the approach. In that context, Mapillary(MSLS) [38], is an im-
age sequence dataset, which covers 30 cities around the world. The geographical
coverage, although more than the previously mentioned datasets, is still lacking.
The number of sequences in Mapillary is also relatively small, which limits its
scope for large scale generalized training. Thus there is a requirement for a large
scale global level dataset with a substantial geographical coverage. To this end,
we propose CityGuessr68k consisting of 68, 269 videos from 166 cities all over
the world. We also provide soft-scene labels for all video samples in the dataset.

Our main contributions can be summarized as follows:

– We formulate a novel problem of worldwide video geolocalization
– To benchmark this new problem, we introduce the first global-scale video

dataset named ‘CityGuessr68k’, containing 68, 269 videos from 166 cities.
– We propose a baseline approach with a transformer-based architecture with

two primary components

• Self-Cross Attention module for incorporating scenes (which leverages
soft-scene labels for location prediction enhancement)

• TextLabel Alignment strategy for distilling knowledge from textlabels in
feature space

– We demonstrate the efficacy of our model with performance results on
CityGuessr68k as well as Mapillary(MSLS) datasets.

2 Related Work

Geolocalization can be approached by classification or retrieval. Existing video
geolocalization methods are retrieval-based and focus on fine-grained localiza-
tion. Whereas, all worldwide geolocalization methods are classification-based and
cater exclusively to images. We will briefly discuss the relevant works below.
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Video Geolocalization It is a young field with very few works, all of which
are retrieval-based. Retrieval approaches can either be same-view or cross-view,
depending on the domain of the query and reference images. Cross-view has been
more popular due to ease of obtaining a reference gallery of satellite images, as
compared to ground-view images. Earlier cross-view image models [40] [19] [11]
[25] [26] [32] [29] were CNN-based models, while introduction of ViT [5] gave
rise to new transformer-based approaches [41] [45]. Although Gonzalo et. al. [34]
had proposed a solution for trajectory prediction of a moving camera using
Bayesian tracking and Minimum Spanning Trees, until recently, video geolo-
calization using deep learning was relatively unexplored. GTFL [27] was such a
video geolocalization model, which used a hybrid architecture based on VGG [30]
along with self-attention, to solve frame-to-frame same-view video geolocaliza-
tion. Gama-Net [37] extended it to frame-to-frame cross-view video settings by
using a hybrid(ResNet [9]/R3D [12]/ViT [5] based) network. Both these meth-
ods use BDD100k [42] as a source for query videos, while obtaining reference
gallery from other sources. Recently, Seqgeo [43] proposed a clip-to-area model
instead of a frame-to-frame approach. However, all these video geolocalization
techniques are fine-grained being limited to very few locations. Scaling of these
methods to global level is very difficult due to high computation costs and infea-
sible requirement of a very large reference gallery that covers the whole world.

Worldwide geolocalization It has been image-exclusive since its inception.
Weyand et. al [39] first introduced a classification-based approach on the Im2GPS
[7] dataset. Vo et. al [36] introduced classification in multiple hierarchies, while
on the other hand CPlaNet [28] introduced a combinatorial partitioning tech-
nique for combining coarse hierarchies to predict finer ones. Till this point, visual
input was the exclusive information available to the model to perform classifi-
cation. ISNs [21] incorporated scenes, by using three separate encoders for each
corresponding scene, depending on whether the image was ‘indoor’, ‘natural’ or
‘urban’. The concept of hierarchical evaluation, i.e., using coarser hierarchies to
refine finer predictions, was also introduced in this paper. Translocator [23] used
an additional input of segmentation maps along with images, training twin en-
coders. Recently, GeoDecoder [3] introduced a completely novel encoder-decoder
architecture, which incorporates scenes and hierarchies as queries to the decoder
which are attended to by the encoded image features to give seperate embeddings
for individual queries, for scene prediction as well as geolocalization.

All recent works attempting to solve this problem train their models on
MP-16 [16](except for [28]), while datasets like Im2GPS [7], Im2GPS3k and
YFCC4k [36], and YFCC26k [31] are popular for validation. Clark et. al [3]
proposed a new validation dataset, GWS15k which is a more balanced dataset
with more worldwide coverage. Note that there are no video datasets in this
domain. Video datasets like BDD [42], KITTI [6], Brno-Toyota [18] and Seqgeo
[43] capture driving and/or walking videos, but all of them are restricted to just
one or two geographical regions which make them relevant for training region-
scale geolocalization models, but they cannot be used for training geolocalization
models at a global scale. While Mapillary(MSLS) [38] dataset is based in multiple
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Fig. 1: Sample frames of videos from 22 different countries in the
CityGuessr68k dataset. Each quartet represents a continent. The continents in or-
der are, Asia, Africa, Europe, North America, South America and Oceania

cities around the world, it is an image sequence dataset(We do repurpose MSLS
to suit our problem and perform experiments on it as described in Section 6). We
aim to mitigate this issue, by proposing a global scale dataset which extensively
covers different regions of the world, which we call CityGuessr68k. Our dataset
can be used as the primary benchmarking dataset for this novel task.

3 CityGuessr68k Dataset
Overview The CityGuessr68k dataset consists of 68, 269 first-person driving
and walking videos from 166 cities around the world. Fig. 1 shows sample frames
from a few videos from varied locations. Each video is annotated with hierarchical
location labels, in the form of its continent, country, state/province, city.
Compilation Process The videos in CityGuessr68k, pertaining to different
cities, are obtained from the YouTube corpus in the form of long videos of 10-20
minutes. Each video is split into numerous clips with 800-900 frames, out of
which 100 frames are sampled. Each sample is then manually annotated with
hierarchical labels, based on the city in which the video was recorded. City labels
form the most fine-grained hierarchy, from which we go higher to state/province
in which the city is located, to the country in which the state/province is located,
and finally to the continent in which the country is located. Subsequently, each
clip is also further divided into frames, for convenience.
Post-processing As our dataset was collected from the YouTube corpus, and
consists of a variety of driving and walking videos from numerous cities, there is
a possibility that some videos might contain faces of individuals recorded at the
time. To preserve the anonymity of such individuals an extensive post-processing
effort was made. All the frames of all videos in the dataset were scanned with
RetinaFace [4]. Then, scanned samples were manually inspected, after which, the
detected faces were blurred maintaining the privacy of individuals. The entire
procedure is described in detail in the supplementary material.
Geographical Distribution Our dataset consists of 68, 269 first-person driv-
ing/walking videos from 166 cities, 157 states/provinces, 91 countries and 6
continents. Fig. 2 shows the distribution of data samples around the world.

Class Distribution Each city, state/province, country and continent repre-
sents a class at their respective hierarchies. Fig. 3 shows the class distribution
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(a) Distribution of videos in CityGuessr68k (b) Distribution of videos in Mapillary(MSLS)

Fig. 2: Data distribution. A comparison of CityGuessr68k with Mapillary(MSLS)
dataset. CityGuessr68k covers more regions of the world, and has a uniform spread
around the globe.
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Fig. 3: Class Distribution. Bar chart for number of samples per city class. (please
zoom in for clearer class labels)

(a) Histogram of city
classes

(b) Histogram of state
classes

(c) Histogram of coun-
try classes

(d) Histogram of conti-
nent classes

Fig. 4: Frequency distribution. Histograms for each hierarchy for a further statis-
tical insight into data distribution of CityGuessr68k.

of our dataset at city level. As discussed above, CityGuessr68k has a good geo-
graphical coverage. Along with that, frequency distribution among classes is also
relatively even. Fig. 4 shows histograms of classes at all 4 hierarchies. Fig. 4a
and 4b show that City and State classes peak in the middle of the graph with
mode of both being about 250. This means that the dataset does not have a long
tail at these hierarchies. In Fig. 4c, we see that country classes peak very early.
It may appear to have a long tail, but the height of subsequent bins is also high.
As there are only 6 continents, 3 have less than 10k samples while 1 has around
12k and 2 have around 20k, as observed in Fig. 4d, maintaining a healthy balance.

Video statistics and comparison with Mapillary(MSLS) Each video is di-
vided into frames of resolution 1280x720, which is higher than Mapillary(MSLS)
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images. All videos are approximately same in length. The data is organized
with every video being contained within an individual folder. Table 1 shows the
comparison of our CityGuessr68k dataset with the only other worldwide image
sequence dataset, Mapillary(MSLS) [38]. We see that our dataset is ∼ 5x larger
and spread across more cities around the world.

Mapillary CityGuessr68k
Number of samples 14,965* 68,269
Number of cities 30 166
Number of states/provinces 29 157
Number of countries 24 91
Number of continents 6 6
Consistent sequence length No Yes
Video sequence No Yes
Uniformly Organized No Yes
Frame resolution 640x480 1280x720

*Samples with 15 frames or more

Table 1: Comparison with Mapil-
lary(MSLS). This table shows the com-
parison of our dataset with Mapillary.
CityGuessr68k overcomes many shortcom-
ings of the Mapillary dataset.

4 Method
4.1 Problem Statement and
Method Overview
Given an input video, our objective is
to determine which city in the world,
this video was recorded in. This task
can also be referred to as Visual Place
Recognition. Consequently, we also
predict the respective state/province,
country, and continent. We approach
this problem as a multi-objective clas-
sification task. Each video has a cor-
responding city label, state/province label, country label, and continent label. A
model that solves this problem should be able to predict all these labels. Every
video also has a unique scene label associated with it. We consider scene recog-
nition and TextLabel Alignment as auxiliary tasks which aid in training our
model, details of which is described in Section 4.3 and Section 4.4 respectively.
Method Overview. As shown in Fig. 5, an input video is divided into tubelet
tokens, as was first conceptualized in Arnab et. al [1], and passed to a video en-
coder, which outputs feature embeddings. These embeddings are then input into
4 classifiers, H1, H2, H3 and H4, representing the city, state/province, country,
and continent predictors respectively. The outputs of these classifiers are used
to compute the respective losses for each hierarchy. The classifier outputs are
also passed on to our ‘Self-Cross Attention’ module. Its outputs are simulta-
neously used to compute the scene loss and also passed on to the ‘TextLabel
Alignment’ Module, which aligns these features with textlabel embeddings from
a pretrained text encoder via the TLA loss . All the losses (described in Section
4.5) are combined and backpropogated to train the model.

4.2 Encoder Backbone

Encoder backbone is the very first stage of our model. We use VideoMAE [33]
to encode features of our input video. VideoMAE is the Masked Auto En-
coder(MAE) network, first proposed in He et. al [8], adapted to videos. Originally
designed for self-supervised video pretraining for recognition, VideoMAE masks
a very high number of tubelets (spatiotemporal tokens), which brings perfor-
mance improvement while reducing computation significantly. Thus VideoMAE
becomes a very good choice for the encoder backbone. Originally VideoMAE
authors use a vanilla ViT [5] backbone, and adopt the joint space-time atten-
tion [1] [20] to better capture high-level spatiotemporal information in the re-
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PVs’
PV’
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Fig. 5: Schematic Illustration of the proposed Model Architecture. Video-
MAE encoder outputs feature embeddings of the input video. The embeddings are
then passed into 4 classifiers pertaining to 4 hierarchies. Their predictions are used for
computing Geolocalization loss. Simultaneously prediction vectors are input into the
Self-Cross Attention module, where vectors of all 4 hierarchies are concatenated and
are attended to, by themselves and by each other to generate an intermediate attended
vector(PV ′). In the attention weights(w), the single colored weights along the diagonal
refer to self attention weights, while the gradient double colored weights are the cross
attention weights between vectors of those two different hierarchies. PV ′ is passed si-
multaneously through FFNs to generate vector PV ′

s for Scene loss computation, and
to the TextLabel Alignment module. There, it is passed through FFNt to generate
vector PV ′

t . PV ′
t is used for TextLabel Alignment with feature embeddings Ft gener-

ated by the pretrained text-encoder from the label names of all 4 hierarchies.

maining tokens after masking. The VideoMAE encoder which we have incorpo-
rated, is pretrained on Kinetics-400 [14] and is finetuned on our dataset. Encoded
features from the backbone are then input to 4 classifiers, one for every hierar-
chy, which output their respective vectors. These vectors are then passed on to
the Self-Cross Attention module, which is described in the following section.

4.3 Scene Recognition
Information pertaining to each hierarchy can influence the scene of a video and
vice-versa. Keeping that in mind, we aim to fuse the knowledge from all 4 hi-
erarchies for the identification of the scene pertaining to a video in such a way
that the information relevant to each hierarchy enhances the knowledge of other
hierarchies as well as its own. This is only possible if there is a means for hierar-
chies to interact with one another. To this end, we propose Self-Cross Attention
module, as described below.
Self-Cross Attention module As mentioned above, scene predictions can be
influenced by all hierachies and they need to interact with each other to enhance
scene recognition. Our Self-Cross Attention module is designed for that purpose.
As shown in Fig. 5, the Self-Cross Attention module takes the output vectors
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of all 4 hierarchies (PVH1
∈ Rd1 , PVH2

∈ Rd2 , PVH3
∈ Rd3 , PVH4

∈ Rd4 ,
where d1, d2, d3, d4 are the number of classes in city, state/province, country and
continent hierarchies respectively). These vectors are concatenated to form a
vector PV = concat(PVH1 , PVH2 , PVH3 , PVH4) ∈ Rd(d = d1 + d2 + d3 + d4).
Then the vector is projected into query(q), key(k) and value(v) vectors, which
are then used to compute multihead attention [35] (defined as softmax( qkT√

dq

).v,

where dq is the query dimension), PV ′ = MHA(PV ). The attended output is
again projected into a vector ∈ Rd, which is finally passed through a feed-forward
network (FFNs), to gradually reduce the dimension and output the scene vector
(PV ′

s = FFNs(PV ′) ∈ Rds , where ds is the number of scene labels). PV ′
s is then

used to compute scene loss. Thus, the module essentially performs self attention
on output of each hierarchy classifier, as well as cross attention between each pair
of hierarchies as depicted in Fig. 5, conceiving the name, Self-Cross Attention
module. This procedure achieves the intended effect of the outputs from all
hierarchies interacting with each other, and with themselves, enhancing location
prediction. PV ′ is also passed on to TextLabel Alignment module.

Scene labels The Self-Cross Attention module, discussed in the previous sec-
tion, outputs a Scene Vector(PV ′

s ), which gives a prediction for the scene. To
compute scene loss, we require scene labels corresponding to each video sam-
ple. For images, assigning scene labels is straightforward, but the same isn’t the
case with videos. Assigning one scene label to an entire video involves a lot of
nuance, as scene might change as we go through all frames. The most trivial
way of scene labelling a video can just involve taking the first/middle/random
frame and assigning the scene label of that frame to the entire video. That is
not a good direction to pursue, as the scene of that frame might not represent
the video properly. Majority voting is a more clinical way of approaching this
task. This involves assigning a scene label to all frames of a video and assign
the scene label which represents the most amount of frames to the video. This
is indeed better than the previous approach, but it, too, does not fully capture
the complete variation of the video.

Thus, we devise a simple yet effective way of representing the scene label of
a video. The concept of soft-labels is interesting, as it captures the detail of a
representation. Generally, soft labels are used to train teacher-student distillation
models [10]. Instead of assigning a definite class to a sample, soft labels use
percentages which capture the probabilities of the sample belonging to each
class. Soft labels fit perfectly into our problem setup, as each value of class can
be represented as the percentage of frames in the video that belong to a certain
class. We use this technique to provide a proper representation of the scene of
a video, and assign soft-labels to all videos as the ground truth, which are then
used for computing scene loss.

For assigning scene labels to video frames, we use the labels provided by
Places2 [44] dataset. We implement a pre-trained scene classification model pro-
vided in [44], and get labels for all frames. Then, we convert those into soft labels
as mentioned above. We use 16 image scene labels for this work.
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4.4 TextLabel Alignment Strategy

Associating a name with a picture/video of a location is helpful for humans to
retain and identify the characteristics of that location. Thus location names can
be instrumental assets for training a geolocalization model. We pursue this by
distilling knowledge from these labels into our model in feature space, through
our TextLabel Alignment (TLA) Strategy.

Strategy We compute the textual features of the location labels via a pretrained
text-encoder [24]. The objective is to align the features of our model with the
generated textlabel features. As is the case with scenes, alignment of textlabel
features with combined features of all hierarchies is essential for maximum ben-
efit. Thus we use the features output from the Multihead Attention layer of the
Self-Cross Attention module (Section 4.3), before it is passed on to FFNs. The
attended vector (PV ′ in Section 4.3) is passed through a different feed-forward
network (FFNt) to obtain an output vector(PV ′

t = FFNt(PV ′) ∈ Rdt , where
dt is the textlabel feature dimension). PV ′

t is then used to compute the TLA
loss (Eq. 3). Thus, the attended features of all hierarchies are aligned with the
textlabel features generated from the text encoder. This helps to distill knowl-
edge from the textlabels to the model features by associating the location’s name
with the respective video, leading to further enhancement of location prediction.

TextLabel Feature Computation As mentioned above, TextLabel features
can be computed in multiple ways. The most trivial way of approaching this
is passing only the city names through the text encoder, as association of the
city with the input video is the most essential by virtue of it being the finest
hierarchy. However, we do lose information from other coarser hierarchies. If all
hierarchies are to be incorporated, we can pass each hierarchy label through the
text encoder separately and combine the output of the embeddings to obtain the
final TextLabel features. The latter option allows us to consider input from all
hierarchies without compromising the expression of each hierarchy. A detailed
empirical performance analysis with each alternative is shown in Section 5.5.

4.5 Losses

As evident in Fig. 5, our network is trained with three losses, geolocalization
loss(Lgeo), scene loss(Lscene) and TLA loss(LTLA). Geolocalization loss is com-
puted as a combination of Cross-Entropy losses(CE) of each hierarchy. Given a
video V, Lgeo can be defined as,

Lgeo(V ) =
∑

i∈{city,state,country,continent}

CE(li, l̂i), (1)

where, l denotes the ground truth label, while l̂ denotes the predicted label.
Scene loss is computed as the cross entropy loss between the soft label assigned
to a video, and the output vector from the Self-Cross Attention module.

Lscene(V ) = CE(s, PV ′
s ), (2)
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where, s denotes the ground truth soft-scene label, and PV ′
s denotes the pre-

dicted scene vector. TLA loss is computed as the negative cosine similarity be-
tween the text features generated from the class labels, and the output vector
to be aligned.

LTLA(V ) = −Cosine_Similarity(Ft, PV ′
t ), (3)

where, Ft denotes the text features from class labels and PV ′
t denotes the output

vector. Thus the total loss is
L(V ) = Lgeo(V ) + Lscene(V ) + LTLA(V ). (4)

4.6 Inference

We geolocalize the video V with the outputs of the four classifiers H1, H2, H3 and
H4. H4 predicts the continent label, H3 predicts the country label, H2 predicts
the state/province label and H1 predicts the city label. Now, the predictions
for fine-grained hierarchies could be improved with the assistance of the coarser
hierarchies. To refine the probabilities of a hierarchy prediction, we can multiply
the probabilities of the coarser hierarchies, as they would push the probabilities
of the classes in which the coarser hierarchies are most confident. Thus

P (Ci
H1 |V ) = P (Ci

H1 |V ) ∗ P (Cj
H2 |V ) ∗ P (Ck

H3 |V ) ∗ P (Cl
H4 |V ) (5)

where city Ci
H1 is located in state Cj

H2 , which is located in country Ck
H3 , which

in turn is located in continent Cl
H4 . Continent probabilities are multiplied into

countries and so on. After performing these operations, the predictions of indi-
vidual probabilities could be independent of each other, or could be codependent
on each other. Codependent predictions could be performed by first predicting
the most fine-grained hierarchy after multiplying probabilities, and then trac-
ing the hierarchical structure upwards, i.e., once the city is predicted, the state
prediction would simply be the state in which the city is located, and so on. Inde-
pendent predictions are just made by using the individual hierarchy probabilities
to determine the most likely class. In our final method, we use codependent pre-
dictions, as we found that empirically they are more accurate. More analysis on
that is covered in Section 5.6.

5 Experiments, Results and Discussion
This section describes the details of the experiments performed with our model,
the data used for those experiments and the training and validation setup in
regards to the same.

5.1 Data and metrics

For training and validating our model, we use our newly proposed dataset
CityGuessr68k. The dataset is divided into an 80:20 stratified train-test split, all
classes being represented in both sets. Thus we train our model on 54, 614 videos
and validate on 13, 655 videos. We assess our model’s performance using predic-
tion accuracy (top1 accuracy), for each hierarchy. We show additional analysis
on top5 accuracy in the supplementary material.
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5.2 Training Details

Our model is implemented in pytorch [22]. The input video consists of 15 frames,
resized to 224x224. The model is trained on one node of an NVIDIA RTX A6000
GPU. The VideoMAE version used has a ViT-S [5] backbone, and its weights are
pretrained on Kinetics-400 [14]. The model is trained for 10 epochs with a batch
size of 12. We use the Adam [15] optimizer with a learning rate of 0.001. The
Self-Cross Attention module has 2 heads, an embedding dimension of 6 and an
FFN that has 6 layers. The TextLabel Alignment strategy utilizes an FFN with
3 layers and the text embedding feature dimension is 512. The video encoding
feature dimension is 384.

5.3 Utility of Video data

Video-based geolocalization is more accurate than using single images because
videos contain more richer information. We carry out experiments where we
replace our video backbone in with its image counterpart (MAE [8]), keeping
all other details exactly the same. We test four different settings for the image
model. As shown in Table 2 we observe that the “random" setting performs the
best. We also observe that the video model outperforms the image models by a
large margin. it achieves a 9% improvement over the best image model setting,
showing the utility of video data.

Backbone Setting City State Country Continent

MAE

First frame 52.1 52.6 55.3 70.4
Mid frame 48.9 49.3 54.6 69.8
Last frame 48.1 48.4 53.4 69.3
Random frame 55.8 56.3 60.8 74.1

VideoMAE video 64.5 64.5 65.9 74.4

Table 2: Comparison of image and
video backbones. Comparing perfor-
mance of MAE and VideoMAE models to
demonstrate the necessity of video geolo-
calization.

Scenes TLA City State Country Continent
- - 64.5 64.5 65.9 74.4

Majority - 66.9 67.3 72.1 81.1
Soft - 67.9 68.4 72.4 81.6
Soft city only 69.1 69.5 73.7 83.1
Soft all hierarchies 69.6 70.2 74.8 83.8

Table 3: Effect of adding Scene
recognition and TextLabel Align-
ment(TLA). Comparing performance of
the model with variants of scene labels
and TLA

5.4 Scene Recognition

We have introduced a novel technique for incorporating scenes to aid our model
training. Self-Cross attention(Section 4.3) between the prediction vectors of hi-
erarchies was conceptualized in an attempt to improve location predictions. We
also devised an elegant way of representing scenes with soft labels(Section 4.3)
which gives a proper representation of a video scene label making it more suit-
able for loss computation. Table 3 shows that addition of Self-Cross Attention
module certainly helps the model to train better and gives better validation per-
formance. We also showcase our results on two variations of scene labels, one
obtained by majority voting and other with soft labels. Comparing their per-
formance, we see that soft labels are more helpful in model training. Note that
both models use hierarchical evaluation with codependent predictions.
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5.5 Benefit of TextLabel Alignment
We employ our TextLabel Alignment strategy(Section 4.4) to distill knowledge
from the names of the locations into our model in the feature space, by aligning
textlabel features generated by the pretrained text encoder to the features of
our model. We described 2 strategies for computing textlabel features in Section
4.4, from city labels, and from mean of features from all hierarchy labels. Table
3 shows that incorporation of the TextLabel Alignment strategy enhances the
features of the model, thus giving a better performance. We showcase our results
on both the above described variations. Comparing their performance, we see
that using all hierarchies helps the model train better as hypothesized. Note that
both models use hierarchical evaluation with codependent predictions.

5.6 Independent v/s Codependent Hierarchical Evaluation

As discussed in Section 4.6, hierarchical evaluation enhances the predictions of
the model and as a consequence, improving geolocalization performance. Table
4 shows the same. After multiplying probabilities, coarser hierarchy predictions
could be independent, or they could be codependent on finer hierarchies. We
evaluate the model using both variations, and Table 4 shows that codependent
predictions are better than independent predictions. Note that all the results
include Self-Cross Attention module with soft-scene labels and TextLabel Align-
ment with all hierarchies.

Model City State Country Continent
w/o hierarchical eval. 69.1 69.6 72.5 79.2
Independent 69.6 69.8 72.5 79.2
Codependent 69.6 70.2 74.8 83.8

Table 4: Hierarchical Evaluation.
Comparing variants of the model with
different types of hierarchical evaluation
techniques

Model City State Country Continent
PlaNet [39] 55.8 56.3 60.8 74.1
ISNs [21] 59.5 59.9 64.1 75.9
GeoDecoder [3] 64.2 64.5 69.5 79.9
Timesformer [2] 60.9 61.4 66.1 78.4
VideoMAE [33] 64.5 64.5 65.9 74.4
Ours 69.6 70.2 74.8 83.8

Table 5: Comparison of our method with
baselines and state-of-the-art methods

5.7 Comparison with State-of-the-art
As stated in Section 5.1, we show the validation performance of our model on
13, 655 videos from CityGuessr68k. As no worldwide video geolocalization meth-
ods exist, we compare our model to the baselines with TimesFormer [2] and
VideoMAE [33] encoders, along with the relevant state-of-the-art image geolo-
calization methods. For image models, we use the random frame setting, as it
performed the best for the image MAE [8] baseline(Section 5.3). Hierarchy clas-
sifiers are included for all models, and everything else is kept the same as per
specifications mentioned in Section 5.2. Table 5 shows the results of our model on
our dataset. Our model is able to achieve a 69.6% top1 accuracy on City predic-
tion, i.e., the most fine-grained hierarchy. Our model showcases an improvement
of ∼ 6% highlighting the significance of our modules. Our model also shows
an improvement in the coarser hierarchies with an ∼ 6% jump in state/province
prediction, an ∼ 5% improvement in country and a ∼ 4% in continent prediction.
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6 Performance on Mapillary(MSLS)
Mapillary(MSLS) [38] is an image sequence dataset, with sequences of varying
length from 30 cities around the world. As discussed in Section 3, Mapillary does
have some shortcomings. Also, from Fig. 2b, we observe that Mapillary does not
cover a lot of locations around the world. We propose CityGuessr68k to address
all these concerns. However, we validate the effectiveness of our model by also
showing its performance on Mapillary.
Data preparation Due to its design, there are a lot of steps involved in mak-
ing the Mapillary dataset compatible with our model. Mapillary is an image
sequence dataset spread across multiple folders and subfolders. To its credit, it
was originally collected for training image sequence retrieval models and thus
every city has some query sequences and some database sequences. As we are
performing a classification task, we do not require seperate query and database
sequences. Thus we decided to combine sequences from both for our purposes.
We also further reformat, filter and split the dataset such that it is compatible
with our problem configuration. The procedure of data preparation is further
detailed in the Supplementary material.

Model City State Country Continent
VideoMAE 67.6 67.6 68.2 81.9
Ours 72.8 72.8 73.2 88.1

Table 6: Performance comparison on
Mapillary(MSLS) dataset. Our method
compared with the VideoMAE baseline

Experiments and Results Af-
ter the filtering and train-test split,
we had 9049 train sequences and
2271 validation sequences. We assess
the performance again using predic-
tion accuracy (top1 accuracy). Train-
ing parameters were kept exactly the
same as described in Section 5.2. Table 6 shows the validation results of our
model with Self-Cross Attention module trained with soft-scene labels, TextLa-
bel Alignment strategy with all hierarchies and codependent hierarchical evalua-
tion. We compare the performance of our model against the VideoMAE baseline.
We see that there’s a 5% jump in top1 accuracy on city prediction, as well as sig-
nificant improvements in coarser hierarchies as well. This shows that our model
trains and performs well on other datasets and thus can be generalized for this
task across different data distributions.

7 Conclusion

In this paper, we formulated a novel problem of worldwide video geolocaliza-
tion. As there is no large scale dataset to tackle this challenging problem, we
introduced a new global level video dataset, CityGuessr68k, containing 68,269
videos from 166 cities. We also proposed a baseline approach which consists of
a transformer-based architecture with a Self-Cross Attention module for incor-
porating an auxiliary task of scene recognition with soft-scene labels as well as
a TextLabel Alignment strategy to distill knowledge from location labels in fea-
ture space. We demonstrated the efficacy of our method on our dataset as well as
on Mapillary(MSLS) dataset. As a future direction, we plan to explore the gen-
eralizability of the combination of Self-Cross Attention module and TextLabel
Alignment to other hierarchical video classification tasks.
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