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Abstract. The field of 3D human motion generation from natural lan-
guage descriptions, known as Text2Motion, has gained significant atten-
tion for its potential application in industries such as film, gaming, and
AR/VR. To tackle a key challenge in Text2Motion, the deficiency of 3D
human motions and their corresponding textual descriptions, we built a
novel large-scale 3D human motion dataset, LaViMo, extracted from
in-the-wild web videos and action recognition datasets. LaViMo is ap-
proximately 3.3 times larger and encompasses a much broader range of
actions than the largest available 3D motion dataset. We then introduce
a novel multi-task framework TMT (Text Motion Translator), aimed
at generating faithful 3D human motions from natural language descrip-
tions, especially focusing on complicated actions and those not existing in
the training set. In contrast to prior works, TMT is uniquely regularized
by multiple tasks, including Text2Motion, Motion2Text, Text2Text, and
Motion2Motion. This multi-task regularization significantly bolsters the
model’s robustness and enhances its ability of motion modeling and se-
mantic understanding. Additionally, we devised an augmentation method
for the textual descriptions using Large Language Models. This augmen-
tation significantly enhances the model’s capability to interpret open-
vocabulary descriptions while generating motions. The results demon-
strate substantial improvements over existing state-of-the-art methods,
particularly in handling diverse and novel motion descriptions, laying a
strong foundation for future research in the field.

Keywords: Text2Motion, 3D Human Motion Generation, Generative
Model, Multimodal

1 Introduction

The generation of 3D human motions conditioned on natural language descrip-
tions, commonly known as Text2Motion, has become a significant area of research
due to its potential applications in industries such as film, gaming, and AR/VR.
Recent years have seen numerous successful attempts [2, 5, 9, 18,29,32,37], with
various machine learning models such as Variational Autoencoders (VAE) [19],
Diffusion models [15], and Generative Adversarial Networks (GAN) [10] being

https://orcid.org/0009-0000-9440-9744
https://orcid.org/0000-0003-2123-0684
https://orcid.org/0000-0001-5510-6425


2 Q. Yijun et al.

Fig. 1: This demonstrates the bi-directional generation capability of our model. Ini-
tially, our model generates the displayed motion using the black-colored textual descrip-
tion (Text2Motion). Subsequently, our model generates red-colored textual descriptions
(Motion2Text) based on the displayed motion. The qualitative results can be best seen
in the supplementary materials.

utilized. These efforts were enabled by publicly available 3D human motion
datasets such as AMASS [26], and motion-text paired datasets like BABEL [31]
and HumanML3D [11]. However, the quality of 3D human motions generated by
existing models still fall short of the standards set by recent generative models
in both the image [34] and language [7] domains.

A key factor contributing to this limitation is the lack of sufficient data.
Models for text-conditioned image or video generation often benefit from initial
weights pre-trained on large datasets. However, the largest publicly available
3D motion dataset only covers a small fraction of human behaviors observed in
daily life. Furthermore, the largest publicly available textual description dataset
only covers a portion of this. For instance, AMASS, the largest 3D motion
dataset, contains approximately 11,000 motions, while a popular pre-training
video dataset, IG-65M [8], consists of over 65 million videos. The disparity in
size and diversity is even more pronounced considering that high-quality motion
capture data collection often requires specialized equipment, actors, and manual
data clean-up, making it challenging to match the scale of datasets available
for other modalities. The constraint of limited action descriptions presents an-
other hurdle in developing a generative model for Text2Motion. Current gener-
ative modeling techniques heavily depend on paired data. Consequently, models
trained with a limited number of action descriptions are prone to overfitting,
resulting in a lack of generalization. This leads to a significant drop in perfor-
mance when the model encounters unseen descriptions. While previous research
has attempted to improve robustness by breaking down complex actions into
segments of atomic actions [32], this approach still has limitations as it requires
known descriptions for atomic (i.e., single) actions.
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In addition to dataset challenges, previous models are not particularly user-
friendly, often requiring substantial prior knowledge of Text2Motion to generate
plausible 3D human motions. For instance, many approaches [3,5,18,32] not only
require natural language descriptions, but the duration of each atomic action
as well. If the provided duration does not align with what was included in the
training dataset, the model may fail to generate plausible motions. As the length
of the input description increases, from a single verb to a complete sentence
or from a sentence to a paragraph, the challenge of determining a reasonable
duration grows exponentially.

In this paper, we present a novel framework designed to address the chal-
lenges above. Firstly, we introduce a large-scale motion dataset LaViMo (Large-
scale Video Mocap), comprising more than 140,000 motion clips. This dataset is
extracted from in-the-wild RGB web videos and publicly available action recog-
nition datasets, leveraging recent advancements in 3D pose estimation. This ap-
proach allows us to circumvent the need for expensive motion capture equipment
and extensive recording procedures. Additionally, we develop a method to aug-
ment textual descriptions of actions using Large Language Models (LLMs). This
augmentation increases the semantic diversity of existing descriptions, enabling
the model to handle open-vocabulary descriptions robustly when generating 3D
human motions.

Additionally, we develop TMT (Text Motion Translator), a bi-directional
text-conditioned motion generation model inspired by recent breakthroughs in
language translation studies. The key idea is to formulate text-conditioned 3D
human motion generation as a pure language translation problem. Both motions
and textual descriptions are treated as discrete tokens, and their bi-directional
translation is facilitated by a language model. As LLMs can determine when to
stop generating sentences using a special token indicating the end-of-sentence,
our model can also autonomously halt the motion generation process. To con-
struct discrete tokens for motions, we introduce a motion VQ-VAE that en-
codes 3D motions into discrete embedding tokens and reconstructs 3D motions
from these tokens. Unlike previous works, TMT is regularized by multiple tasks
(Text2Motion, Text2Text, Motion2Motion, and Motion2Text). This multi-task
regularization not only equips the model with additional capabilities, such as
motion in-painting, but also enhances its robustness, motion modeling, and se-
mantic understanding. We conduct a series of experiments, including 3D motion
generation from lengthy and challenging action descriptions composed of open-
vocabulary elements. Our qualitative and quantitative experiments demonstrate
that our framework outperforms other state-of-the-art methods significantly in
generating natural and semantically correct motions. Ablation studies further
confirm the validity of our proposed method. Finally, we showcase experiments
on the inverse of the original task, Motion2Text, made possible by our unique
problem formulation. In a nutshell, our contribution are three-folded:

– The creation of a large 3D human motion dataset (more than 140k motions)
extracted from in-the-wild RGB web videos and publicly available action
recognition datasets.
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– The introduction of a sample-free training strategy using Large Language
Models (LLMs) to enhance semantic diversity and to enable the generation
of natural 3D human motions with open-vocabulary descriptions.

– We introduce TMT, a bi-directional text-conditioned 3D human motion gen-
eration model capable of generating both 3D human motion and natural lan-
guage descriptions when conditioned on the other modality. In addition, our
TMT does not require the duration of each atomic action and is optimized
by multi-task regularization.

2 Related Works
Most text-conditioned motion generation methods based on deep learning have
pursued a similar idea, aiming to bridge semantic representations of text (text-
encoding) and 3D motion features (motion-encoding) through a shared latent
space [1, 9, 12, 16, 18, 20, 22–24, 29, 40]. Subsequently, these methods implement
a decoder that translates latent embeddings into 3D human motions (motion-
decoding). Then, text-conditioned motion generation can be performed by com-
bining text-encoding and motion-decoding processes. Following the idea, various
conditional generative models have been explored. For instance, TEMOS [29]
introduces a VAE [19] while MDM [37] proposes a 3D human motion generation
network based on diffusion [15]. These models were trained via supervision on
motion-text paired datasets [11,30], which cover simple actions only and may in-
clude ambiguous descriptions. With the release of the BABEL dataset [31], which
offers detailed action-level descriptions of complex motions existing in various
motion datasets, several studies have emerged aiming to generate realistic 3D
human motions from lengthy and semantically rich descriptions [3, 20, 32, 40].
TEACH [3] proposes a method to generate long motions by including previous
action segment into conditional generation process. SINC [4] applies a motion
augmentation algorithm which combines the body parts of different motions with
the help of LLMs. The most recently published study, EMS [32], introduces a
method that robustly generates motions from very long sentences, which may
include tens of verbs and adverbs. This is achieved by factorizing the input sen-
tence into a series of atomic actions, and the generated atomic actions (i.e.,
motion corresponding to each verb) are then combined sequentially in the final
stage via optimization with loss function on naturalness.

Despite of the advancements achieved by above studies, their generation qual-
ities are still far from what we typically expect from recent generative models
in both image [34] and language [7] domains. This implies that there is still
much room for improvement across various aspects, including data, model, and
training algorithms. We argue that securing data is the biggest hurdle in text-
conditioned motion generation.

3 Methods

Given natural language descriptions as input, text-conditioned motion genera-
tion (i.e., Text2Motion) is a task to generate full-body 3D motions that corre-
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Fig. 2: Model Structure Overview: We pretrain our Motion VQ-VAE on the combi-
nation of our LaViMo and existing AMASS datasets, then train our generation module
on motion-text paired dataset.

spond to the semantic meanings of the given descriptions. We are particularly
interested in generating natural motions given open-vocabulary descriptions for
unseen actions besides generating motions whose description has been seen in
the training set.

As discussed in Section 1, two main challenges exist: the scarcity of data
concerning both 3D human motions and their corresponding textual descriptions,
and the model’s requirement for detailed duration as input, affecting its usability.
To solve the first challenge, we build a new 3D human motion dataset which
is approximately 4 times larger than the existing dataset by recent advances
in 3D pose estimation, and develop a method of augmenting existing textual
descriptions for human actions (see Section 3.1 for the detail). To solve the second
challenge, we develop a new model architecture inspired by language translation
tasks. Our novel model produces higher quality motions than existing state-
of-the-art models, more importantly, it has the capability to generate motions
without the duration of actions as input. The model architecture and its training
method will be detailed in Section 3.2 and Section 3.3, respectively.

3.1 Dataset Preparation

Building LaViMo Dataset We build a new 3D motion dataset from in-the-
wild videos collected from the web as well as the videos existing in NTU120k [25]
dataset. We extract approximately 140k motion clips corresponding to 130 hours
of motion, which is approximately 3.3 times larger than the largest AMASS
dataset. We have named our novel dataset LaViMo, a shortened version of
large-scale video mocap dataset.
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Fig. 3: 3D pose estimation pipeline overview: we balance the trade-off between
performance and time spent by combining Hybrik Module and test-time optimization
of HuMoR.

Figure 3 illustrates an overview of 3D pose estimation pipeline that we use.
Given a RGB video Vi = (f1, f2, · · · , fn), the pipeline is to extract a 3D hu-
man motion Mi = (m1,m2, · · · ,mn), where each fj ∈ RH×W×3 represents a
single RGB frame, and each mj ∈ RD represents the 3D pose extracted from
frame fj . We basically adopt the pipeline of HuMoR [35], which runs a test-time
optimization on top of the pretrained variational autoencoder (VAE) consist-
ing of three modules, a prior pθ(xt|mt−1), an encoder pθ(xt|mt−1,mt), and a
decoder pθ(mt|mt−1, xt), where xt is a VAE latent embedding that models a
transition between two poses. The process of test-time optimization is to search
a series of optimal latent embeddings (x̄1, x̄2, · · · , x̄n) with the loss function in-
cluding two primary terms, the data term and the naturalness term. The data
term enforces that the decoded 3D motion (m̄1, m̄2, · · · , m̄n) matches the input
RGB video (f1, f2, · · · , fn), where the visual features extracted from fj are com-
pared with the features extracted from the decoded motion projected onto the
2D image plane. The naturalness term prevents the decoded motion from being
out-of-distribution from the training dataset, where the degree of being out-of-
distribution are measured by plugging the currently optimized latent embeddings
and the previously decoded motion into the prior. Once the loss function is com-
puted, the current latent embeddings are updated by L-BFGS [35] algorithm.
We recommend readers to refer to the original paper [35] for the details.

Although HuMoR provides one of the state-of-the-art results for extract-
ing 3D motions from videos as input, the optimization process is very time-
consuming. For example, it approximately takes more than 5 minutes to extract
a 2 seconds long motion from a video clip on single V100 GPU. This com-
putational complexity prohibits us to extract motions from large scale videos.
We observed that the optimization process can be improved significantly by
providing a better initial guess of latent embeddings. Instead of following the
initialization process in the original HuMoR, which is based on VPoser [27] and
an extra shallow Gaussian mixture model, we adopt HybrIK [21] for the initial-
ization. HybrIK is a per-frame light-weight 3D pose estimator which extracts
3D pose by combining analytical inverse-kinematics (IK) with estimation from
neural networks. As a result, it is extremely faster than other methods based on
heavy optimization processes such as HuMoR although there exist some compro-
mise in the final motion quality if it is solely used. Given an input video, we first
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perform HybrIK to extract a sequence of 3D poses, they are then converted into
the latent motion embeddings by using the encoder of HuMoR [35]. Finally, the
embeddings become a initial guess for the test-time optimization. By doing so,
we found that a 3D motion given a 2 seconds long input video can be obtained
approximately within 30 seconds, of which motion quality is comparable to what
created by HuMoR only.

Augmenting Textual Description Given natural language descriptions of
human actions from existing datasets, specifically the BABEL dataset [31], we
augment these descriptions using a large language model [7]. This augmenta-
tion aims to enable our model to robustly handle input textual descriptions
comprising open-vocabulary, potentially encompassing richer or more complex
expressions.

For each description of an atomic action (i.e., a single human behavior), we
ask the GPT4 [7] to generate augmented descriptions with the prompt: "Given
a human motion, provide a list of motions that would be visually simi-
lar. Some examples: 1) fall down: slip, trip, take a spill, faint, collapse.
2) jerk: tap door with hand, hit hand on door, bang fist on door. <>".
Although GPT4 can give us ample descriptions which are visually similar to the
action corresponding to the prompted input description, it may still generate in-
accurate or not-suitable descriptions for our task. This is because GPT4 does not
precisely take the attribute settings into consideration. For example, it considers
"throwing a ball in the air with the left hand" similar to the motion of "tossing a
ball upwards with the right hand," even after including negative examples in the
input prompt. For a static (stationary) motion like "sway arms", it often regards
"swing arms while walking" a similar description, which is a dynamic (mobile)
motion. Additionally, for the foot-related motion "kick ball", it often generates
the hand-related motion like "hit ball with racket". To address these issues, we
employ several heuristics to filter out misleading information. The heuristics we
develop are as follows:

– For each atomic action, we ask the GPT4 model to answer if the original
and augmented description are using the same body part.

– For each atomic action, we ask the GPT4 model to answer if the original and
augmented description are both static (stationary) motion or both dynamic
(mobile) motion.

– We inspect the augmented descriptions to see if there is a mismatch in seman-
tics. For example, we check "left/right", "forward/backward", "slowly/fast",
"static/dynamic", and etc.

These heuristics not only enhance the robustness in generating from open-
vocabulary descriptions but also alleviate some visible artifacts present in the
generated motions, such as foot-sliding or floating-in-the-air issues. We will pro-
vide quantitative and qualitative comparisons in the ablation study section.
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3.2 Text Motion Translator

Figure 2 depicts the novel model structure we developed, TMT (Text Motion
Translator), inspired by recent breakthroughs in language translation studies.
The key idea is to formulate text-condition 3D human motion generation as a
language translation problem. In our model, both motions and textual descrip-
tions are treated as discrete tokens, and the bi-directional translation between
them is facilitated by a language backbone, specifically T5 [33] in our implemen-
tation.

To produce discrete tokens for motions, we pre-train a VQ-VAE [39] by using
our LaViMo dataset as well as existing AMASS dataset, which is shown on the
left of Figure 2. It is composed of a motion encoder E and a motion decoder
D, both of of them are consisted of stacked CNN blocks with activation and
pooling layers. The encoder takes in a 3D human motion Mi as input then
produces a latent embedding Ẑi = (ẑ1, ẑ2, ..., ẑn), and the decoder generates a 3D
human motion M̂i from the encoded latent embedding. In this encoding-decoding
process, VQ-VAE simultaneously learns a codebook Z = {z1, z2, ..., zB} ∈ RB×D

containing B discrete latent embeddings (node) where D is the dimension of
each embedding, and the encoded latent embedding Ẑi is replaced by the nearest
embedding existing in the codebook before the decoding process starts. By doing
so, a discrete latent space is constructed, we can produce discrete tokens of 3D
human motions by plugging them into the encoder of VQ-VAE. To produce
discrete tokens for the textual description, the input text is firstly augmented by
a LLM [7], the text embedding table T that comes with the language backbone
applies to the augmented input.

The generation (i.e., translation) module of our model is shown on the
right of Figure 2. Given a series of motion-text pairs, (M1

seg,M
2
seg, · · · ) and

(W 1
seg,W

2
seg, · · · ), where M j

seg = (mj
1,m

j
2, · · · ) and W j

seg = (wj
1, w

j
2, · · · ) rep-

resent a motion segment of j-th atomic action and its corresponding textual
description, respectively, motion and text tokens are first obtained by the to-
kenization methods explained above. Let’s assume that Zj

seg = (zj1, z
j
2, · · · , z

j
h)

and T j
seg = (tj1, t

j
2, · · · , tjg) are the motion and text tokens for j-th atomic ac-

tion, which contains h motion tokens, and g text tokens. To make motion tokens
context sensitive, we insert a special motion token < SOM > representing start-
of-motion before the first token if the current atomic action is the first atomic
action, otherwise we insert last k motion tokens (zj−1

p−k, ..., z
j−1
p ) from the previous

atomic action M j−1
seg , where p implies that the previous atomic action contains p

tokens. We insert a special motion token < EOM > representing end-of-motion
at the end if the current atomic action is the last atomic action, and insert a
special motion token < EOAM > representing end-of-atomic-action at the end
of every atomic action sequence. To enhance the semantics of text tokens, we
use LLM to create augmentated tokens tjg+1, · · · , tjr, where r > g. The motion
tokens Zj

seg and text tokens T j
seg are concatenated, followed by the application of

task-dependent adaptive masks. Further explanation of this process will be pro-
vided in detail in Section 3.3. The tokens are then forwarded to the transformer
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encoder of T5, and the transformer decoder of T5 autoregressively predicts the
masked portions of tokens. Once the entire tokens are predicted, 3D human mo-
tions are reconstructed by the VQ-VAE decoder while the textual descriptions
are recovered by the text embedding table T .

3.3 Training TMT

We first train the motion VQ-VAE, then train the remaining parts existing in
the generation module while the encoder and decoder of the VQ-VAE are frozen.

Training of Motion VQ-VAE We use three loss functions to optimize the mo-
tion VQ-VAE, where we keep the degree of motion tokens and language tokens
the same to enable the integration of motion tokens directly into the language
backbone.

Li
vqvae = Li

rec + Li
emb + Li

com (1)

Li
emb = ∥sg(Zi)− Ẑi∥2 (2)

Li
com = ∥Zi − sg(Ẑ)i∥2 (3)

Li
rec = L1(Mi − M̂i) + αL1(V(Mi)− V(M̂i)) (4)

where M̂i is the decoded motion sequence, sg represents the stop gradient op-
eration, L1 represents the smooth l1 loss function, and V(Mi) represents the
velocity of motion sequence Mi.

Training of Generation Module We design four distinctive supervised or self-
supervised tasks for training the generation module, which are Text2Text, Mo-
tion2Motion, Text2Motion, and Motion2Text. Depending on the task type, dif-
ferent mask settings are applied to the motion and text tokens. Additionally, an
extra special token < task > is inserted during concatenation of the two differ-
ent tokens to guide the generation module in understanding the specific task it
is being asked to perform.

Text2Text Similar to the random masking tasks in Bert [41], we mask out all
motion tokens and 15% of text tokens. The TMT is then required to reconstruct
the masked text tokens given unmasked text tokens {tq ̸∈masked}.

Lj
T2T = −

∑
p∈masked

L−1∑
i=0

log p(tjp;i|{t
j
q ̸∈masked}) (5)

where L is the number of text tokens in text embedding table, and tjp;i represents
that the p-th text token of T j

seg is predicted as i-th token of the text embedding
table T.
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Motion2Motion Similar to the self-supervised training task on Text2Text, we
also use the Motion2Motion task for the self-supervision. The same loss function
can be used because motions are also represented by tokens in our model. More
specifically, we mask out all text tokens and 50% of motion tokens. The TMT is
then required to reconstruct the masked motion tokens given unmasked motion
tokens {zq ̸∈masked}.

Lj
M2M = −

∑
p∈masked

B−1∑
i=0

log p(zjp;i|{zq ̸∈masked}) (6)

where B is the number of motion tokens in the codebook, and zjp;i represents
that the p-th motion token of M j

seg is predicted as i-th token of the motion
codebook Z.

Text2Motion We masked out all motion tokens (zj1, · · · , z
j
h) extracted from the

target atomic action M j
seg. The TMT is then required to predict the masked

motion tokens in an auto-regressive manner given the text tokens T j
seg, unmasked

motion tokens {zj−1
p−k:k}, and previously predicted motion tokens {zjr|r<s}.

Lj
T2M = −

h∑
s=1

B−1∑
i=0

log p(zjs;i|{z
j−1
p−k:k}, {z

j
r|r<s}, T

j
seg) (7)

where k is the length of motion tokens inherited from the previous atomic action
and h is the duration of current atomic action.

Motion2Text Similar to Text2Motion task, we masked out all text tokens, the
TMT is required to predict the text tokens based on motion tokens Zj

seg and
previously predicted text tokens {tjr|r<s}. We only use the ground truth text
tokens {tj1:g} as targets during the training process.

Lj
M2T = −

g∑
s=1

L−1∑
i=0

log p(tjs;i|{t
j
r|r<s}, Z

j
seg) (8)

4 Experiments

We primarily evaluate our model against previous state-of-the-art models on two
benchmarks (HumanML3D [11] and BABEL [31]) using two streams of metrics.
It’s important to note that BABEL and HumanML3D are built on a portion of
the AMASS datasets, and no samples from the validation set of these two
benchmarks were utilized during the pretraining stage. Additionally, LaViMo
is a 3D human motion dataset without paired descriptions. As such, we cannot
pretrain the majority of previous works on LaViMo, which require
paired data for conditional training. For a fair comparison, we also report
results pretrained on AMASS only (annotated as Ours wo LaViMo). Due to
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Method R-Precision↑ FID↓ Diversity → MultiModal-Dist↓
Gound Truth 0.62 4e−3 8.51 3.57
ACTOR [28] 0.33 1.43 7.41 8.39

MACVAE [20] 0.34 1.36 7.16 8.18
EMS [32] 0.42 0.96 8.22 7.23

TEACH [44] 0.46 1.12 8.28 7.14
PriorMDM [36] 0.48 0.79 8.16 6.97

Ours 0.53 0.72 8.33 5.88
Ours wo LaViMo 0.49 0.82 8.17 6.73

Table 1: Comparing ours against previous SOTAs on BABEL.

Method R-Precision↑ FID↓ Diversity → MultiModal-Dist↓
Gound Truth 0.511 2e−3 9.503 2.974
TM2T [13] 0.424 1.501 8.589 3.467
T2M [12] 0.457 1.067 9.188 3.340
EMS [32] 0.462 0.617 8.782 3.792

MotionDiffuse [43] 0.491 0.630 9.410 3.113
MDM [37] 0.320 0.544 9.559 5.566
MLD [6] 0.481 0.473 9.724 3.196

T2M-GPT [42] 0.491 0.116 9.761 3.118
MotionGPT [17] 0.492 0.232 9.528 3.096
PriorMDM [36] 0.481 0.60 9.62 2.96

Ours 0.528 0.184 9.437 3.091
Ours wo LaViMo 0.464 0.310 9.191 3.652

Table 2: Comparing ours against previous SOTAs on HumanML3D.

Method APEr↓ APEt↓ APEl↓ APEg↓ AV Er↓ AV Et↓ AV El↓ AV Eg↓
TEMOS [29] 0.766 0.731 0.172 0.825 0.269 0.262 0.016 0.274
TEACH [3] 0.674 0.654 0.159 0.717 0.222 0.220 0.014 0.234
EMS [32] 0.434 0.423 0.116 0.495 0.173 0.168 0.011 0.181
SINC [4] 0.502 0.477 0.249 0.616 0.174 0.174 0.010 0.180

PriorMDM [36] 0.388 0.372 0.116 0.464 0.156 0.152 0.010 0.174
Ours 0.237 0.218 0.096 0.285 0.144 0.122 0.008 0.153

Ours wo LaViMo 0.297 0.282 0.114 0.348 0.155 0.137 0.011 0.176
Ours wo LLM 0.288 0.263 0.125 0.337 0.142 0.118 0.008 0.151

Ours with LLM, wo PP 0.349 0.327 0.128 0.414 0.167 0.152 0.012 0.176
Table 3: Comparing ours against previous SOTAs on BABEL dataset under APE &
AVE metrics. PP represents post-processing.
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page limitations, details of the datasets, evaluation metrics, and implementation
details are provided in the supplementary materials.

As shown in Tables 1 and 3, we compare our method to previous state-of-the-
art (SOTA) methods [3,4,20,28,29,32,36,44] on the BABEL dataset. Our model
outperforms all previous SOTAs, including PriorMDM, which uses a heavier
diffusion generative backbone. Specifically, for APE&AVE metrics, our model is
on average 33% better than the runner-up and 13% better on the remaining four
metrics. Without LaViMo, our model still achieves superior performance on nine
out of twelve metrics, with comparable results for the remaining three metrics.
These experiments demonstrate the superiority of both the LaViMo dataset and
the TMT model.

Although TMT was specifically designed to generate 3D human motions for
long and complicated actions given elaborate descriptions (including atomic ac-
tion level descriptions), we also report the performance on the HumanML3D
dataset, another benchmark used by many previous works. Unlike BABEL, Hu-
manML3D only contains simple single-sentence descriptions for each motion. As
shown in Table 2, our model still achieves comparable results against recent SO-
TAs, such as PriorMDM and MLD, which use heavier diffusion-based generative
backbones, and MotionGPT, which applies an extra stage of human-in-the-loop
fine-tuning. We also observe that the use of LaViMo brings more improvements
on HumanML3D than BABEL, possibly because LaViMo contains more atomic
actions whose distribution is more similar to that of HumanML3D.

5 Ablations
Method Split APEr↓ APEt↓ APEl↓ APEg↓ AV Er↓ AV Et↓ AV El↓ AV Eg↓

A&La + L w P S 0.186 0.174 0.072 0.232 0.117 0.109 0.007 0.126
U 0.327 0.296 0.138 0.379 0.192 0.145 0.010 0.201

A&La + L w P + Sin S 0.203 0.195 0.087 0.248 0.129 0.117 0.007 0.133
U 0.374 0.361 0.162 0.424 0.223 0.191 0.012 0.247

EMS [32] S 0.302 0.293 0.097 0.357 0.158 0.142 0.009 0.166
U 0.668 0.654 0.149 0.740 0.199 0.214 0.014 0.207

A&La S 0.163 0.157 0.066 0.219 0.112 0.105 0.007 0.117
U 0.510 0.451 0.229 0.546 0.195 0.141 0.010 0.211

A&La + L wo P S 0.309 0.293 0.106 0.362 0.147 0.138 0.010 0.161
U 0.420 0.387 0.167 0.506 0.202 0.176 0.015 0.204

A + L w P S 0.153 0.142 0.064 0.201 0.108 0.099 0.007 0.119
U 0.553 0.531 0.203 0.609 0.238 0.204 0.018 0.277

Table 4: Analyze the improvements bought by each module on generating seen (S) and
unseen (U) actions. A represents AMASS, La represents LaViMo, L represents using
LLM for semantic augmentation, P represents post-processing, and Sin represents single
task (text2motion) training.

5.1 Application of Large Language Models

This section delves into the enhancements achieved through the incorporation of
Large Language Models (LLMs) for semantic augmentation. As depicted in Ta-
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ble 3, employing LLMs leads to on average 17.3% better performance. However,
it’s important to note that utilizing all augmented descriptions from the LLM
without any post-processing (filtering) results in a notable decrease in perfor-
mance for both APE and Average Variance Error (AVE) metrics, which verifies
the effectiveness of our filtering heuristics.

5.2 Seen and Unseen Actions

Our study extends beyond evaluating results on the full validation set of BA-
BEL; we also conduct experiments to assess the specific improvements each
implementation brings to the generation of seen and unseen actions. An action
is considered ’seen’ if its description appeared in the training set, and ’unseen’
otherwise. Table 4 provides insights into these distinctions.

Through comparing the first and second line of Table 4, we find that the
usage of multi-task training brings 13% improvements for unseen actions and
8% for seen actions.

Comparing the first and third lines shows that our model outperforms more
on generating unseen actions than seen actions against EMS [32] (double the
performance when generating unseen actions).

Further analysis, comparing the first, fourth, and fifth lines, reveals that while
the integration of LLM without post-processing (filtering) significantly degrades
the quality of generated seen actions, however, it still enhances the generation
of unseen actions. More importantly, incorporating the post-processing substan-
tially mitigates negative effects for both seen and unseen actions.

A comparison between the first and the last lines of Table 4 highlights that
pretraining on AMASS is more beneficial for seen actions, whereas pretraining
on LaViMo shows a greater impact on unseen actions. This aligns with our hy-
pothesis that the remaining AMASS samples may include motions akin to those
in BABEL’s validation set, while LaViMo, with its broader range of complex
and irregular motions, likely enhances the robustness of the pretrained motion
VQ-VAE.

5.3 Qualitative Analysis

Quantitative metrics often fail to capture the essence of evaluation, which can
only be achieved through human assessment. Figure 4(a) shows, within a red
rectangle, a qualitative comparison to EMS [32], when an input description
’stand up from lying on the ground’ is given. In Figure 4(b), we emphasize
the model’s capability, enhanced by LLM augmentation, to accurately produce
natural motions for the unseen action ’hold arms as in waltz’ series. Addition-
ally, Figure 4(c) showcases the effects of our post-processing, leading to issues
like foot sliding and incorrect global orientations when it is ablated. An exam-
ple within a red bounding box shows the model generating an unnatural ’walk
back’ motion with improper global orientation. We speculate that this is due
to LLM-generated augmentation candidates such as ’walk’ or ’walk forward,’
which might not align precisely with the intended motion "walk backward". The
qualitative results can be best seen in the supplementary materials.
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Fig. 4: Qualitative Results (a) Comparing between EMS and our Model. (b) Com-
paring between models trained with LLM augmentation (w LLM) and without LLM
augmentation (w/o LLM). (c)Comparing between models trained with LLM augmen-
tation with post-processing (w PP) and without post-processing (w/o PP).

6 Conclusion&Limitations

We introduce TMT, a novel text-conditioned 3D human motion generation
model aimed at creating natural 3D human motions from open-vocabulary de-
scriptions. It excels particularly with unseen actions by leveraging semantic
augmentation through Large Language Models (LLMs). Additionally, we con-
structed LaViMO, a comprehensive 3D human motion dataset. Our approach
demonstrates superior performance over existing state-of-the-art models from
both quantitative and qualitative perspectives.

Despite our method significantly outperforming previous state-of-the-art mod-
els, particularly in generating unseen actions, it encounters challenges with action
descriptions that fall outside the pretraining dataset’s scope. This highlights a
need for further improvement in our model’s robustness and generalization capa-
bilities, especially when compared to leading methods in text-conditioned image
generation (e.g., DALLE2 [34]), text-conditioned video generation (e.g., Ima-
gen [14]), and text-conditioned text generation (e.g., LLaMA2 [38] and GPT4 [7]).
Our findings suggest that expanding the size and diversity of the pretraining
dataset, particularly with coarse motions extracted from RGB videos, could still
enhance the robustness of motion VQ-VAE.
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