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Fig. 1: Left: the Reality-linked 3D Scenes dataset (R3DS) fills a gap between syn-
thetic 3D scenes and reconstructions of real-world environments by providing 3D scene
proxies linked to real-world panoramas from Matterport3D (three example panoramas
and 3D scenes shown). Right: our dataset contains scenes with higher density and
completeness compared to prior datasets, and provides additional annotations such
as object support (what objects or architectural elements support other objects), and
matching object sets (e.g., pairs of the same nightstand). We use our dataset for the
panoramic scene understanding task and demonstrate its value for research on room
layout estimation, as well as 2D and 3D object detection.

Abstract. We introduce the Reality-linked 3D Scenes (R3DS) dataset
of synthetic 3D scenes mirroring the real-world scene arrangements from
Matterport3D panoramas. Compared to prior work, R3DS has more com-
plete and densely populated scenes with objects linked to real-world ob-
servations in panoramas. R3DS also provides an object support hierarchy,
and matching object sets (e.g., same chairs around a dining table) for
each scene. Overall, R3DS contains 19K objects represented by 3,784 dis-
tinct CAD models from over 100 object categories. We demonstrate the
effectiveness of R3DS on the Panoramic Scene Understanding task. We
find that: 1) training on R3DS enables better generalization; 2) support
relation prediction trained with R3DS improves performance compared
to heuristically calculated support; and 3) R3DS offers a challenging
benchmark for future work on panoramic scene understanding.
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1 Introduction

Datasets of 3D indoor environments are increasingly used for research on scene
understanding [1, 3, 28], embodied AI [2, 19, 23], and scene generation [15, 25].
There are two strategies for constructing 3D scene datasets: reconstruction of
real-world spaces [3], or authoring scenes using synthetic 3D objects [8] (CAD
models). Reconstruction captures real spaces but is hard to scale, and the result-
ing scenes exhibit imperfections and artifacts. On the other hand, synthetic 3D
scenes are complete and easy to manipulate but often do not match the statis-
tics of real-world spaces and are artificially “clean”. Moreover, both strategies are
time-consuming and require expertise. There have been some attempts to create
“synthetic” replicas of real environments by matching CAD models to objects in
scans [19, 23]. These efforts have been limited in scale and often result in partial
and sparsely populated synthetic counterparts of the real environments.

We design a framework that allows users to create 3D scenes from RGB
panoramas and use it to create R3DS: a dataset of ‘Reality-linked’ 3D Scenes.
Each 3D scene in our dataset is a complete proxy of an environment from the
Matterport3D [3] dataset, representing both the 3D architecture and the objects.
Thus, each scene is linked to a real space, with correspondences established
between panorama observations of each object and the synthetic object. These
reality-linked scenes reflect denser real-world arrangements of objects.

The use of panoramas for reference is advantageous compared to either per-
spective images or 3D reconstructions. Panoramas are not limited by the field
of view unlike perspective images, enabling more complete 3D synthetic prox-
ies. Panoramas also better capture relatively small objects and objects with
challenging materials or illumination conditions compared to reconstructions.
Additionally, there is a scarcity of synthetic 3D scenes coupled with real-world
panoramas, with only one relatively small algorithmically constructed dataset
provided by Zhang et al . [28] being available to the community.

Compared to prior efforts such as Scan2CAD [1] and CAD-Estate [14], our
dataset provides more complete scenes, with salient observed objects being cap-
tured in the layout. Moreover, we provide a support hierarchy defining what
objects are placed on other objects and specify sets of identical objects such
as dining chairs around a table, allowing for creating realistic variations of the
scene by swapping the entire set to a different chair design.

We demonstrate the value of our dataset by using it for the Panoramic Scene
Understanding task. We show that leveraging the denser layouts and support hi-
erarchy information in our scenes leads to improved object detection performance
and better generalization compared to training using other datasets previously
used for this task. In summary, we make the following contributions:

– We design a framework for efficient construction of synthetic scenes from real
panoramas and use it to create R3DS: a dataset of reality-linked 3D scenes.

– R3DS provides more complete and realistic scenes with correspondences be-
tween real and synthetic objects, and object-object support relations.



R3DS 3

CAD-Estate: sparse, floating Scan2CAD: sparse, floating, mismatched iGibson DPC: floating

R3DS (Ours): linked to panoramas, densely populated scenes, matched object sets, objects supported

Fig. 2: Dataset comparison. (Top) shows different views of a scene annotated in
R3DS. Comparison with previous datasets (bottom) shows (1) R3DS has more complete
scenes than the previous datasets; (2) Objects in R3DS are properly supported by
either architecture or other objects unlike the others (e.g. floating objects with no
proper support); (3) R3DS is annotated using the same 3D model for objects arranged
together (chairs by the dining table, couches arranged together).

– We show that the more complete layouts and support relations in our dataset
enable better performance and generalization in the Panoramic Scene Un-
derstanding task, and that our dataset offers a challenging benchmark for
future work in scene understanding.

2 Related Work

3D scene datasets. A spectrum of scene datasets have been used for scene
understanding tasks. One type provides annotated 3D reconstructions of real
scenes based on RGB-D videos [3, 6, 10, 16, 20, 27]. These datasets are usually
subject to the limitations of RGB-D reconstruction, typically containing noise,
artifacts such as holes, and poor reconstructions of thin structures, shiny objects,
or light sources. Another type of 3D datasets is authored by manually designing
3D object assets [5, 9] and inserting them into synthetic 3D scenes [8]. However,
such datasets lack the realism of real-world reconstructions and demand expert
knowledge, making them expensive to create. A third, hybrid approach which is
closest to our work creates 3D scene datasets by aligning existing object CAD
models to real world data.
Datasets that align CAD models to real world. There have been a number
of recent efforts in aligning CAD models with real-world data. Prior work [13,
22, 26] has annotated object images with 3D models, typically using keypoint
correspondences to perspective images. These perspective images usually do not
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depict a complete scene; they typically focus on one or two objects and are
limited in field of view, resulting in a sparse proxy of the real scene.

Another line of work aligns 3D CAD models to RGB-D scans either through
annotation as in Scan2CAD [1], or automated heuristics as in iGibson [19]. Open-
Rooms [12] extends Scan2CAD [1] with photorealistic material annotations and
focuses on inverse rendering tasks. Conceptually, these allow for more complete
synthetic scene proxies. However, statistics from these datasets show that they
are still relatively sparse (see Tab. 1). In addition, the poor quality of reconstruc-
tion makes aligning CAD models challenging without referring to the original
RGB images. A prominent exception is Replica [20] which has fairly high-quality
reconstructions and the artist-created Replica-CAD [23]. However, creating such
high quality “replicas” is labor intensive and costly. Szot et al . [23] report 900+
work hours required to model approximately 90 objects, resulting in a dataset
of limited scale with 105 different layouts of what is effectively a single room.

More recently, Maninis et al . [14] introduced CAD-Estate, which aligns CAD
models to RGB videos for over 19K spaces. Because the data is based on monoc-
ular video, the coverage of the spaces is incomplete. In addition, the annotation
is relatively sparse, with an average of only 6 objects per scene.
Datasets for panoramic scene understanding. There have been relatively
few datasets introduced for Panoramic Scene Understanding [7, 28, 29]. In the
initial PanoContext dataset [29], the data did not have aligned CAD models
and only included object cuboids. The ground truth data was collected on 2D
panorama images by annotating visible cuboid vertices; 3D cuboids were ob-
tained by minimizing the re-projection error from the annotated 2D vertices.
Moreover, these 3D cuboids and the room layout are obtained with the assump-
tion that the room layout is a cuboid and that the objects are vertically aligned.
Thus, the resulting object layout may deviate from the real arrangement of ob-
jects. More recently, datasets for Panoramic Scene Understanding have been
built by taking 3D scans, aligning CAD objects to them, and then generating
panoramas [7, 28]. Compared to these datasets, our R3DS is manually curated for
a larger number of distinct regions and provides support hierarchy and matching
object set annotations.

3 The R3DS Dataset

We describe the construction of the R3DS dataset and present a statistical anal-
ysis of the scenes it contains. Compared to previous datasets [1, 14, 28] (Fig. 2),
our scenes are more densely populated, and objects are annotated with a hi-
erarchy of support relations. Moreover, our dataset specifies matching object
instances in furniture arrangements. Figure 1 shows example annotations from
our dataset.

3.1 Dataset construction

We developed a 3D annotation interface (Fig. 3) showing a panorama of a room
from Matterport3D and allowing users to insert 3D CAD objects into a 3D scene
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Table 1: Comparison with 3D indoor scene datasets aligned with real-world
images, videos, or scans. Our R3DS dataset contains more densely populated an-
notations compared to other datasets, with objects from 110 different categories. We
report the unique models (#CAD), object categories (#Cat), object instances (#Ob-
jects) as well as average number of objects and object categories per annotation. For
Scan2Cad [1] and ReplicaCAD [23] the average is per scan. Note that ReplicaCAD
consists of 105 different layouts (arrangements) of effectively one room. CAD-Estate
has partial views into 19K spaces, many of which are 1-2 rooms. Of the datasets used
for panoramic scene understanding, our R3DS dataset covers more rooms with 842
panoramas over 22 room types. Replica-Pano (in gray) was not released, so we report
statistics from the paper. Our annotations per panorama are more complete and our
dataset has both support relations (Sup) and matching object instance sets (Match).

Dataset Source CAD Alignment Type Houses/Rooms Panos #CAD #Objects #Cat Ave Obj Ave Cat Sup Match

Scan2CAD [1] ScanNet [6] Annotator scan - / 1506 ✗ 3,049 14,225 35 9.4 4.1 ✗ ✗

OpenRooms [12] ScanNet [6] Scan2CAD [1] scan - / 1288 ✗ 2,651 16,014 38 12.4 6.3 ✗ ✗

ReplicaCAD [23] Replica [20] Artist recreation scan - / 105∗ ✗ 92 2,293 44 21.8 14.4 ✗ ✗

CAD-Estate [14] RealEstate10K [31] Annotator video 19,512 ✗ 12,024 100,882 49 6.3 3.4 ✗ ✗

Replica-Pano [7] Replica [20] Heuristic pano - / 27 2700 - - 25 - - ✗ ✗

iGibson-DPC [28] iGibson [19] Heuristic pano 15 / 100 1500 500 26,998 57 17.9 10.2 ✗ ✗

R3DS (Ours) Matterport3D [3] Annotator pano 20 / 370 842 3,784 19,050 110 22.9 10.4 ✓ ✓

which is visually overlaid on the panorama. The 3D scene is initially empty,
consisting only of 3D architectural geometry which specifies the walls, floor,
ceiling as well as the placement of openings (e.g. doors, windows, and other
openings) on the walls. We create this 3D architecture by taking 20 houses
from Matterport3D, constructing an initial architecture based on the region
and object annotations for the windows and doors, and manually refining the
placement of walls and openings. By combining panoramas and 3D architectures,
users can see through openings and annotate objects located in other rooms.

We ask annotators to select and place 3D object models to best match the
panoramic image. We use CAD models from Wayfair [17] and ShapeNet [4]
models collected from 3D Trimble warehouse. Wayfair provides a large collection
of furniture CAD models that match real-world products and are sized based on
real-world dimensions. However, it does not include bathroom fittings, electronic
equipment and kitchen appliances, for which we manually scale and align CAD
models from ShapeNet. Compared with ShapeNetCore, the CAD models we use
are already sized to real-world sizes (instead of normalized to a unit cube).

To assist the annotators, we provide segmented masks of objects visible in
the panorama. Since Matterport3D has annotated 3D object masks on the scans
we use those annotations, but it is also possible to run an instance segmenta-
tion on the panorama. When the user clicks one of these masks, a search panel
automatically opens and shows objects matching the clicked mask category la-
bel. For each mask, the annotator selects a matching object and positions and
aligns it to match the mask. Annotators are instructed to choose objects which
match the shape of the corresponding object in the panorama (rather than its
color or texture). To help annotators focus on shape, we render all 3D objects
in a neutral gray color. Annotators are also explicitly asked to select the same
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Fig. 3: R3DS annotation pipeline. Annotators see an empty scene (architecture
only). They then insert and manipulate 3D object models from a panorama viewpoint
to create a populated 3D scene proxy corresponding to the panorama.

3D asset for objects that should be the same; our interface provides a list of
recently selected assets to make this process easier. In addition, annotators are
instructed to add annotations for any objects that are not segmented (due to er-
rors in Matterport3D) through simple clicks. These additional objects provide a
more complete annotation that covers poorly reconstructed objects such as glass
tables, lamps, and other small objects. The interface enforces that each object is
placed on a support surface (either an architecture element or another object).
The annotator can review their work by toggling off the panorama overlay or
by switching to a perspective view of the 3D scene. For more annotated scene
examples and details on the annotation process please refer to the supplement.

3.2 Dataset analysis and statistics

We collect annotations for 20 Matterport3D houses with 808 panoramas in to-
tal. We discard panoramas taken on stairs or outside a house, since they have a
limited number of objects that can be placed. After filtering we have 769 panora-
mas for our analysis and experiments. For 73 panoramas, we collect two sets of
annotations for each, to obtain a total of 842 annotated object arrangements
across 22 different Matterport3D region types. The panoramas with two annota-
tions serve as a test of annotator consistency and add diversity. In total, R3DS
contains 19,050 object instances from 3,784 unique 3D CAD models spanning
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Fig. 4: Architecture comparison. Compared to Scan2CAD (no architecture)
and CAD-Estate (partial architecture), R3DS provides complete architecture with
door/window portals.

over 110 fine-grained object categories. Table 1 shows a comparison of overall
statistics with previous 3D indoor scene datasets. See the supplement for more
statistics about annotated objects.

Compared to prior datasets that align CAD models to real-world scenes,
R3DS is more complete, providing annotated object support hierarchies and
matching object instances. CAD-Estate [14] annotates RGB videos with 3D ob-
jects and architectural room layouts. However, the architecture is partial as the
videos have limited view (Fig. 4), and not all objects in the scenes are annotated
(Fig. 2). This results in annotations of objects floating mid-air and not properly
supported (e.g. lamp Fig. 2). Scan2CAD [1] also lacks support structure (e.g.,
lamp not supported by cabinet in Fig. 2). In addition, because Scan2CAD does
not provide clean 3D architecture on which objects are placed (Fig. 4), objects
on the floor are not always placed such that their bottom face is parallel with a
horizontal plane. In contrast, our R3DS scenes have an accurate support hierar-
chy by construction. OpenRooms [12] augments Scan2CAD with room layouts
representing the architecture. However, the architecture in R3DS is more com-
plex and realistic, especially due to inclusion of more doors (1.92 doors per room
in R3DS vs 0.67 in OpenRooms).

Evaluation of CAD object annotation quality is non-trivial as the ‘ground
truth’ from the semantically annotated 3D reconstructions is itself imperfect. We
measured how closely our annotated CAD objects conform to the real objects
using the average 2D IoU between CAD object mask and ground truth 2D mask.
R3DS is at 42.6% vs 38.5% for Scan2CAD, across 8 common object categories
(bed, sofa, chair, cabinet, tv/monitor, table, shelving, bathtub).

Of the datasets previously used for Panoramic Scene Understanding, Replica-
Pano [7] has not been released, and iGibson-DPC [28] is the only dataset with
synthetic panoramic images annotated with 3D objects and room layout. iGibson-
DPC is built on scenes from iGibson [18] by randomly replacing objects with dif-
ferent models from the same category and rendering using the iGibson simulator
to render panoramas. The selection and placement of objects in iGibson-DPC is
based on heuristic algorithms, while our R3DS is manually annotated and placed
3D models are verified in terms of match and alignment to the object masks.
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Moreover, iGibson-DPC contains unrealistic object arrangements (e.g., floating
TV in Fig. 2).

4 Experiments

We showcase the value of R3DS on the Panoramic Scene Understanding (PanoSun)
task [7, 28, 29]. Given an input RGB panorama, the goal is to estimate the room
layout, detect objects in 2D, estimate their 3D oriented bounding boxes and
also reconstruct 3D object meshes. Our experiments show that methods trained
on R3DS data benefit from its realism and generalize better when evaluated on
photorealistic images. We also investigate the role of object support hierarchy
information in improving performance.

4.1 Task setup

Method. DeepPanoContext (DPC) [28] predicts the room layout, detects ob-
jects in 3D and recovers object meshes from a panorama image using a relation-
based graph convolutional network and a differentiable relation optimization
procedure. Since DPC has a publicly-available implementation, we use it to
benchmark the R3DS data on the PanoSun task. We keep all hyperparameters
unchanged except lowering the relation optimization loss weight of 3D bounding
box back-projection from 10 to 1, since the ground truth 2D masks are noisy.
Datasets. We train and evaluate DPC on the iGibson-DPC (IG) [7, 18, 28],
Structured3D (S3D) [30], and R3DS datasets. Zhang et al . [28] render 1,500
panoramas from 15 iGibson houses composed of 500+ objects spanning 57 object
categories. We use the same data and splits for IG. Structured3D consists of 3500
houses and around 18K photo-realistic rendered panoramas in total. We use 14K
for training and the remaining 4K for testing. Note that Structured3D does not
provide ground truth object meshes.

To prepare R3DS for this task, we generate the ground truth room layout
from the 3D architecture based on the camera viewpoint and obtain 3D ori-
ented bounding boxes (OBBs) from all objects. We use 2D object masks from
the Matterport3D mesh instance segmentation. We consider three variants of
R3DS based on the input panorama: R3DS-real where we use the Matterport3D
panoramas, R3DS-syn where we use rendered panoramas (at the same camera
poses) from the annotated synthetic scenes, and R3DS-mix where we combine
the two types of panoramas and double the available data. We follow the MP3D
house split and merge the train and val sets to obtain a disjoint split of 15 train
and 5 test houses. Based on the split, we have 696 annotated panoramas for
train and 146 for test. To fairly evaluate methods trained on different datasets,
we curate a list of 25 object classes common to all datasets.
Metrics. Following Zhang et al . [28] we use separate metrics for room layout
estimation, 3D object detection, and scene relation prediction. For room layout
estimation, we use 2D IoU for predicted 2D floorplan, 3D IoU for lifted 3D room
geometry, and dRMSE for predicted depth with respect to the camera location.



R3DS 9

Table 2: Room layout estimation on R3DS-real test set. DPC [28] was pre-
trained on IG and S3D. For the last three rows, we fine-tune the pretrained weights on
variants of R3DS.

Train 2D IoU ↑ 3D IoU ↑ dRMSE ↓

DPC [28] 53.4 50.3 0.682
R3DS-real 55.1 53.1 0.610
R3DS-syn 59.0 56.1 0.629
R3DS-mix 59.6 57.0 0.572

Table 3: Cross-dataset evaluation for the Panoramic Scene Understanding
task. We evaluate 3D detections with class-agnostic IoU and mAP at IoU of 0.15, and
report object collisions. The highlighted rows indicate the most challenging scenario.

T
es

t

Train 3D detection ↑ Collision ↓ Attachment F1 ↑

IoU mAP mesh arch obj wall floor ceil

IG

IG 27.5 30.3 1.662 2.594 53.1 76.8 95.0 86.2
IG+R3DS 24.0 30.2 1.404 2.254 59.7 64.1 94.6 2.7
R3DS-real 17.3 13.4 0.242 1.456 38.8 64.0 92.8 0.0
R3DS-syn 23.2 14.2 0.480 1.938 48.5 46.7 93.8 28.6
R3DS-mix 21.6 15.6 0.434 1.248 43.1 67.2 90.1 9.8

S3
D

IG 19.5 3.5 1.016 2.651 50.9 68.7 90.8 11.6
IG+R3DS 19.7 7.0 0.868 2.089 52.0 67.4 91.2 1.8
R3DS-real 18.4 7.1 0.600 2.598 45.0 61.6 89.7 0.7
R3DS-syn 19.0 4.8 0.644 2.561 49.3 49.7 91.2 2.4
R3DS-mix 19.6 7.5 0.463 1.673 47.8 64.1 87.2 0.9

IG 15.6 5.9 0.575 1.959 53.8 50.7 51.2 0.0
IG+R3DS 17.5 14.1 0.281 1.267 49.5 61.6 58.6 0.0
R3DS-real 16.4 15.0 0.226 1.562 44.0 57.3 58.9 0.0
R3DS-syn 14.0 8.4 0.390 1.664 54.1 40.6 49.1 0.0R

3D
S

R3DS-mix 17.6 15.8 0.171 1.007 48.5 58.3 60.1 0.0

For 3D object detection, we report bounding box-based class-agnostic 3D IoU
as well as mean average precision (mAP) across the 25 object classes, where an
IoU greater than 0.15 counts as a “true” result. For scene relation prediction, we
report F1 scores for relation classification. We also report the average number
of objects colliding with each other or with architectural structures (wall, floor,
ceiling). Specifically, we follow Zhang et al . [28] and measure collisions using the
Separating Axis Theorem (SAT) to test whether object bounding boxes overlap.
Since bounding box-based collision is a poor proxy for real-world physical colli-
sion, we also compute mesh-based collision by checking if the meshes for object
pairs have any interpenetrating triangles [11, 24].
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IG S3D R3DS-mixR3DS-realR3DS-synPanorama

Fig. 5: Qualitative results for cross-dataset Panoramic Scene Understanding
task. Correct and incorrect object detections shown in green and red boxes. Ground
truth room layout and meshes shown in gray color, while layout prediction is in yel-
low. Training on R3DS leads to fewer errors compared to training on other datasets,
especially when mixed with real data.

4.2 Results

1) Does R3DS help DPC generalize to real images? Since the original
DPC work only trained and evaluated on synthetic data, it is unclear how well it
performs on realistic panoramic imagery. We hypothesize that training on R3DS
will lead to better performance. We separately show results on room layout
estimation (Tab. 2) and 3D object detection.

Room layout estimation. For room layout estimation, DPC uses Horizon-
Net [21] pretrained on iGibson (IG) and Structured3D (S3D) panoramas. This
model achieves good performance on IG data (91.0 3D IoU). When directly test-
ing the official pretrained model on R3DS-real panoramas, we notice a significant
performance drop compared to results on the rendered panoramas from iGibson
(Tab. 2 shows that the 3D IoU drops to 50.3). By finetuning the pretrained
model with R3DS-real , we can predict more precise room layouts for real clut-
tered scenes. Even only trained on R3DS-syn, we outperform the original DPC
model by 5.6% and 5.8% on 2D and 3D IoU, respectively. This is likely due
to renderings from R3DS-syn reflecting more realistic object arrangements in a
room instead of pushing all objects against walls. Best performance on 2D IoU
(59.6), 3D IoU (57.0) and depth RMSE (0.572) is achieved by fine tuning on
R3DS-mix .
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Table 4: Performance of models trained on three synthetic datasets (IG, S3D, and
IG+S3D) evaluated on the R3DS-full dataset, where “full” indicates all 840 panoramas
are used for testing.

3D detection Collision ↓ Support F1 ↑

Train IoU↑ mAP↑ mesh arch obj floor ceil

IG 14.2 5.2 0.703 1.639 4.1 85.3 0.0
S3D 16.4 10.0 0.112 1.226 3.1 86.8 0.0
IG+S3D 17.1 9.7 0.133 1.162 3.3 84.8 0.0

Object detection. For 3D object detection, we train DPC on different data
settings and conduct a cross-dataset evaluation (see Tab. 3). To investigate
how models perform on out-of-distribution scenes, we evaluate models on Struc-
tured3D, as its images are near-realistic. To explore whether DPC training ben-
efits from R3DS given the same amount of data, we create a special data input
IG+R3DS that combines iGibson and R3DS panoramas by randomly replacing
half (500) of iGibson data with R3DS-real data. The results show that IG+R3DS
performs almost the same as IG with fewer collisions on iGibson, but it remark-
ably outperforms IG on the test set of R3DS and S3D by 8.2 and 3.5 improve-
ments on 3D mAP, respectively. It also averages 0.221 fewer mesh collisions.
There are noticeable performance gaps on iGibson for models trained on R3DS
data likely due to the data domain shift. Among the three variants of R3DS data,
R3DS-mix outperforms the others on all three test sets regarding 3D IoU and
3D mAP with the fewest mesh and architecture collisions. Although R3DS-syn
underperforms on R3DS and S3D test sets, it achieves better performance than
IG with even less data.

Scene relation classification. We report F1 scores for identifying attachment
relationships of objects to other objects and architecture elements (see Tab. 3).
We note that models trained with synthetic renderings perform better than those
trained on real images. That is because synthetic renderings present cleaner and
simpler scenes with fewer objects than real world and simpler illumination such
that DPC finds it easier to learn object-object and object-architecture relations.
Also, note that the predictions of object-ceiling attachments can be extremely
low because few objects are attached to the ceiling in the ground truth data. We
show qualitative examples in Figure 5.
2) Is R3DS a challenging, high-quality test set? How would a model
trained on pure synthetic data perform on complex real data (R3DS)? Due to
its modest scale, we propose using R3DS as a challenging, high-quality test set
rather than a train set. Specifically, we evaluate the synthetic-to-real perfor-
mance of DPC by training on iGibson and/or Structured3D and testing on all
panoramas in R3DS-real. Table 4 shows that a model trained with Structured3D
performs the best (10.0 3D mAP and 0.112 mesh collision) as it observes the
most photo-realistic images. DPC benefits from the synthetic data for higher
bounding box IoUs, since it possesses accurately aligned 3D bounding box and
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(a) Object appearance gap (60%) (b) Common occlusions (76.7%)
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Fig. 6: Error analysis on R3DS panoramas using DPC pretrained on S3D.
Typical prediction errors are categorized into 4 groups: (a) Appearance gap between
real and synthetic images. (b) Detection failure due to common occlusions. (c) Bad
performance of monocular 3D prediction. (d) Perception error for objects in mirrors.
Numbers in parentheses mean the error rates.

Heuristic Support R3DS SupportPanorama

Fig. 7: Comparison between heuristic and R3DS support relations. Dark lines
between objects show support relations. Heuristic support often mistakenly assigns
relations to spatially close objects. In contrast, R3DS support relations are annotated.

more unoccluded objects. However, mAP performance is lower due to worse ob-
ject recognition ability. All models struggle to predict correct object-wise support
relations but do a better job of predicting object-floor support relations.

We conduct error analysis on 120 randomly sampled panoramas using the
model pretrained on S3D to identify typical errors (see Fig. 6). Errors are cat-
egorized into 4 groups: (a) 60% panoramas have 2D perception errors due to
the synthetic-to-real appearance gap; (b) 76.7% panoramas show detection fail-
ures due to occlusions; (c) 65% panoramas exhibit correct 2D detections but fail
to correctly perform 3D predictions; and (d) 15.6% out of 45 panoramas with
mirrors mistakenly predict virtual objects in mirrors.
3) Are R3DS support relations helpful for PanoSun? We investigate
whether the support relationships between objects provided in our R3DS scene
hierarchy help boost performance of holistic scene understanding. We augment
DPC’s Relation Scene-GCN module with additional support relation prediction
branches. Besides obtaining explicitly annotated scene support relations from
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Table 5: Performance on R3DS-real of DPC models trained on variants of R3DS with
different support relation settings. We compare the original model without support
(none) against models supervised with support that is heuristically computed (heur)
or annotated from R3DS (anno). Classification results are evaluated on annotated
ground-truth scene hierarchy.

3D detection Collision ↓ Support F1 ↑

Train Supp. IoU↑ mAP↑ mesh arch obj floor ceil

R3DS-real
none 16.4 15.0 0.226 1.562 - - -
heur 16.2 14.1 0.219 1.329 3.2 69.9 0.0
anno 16.6 15.9 0.349 1.404 38.5 94.4 0.0

R3DS-syn
none 14.0 8.4 0.390 1.664 - - -
heur 14.6 7.8 0.281 1.301 4.6 82.9 52.6
anno 14.3 8.2 0.349 1.219 32.0 95.0 0.0

R3DS-mix
none 17.6 15.8 0.171 1.007 - - -
heur 19.2 17.7 0.151 1.267 3.6 83.7 0.0
anno 18.6 18.2 0.158 1.308 12.0 96.2 85.8

Table 6: Comparison of the average number of bounding box and mesh-
based object collisions per scene in IG and R3DS. R3DS exhibits more bounding
box-based collisions, but almost none of these are actual physical collisions between
object meshes. Measuring collisions between bounding boxes is a poor collision measure
for fully-populated, real-world scenes.

Datasets Mesh Collisions Box Collisions

obj-obj obj-wall obj-floor obj-ceil

IG - 1.185 0.075 0.000 0.790
R3DS 0.0006 2.823 0.388 0.035 0.064

R3DS, it is also possible to compute heuristic support relations from object
bounding boxes. Specifically, an object is supported by another if their bound-
ing boxes intersect within tolerance distance of 0.1m and the centroid of the
former object is higher than that of the latter. Support by wall/floor/ceiling is
calculated in the same way without the height judgment. This definition is sim-
ilar to how DPC defines object attachment. Figure 7 compares these two ways
of computing support relations, showing that heuristic computation can mis-
takenly designate support relations to two nearby objects. Table 5 shows that
incorporating support relation prediction indeed influences the performance of
DPC. Heuristic support information may worsen 3D object detection (mAP in
R3DS-real and R3DS-syn), but it eliminates mesh collisions the most. Learning
support relations from R3DS annotations leads to a 2.4 improvement on mAP
in R3DS-mix , although the classification F1 score is low.
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Table 7: Ablation of relation optimization (RO) on R3DS-real. The 2nd and
3rd row remove optimization terms in RO. The last row replaces bounding-box colli-
sions with mesh collisions.

Rel. Opt. 3D mAP ↑ Mesh Collisions ↓ Box Collisions ↓

obj-obj obj-arch

DPC 18.2 0.158 0.062 1.308
w/o obj col 18.9 1.342 1.130 1.301
w/o obj col+tch 19.6 1.219 1.062 1.295
w/ mesh col 19.7 1.027 0.856 1.394

4) Is relation optimization (RO) effective on R3DS? Test-time relation
optimization (RO) was introduced by Zhang et al . [28] to reduce physical vi-
olations, floating objects, and misalignment between objects and architecture.
The original cost function based on bounding box collisions succeeds in opti-
mizing object poses, since there are few such collisions in the IG data originally
used for evaluation (see in Tab. 6). However, the same data assumption does
not hold for R3DS, which has more bounding-box-based collisions but nearly
zero mesh-based collisions. We ablate the design of RO on R3DS-real in Table 7.
By removing two optimization terms (bounding-box-based object-wise collision
and touching step-by-step), the model outperforms the original one in 3D mAP
(+1.4) but degrades in mesh-based and box-based collisions. We show that using
mesh-based collision optimization leads to the best performance. The increase in
collisions is unsurprising as the R3DS data reflects more cluttered real interiors.
Limitations. Our dataset construction relied on 3D architectures for each Mat-
terport3D scan which are simplifications of the geometry of the real environment.
One issue is imperfect wall positions, resulting in objects attached to these vir-
tual walls being offset from the true surface. In addition, objects in our 3D scenes
were placed without regard to the materials, meaning that the detailed surface
appearance does not match that of the observed object. Future work can in-
vestigate transfer of surface appearance to the synthetic objects by projecting
textures from the RGB-D data and 3D reconstructed meshes.

5 Conclusion

We introduced the R3DS dataset. R3DS provides more complete, densely pop-
ulated, and richly annotated synthetic 3D scene proxies of real-world environ-
ments with linked panoramic images. We showed the usefulness of R3DS on the
Panoramic Scene Understanding task. Our experiments demonstrate the value of
realistic synthetic recreations in this task, in particular through the use of object
support information. While we focused on the PanoSun task, R3DS can also be
useful for other tasks such as single-view shape retrieval, single-view object pose
estimation, and panoramic scene graph prediction.
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