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Abstract. Neural Radiance Fields (NeRFs) are trained to minimize the
rendering loss of predicted viewpoints. However, the photometric loss
often does not provide enough information to disambiguate between dif-
ferent possible geometries yielding the same image. Previous work has
thus incorporated depth supervision during NeRF training, leveraging
dense predictions from pre-trained depth networks as pseudo-ground
truth. While these depth priors are assumed to be perfect once filtered
for noise, in practice, their accuracy is more challenging to capture. This
work proposes a novel approach to uncertainty in depth priors for NeRF
supervision. Instead of using custom-trained depth or uncertainty pri-
ors, we use off-the-shelf pretrained diffusion models to predict depth and
capture uncertainty during the denoising process. Because we know that
depth priors are prone to errors, we propose to supervise the ray ter-
mination distance distribution with Earth Mover’s Distance instead of
enforcing the rendered depth to replicate the depth prior exactly through
L2-loss. Our depth-guided NeRF outperforms all baselines on standard
depth metrics by a large margin while maintaining performance on pho-
tometric measures.

Keywords: Neural radiance fields · Depth prediction · Monocular depth
priors · Earth Mover’s Distance

1 Introduction

Neural Radiance Fields (NeRFs) [15] have demonstrated an impressive ability
to render novel views of a known scene. Especially in object-centric and well-
sampled scenes, NeRFs can generate photometrically and geometrically consis-
tent images from previously unseen view points. However, in camera-centric and
sparse view scenarios, neural radiance fields have yet to show the same fidelity.
Additionally, while producing renderings of high quality, some NeRFs fail to
capture the underlying geometry of a scene accurately, which is essential for
applications in robotics or augmented reality [1, 3, 27, 36]. Some reasons include
a smaller overlap between images, occlusions between views, and photometric
inconsistencies due to the camera’s auto exposure.

To improve the robustness of NeRFs in complex indoor settings, previous
work [7,22,25,26] has incorporated depth supervision during training. The idea
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Fig. 1: Left: Predicted monocular depth priors are not perfect and false interpretations
of a scene’s geometry are unavoidable. Blindly forcing a NeRF to replicate such priors
(e.g. through L2-loss) leads to high geometric losses. Right: Overview of our method.
We use depth priors to guide NeRF training via Earth Mover’s Distance (EMD).

is that a better understanding of the underlying scene geometry will enhance
image rendering. However, dense depth ground truths are rarely available.

Fortunately, a line of work has shown that depth estimation networks have
become accurate at predicting the layout of indoor environments [2,11,17,20,21]
and they can be used as pseudo ground truth for NeRF training. But when used
ineffectively, depth supervision can fail to improve the NeRF’s depth renderings,
suggesting a deficient understanding of scene geometry. One reason is that, al-
though depth prediction with neural networks has improved dramatically, there
is still ambiguity owed to the ill-defined nature of estimating depth from one
view, as many geometric layouts can lead to the same image. Partial occlusion
of objects, shading, and reflections further challenge monocular depth prediction,
leading to misinterpreted geometries.

Several methods have addressed the described ambiguity in monocular depth.
Some works assume that, once a depth prior is accepted, all pixels within an
image are strong pseudo ground truths. [26] proposed to incorporate expen-
sive, custom-trained multi-modally distributed depth hypotheses of which one is
picked for supervision at each training step. However, we observe that generating
additional depth predictions comes at the price of generating harmful noise. [25]
treats patches individually, but assumes that all pixels in a patch are either a
perfect ground truth or not useful at all, when in practice all pixels have varying
levels of uncertainty. Other methods do consider uncertainty at the pixel-level,
but treat depth priors as normally distributed around the true depth, which is
over-simplified and empirically does not hold [7, 22]. To our knowledge, none of
the previous methods have captured notions of uncertainty in depth priors and
leveraged them for NeRF training effectively.

We argue that although monocular depth predictions can be highly inaccu-
rate, some are useful—so it is crucial to avoid a strict adherence to the depth
prior in NeRF’s predictions. Depth priors should be a suggestion. We propose
to supervise the ray termination distance of a NeRF with the Earth Mover’s
Distance (EMD) as illustrated in Figure 1. This invites the NeRF to sample
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ray termination distances close to the depth prior, without directly competing
for the final weighting of ray termination distances with the photometric loss.
Unlike previous works, we avoid L2-losses that will, inevitably, enforce incorrect
depth as well, such as the missed window blinds in Figure 1. Instead, EMD allows
us to maintain useful information about the distribution of the ray termination
distances, while avoiding restrictive assumptions such as normally distributed
errors, unimodality, continuity, or non-zero probabilities such as KL-divergence.

Our work employs out-of-the-box pre-trained generative diffusion models as
depth priors and leverages the denoising process for additional uncertainty es-
timation. This provides accurate depth priors and uncertainties for free. These
uncertainty maps tell us when the depth model is unsure, and when we should
rely more on the RGB loss. We then introduce an approach to weighing our
novel depth loss and the photometric loss that is inspired by Focal Loss [14].

In summary, we propose a new way to think about uncertainty in depth
supervised NeRF. We provide novel techniques to incorporate pixel-wise uncer-
tainty, without imposing restrictive assumption on the nature or distribution of
the uncertainty, the depth prior, or NeRF ray termination distances. We out-
perform all baselines on all depth metrics by at least 11% on ScanNet [5], and
outperform the most closely related baseline by up to 54% on the relative error.
The results speak to our method’s ability to understand the underlying geome-
try of a scene rather than just rendering accurate looking images based upon an
incorrect understanding of the 3D world.

2 Related Work

Monocular depth estimation: Depth estimation from a single view is inherently
ambiguous but many works have achieved impressive depth accuracy [2, 11, 13,
23, 30, 31, 34]. [2] describes a method for depth estimation that generalizes well
to multi-domain data by bridging the gap between relative and metric depth
estimation. [31] uses a large-scale dataset and canonical camera transformations
on input views to resolve the same metric ambiguity in zero-shot. [17, 29, 30]
demonstrate how rich representations from self-supervised pretraining enables
strong performance in dense visual perception. Most recently, [11, 23] leverage
image-conditioned denoising diffusion in the depth estimation pipeline. In our
work, we capitalize on the robust uncertainty estimates readily available in gen-
erative approaches to depth prediction. We use the monocular depth estimation
network DiffDP 1 [11] to provide depth pseudo ground truths for NeRF.

NeRF with sparse views: Neural radiance fields [15] have become a popular
choice for 3D scene representations due to their ability to render accurate novel
views. NeRF comprises of a neural network that takes as input coordinates and
camera parameters and outputs color and density. However, the original NeRF
relies crucially on many inputs views from the scene of interest in order to
faithfully reconstruct the scene geometry. Additionally, it is known that naively
1 Both [11] and [22] are called DDP, so we refer to them as DiffDP and DDPrior.
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training NeRF tends to oversample empty space in the scene volume, leading to
artifacts and inaccurate depth prediction. In this work, we consider the setting
of camera-centric indoor environments with a few dozen input images. As the
overlap between images is low, additional regularization is crucial.

Thus, recent works [7, 9, 10, 16, 22, 26, 33] have enhanced NeRF when only
sparse views are available. Many of these rely on data-driven priors or regu-
larization to guide NeRF optimization. [33] equips NeRF with per-view image
features from a CNN encoder that is trained on large multi-view datasets, en-
abling scene reconstruction from as little as one view in a single forward pass. [10]
supervises NeRF by enforcing consistency amongst CLIP [19] representations of
arbitrary views. [16] samples unobserved views and regularizes the geometry and
appearance of rendered patches from these views.

NeRF with depth supervision: Amongst these, an interesting line of work explores
supervising NeRF construction with depth [7,9,12,22,25,26,28]. Notably, few of
these works explicitly identify the inherent uncertainty in depth predictions. [7]
supervises NeRF ray sampling with COLMAP-derived [24] depth and models
noise with a Gaussian centered at the depth predictions. [22] train a custom net-
work in-domain to predict uncertain areas. However, the model overfits to the
training case, where high depth errors occur at the edges of objects. [9, 18] fo-
cus on object-centric applications with large overlap between train images. [18]
employs predicted depth by using the difference between sample location and
estimated depth as conditioning for the NeRF and for depth-guided ray sam-
pling. [9] supervises NeRF optimization by relaxing hard constraints in depth
supervision to softer, more robust local depth ranking constraints. Although this
approach acknowledges potential noise in pretrained depth network estimates, it
does not directly incorporate uncertainty to guide depth supervision for NeRF.
SCADE [26] leverages 20 ambiguity-aware depth proposals generated by a costly
out-of-domain prior network and a space-carving loss with mode-seeking behav-
ior to supervise ray termination distance in NeRF. We found that while some
depth hypotheses can be accurate, many of these proposals may also be poor
predictors of scene geometry. This finding challenges the utility of having mul-
timodal depth proposals for resolving ambiguity (see Figure 8), when NeRF
naturally captures multimodal ray termination distributions. DäRF [25] is most
closely related to our work and, like our work, proposes to use a standard pre-
trained depth estimation network to supervise NeRF training. Yet, DäRF does
not consider pixel-wise uncertainty and supervises the NeRF-rendered depth
directly instead of guiding the ray termination distance distribution.

3 Method

An overview of our method is shown in Figure 2. In this section, we describe
each of the three components of our pipeline (depth prior, EMD-guided ray
termination sampling, and photometric-geometric loss balancing) in turn.
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Fig. 2: A detailed schematic of our depth-guided NeRF optimization. (i) A pretrained
diffusion model for depth prediction, DiffDP [11], provides depth priors. Measuring the
progression of depth predictions throughout the denoising process provides uncertainty
maps. (ii) Given inputs poses (x,y,z,θ,ϕ) a network F outputs RGB value and density.
From the outputs, we derive weights w that, when normalized, serve as a piece-wise-
constant probability density function. We can then construct a cumulative distribution
function (CDF) from which we sample new ray termination distances. We supervise
these samples with the Earth Mover’s Distance (EMD) to the depth prior. (iii) Finally,
we weigh the photometric and depth losses according to the DiffDP-derived uncertainty.

3.1 Background

The core of our work is a standard neural radiance field (NeRF) [15]. Given a col-
lection of images {Ii}i=1,...,N and their corresponding SfM camera poses, we aim
to train a network to render images from novel, unseen views. Similar to exist-
ing works, we encode a NeRF as multilayer perceptron FΘ : (xi, yi, zi, θi, ϕi) →
(ci, σi) that takes camera position and viewing direction as input and outputs
color c and volume density σ. To render depth from a given camera view, we
cast a ray r through the origin o of the camera and a pixel projected into world
space. We sample termination distances from the ray within a predefined interval
(near, far) and pass them through a neural radiance field network that predicts
their weights wi as probability that the ray can traverse space without obstruc-
tions until reaching the hypothesis in question: wi = Ti(1− exp(−σiδi)), where
δi is the distance between samples, and Ti = exp(−

∑i−1
j=1 σjδj). The final pre-

dicted color Ĉ and depth d̂ is then the weighted average of all l ray termination
distances along r

Ĉ(r) =
∑
l

wlcl and d̂(r) =
∑
l

wldl. (1)

A standard NeRF is supervised with the photometric loss between observed
color and the expected color

Lphoto = ||Ĉ(r)− C(r)||22. (2)

But in a setting with only N < 20 images to learn from, and frequent occurence
of large untextured areas such as white walls, a NeRF is easily underconstrained
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and does not learn the underlying geometry sufficiently. To improve geometric
understanding, and to provide additional guidance during training, we incorpo-
rate depth supervision.

3.2 Depth Priors and Uncertainty

As monocular depth estimation is ambiguous, we require a measure of trust in
the predictions. While many networks display promising depth prediction capa-
bilities, generative models, especially denoising diffusion models, additionally let
us reason about the depth generation process. DiffDP [11] is a state-of-the-art
image-conditioned diffusion model designed for visual perception tasks like dense
segmentation and depth estimation. For depth estimation, the network is trained
to denoise noised ground truth depth maps using image features as conditioning
for the denoising process. At inference, multi-resolution features are extracted
from the input image and concatenated with random noise, where a lightweight
decoder gradually denoises the input to generate a final depth prediction. Given
an input image I, DiffDP formulates its denoising process as

pθ(z0:T |I) = pθ(zT )

T∏
t=1

pθ(zt−1|zt, I), (3)

where zt ∼ N (0, I) and z0 corresponds to the models final depth estimate.
During this process, the network recursively updates its estimate. Pixels that

the model is unsure about will be updated more often than others. We propose
to use this measure as a proxy for uncertainty that is not focused on areas of
high error, such as borders of objects, but instead captures uncertainty in the
depth generation process itself.

To obtain the uncertainty of a depth estimate, u(z0), we compare the current
estimate to the previous one at each time step t and report the count as:

c(z0:T ) =
1

T

∑
t=T,...,1

1|zt−zt−1|≥τ . (4)

Let M(·) denote a function that mirrors an image, then the uncertainty for an
image x is

U(z0:T |I) =
c(z0:T |I) +M(c(z0:T |M(I)))

2
. (5)

We empirically found this measure to find extreme cases of uncertainty easily,
while emphasizing somewhat uncertain areas less. To capture those areas as
well, we augment the uncertainty map with a second dimension of uncertainty:
We compare the final depth prediction of an image with the prediction of its
mirrored image. The final uncertainty for an image I is then

u(z0:T |I) = U(z0:T |I) · ||(z0|I)−M(z0|M(I))||1. (6)

An example uncertainty map is depicted in Figure 3, where DiffDP misinterprets
the geometry of the electrical box, but highlights the same area as uncertain.



Depth-guided NeRF Training via Earth Mover’s Distance 7

Input image Ground truth depth DiffDP prediction DiffDP uncertainty

Fig. 3: Example of DiffDP depth prediction that misinterprets the depicted geometry.
Although the predicted depth has errors, the uncertainty map is able to highlight areas
of large errors. This allows us to tune down the depth loss in unreliable areas.

3.3 EMD-Guided Sampling

Our aim is to provide NeRF with depth suggestions. Even though we use a state-
of-the-art depth prior, and an uncertainty measure that provides information
about unreliable depth priors, we should still not assume that the prior is a
perfect pseudo ground truth. Minimizing a norm between the NeRF-rendered
depth and the depth prior, such as proposed in the concurrent work DäRF, would
force the NeRF to approximate the depth priors irrespective of their accuracy.
This could not only lead to a wrong understanding of the underlying scene, but
also interfere with the RGB loss, which propagates gradient updates through
shared layers. We thus seek to guide the ray termination distance distribution
with the depth prior instead of directly supervising the NeRF-rendered depth.

A second motivation to leverage the distance distribution stems from NeRF’s
design. The volume density σ(y) represents the differential probability that a ray
terminates at y. We found empirically, that the learned ray termination distance
distribution is rarely unimodal. So if we supervised the expected depth in Eq. 1
directly, we would collapse this probability into its expected value and lose this
valuable information about the distribution. We thus supervise the ray termina-
tion distance distribution as proposed in SCADE [26] rather than supervising the
predicted depth. To this end we normalize the predicted weights,wi, to obtain a
piecewise-constant probability density function along a ray: ŵi = wi/

∑l
j=1 wj .

We can then construct the cumulative density function (CDF) and sample
new ray termination distances y = y1, y2, ...yN through inverse transform sam-
pling. The distribution of these samples can then be supervised in lieu of the
less informative NeRF-sampled depth. But while SCADE models uncertainty in
depth priors by providing 20 samples to choose from, the method still assumes
that the chosen hypothesis is a perfect pseudo ground truth. We aim to relax
this assumption. We instead propose to supervise the ray termination distance
distribution with the Earth Mover’s distance between the NeRF samples and
the depth prior z0:

LEMD = EMD(y, z0). (7)

We use Earth Mover’s distance, as it naturally lends itself to compare proba-
bility densities or discrete histograms. It does not require satisfaction of assump-
tions such as that for two distributions P and Q, Q(y) = 0 =⇒ P (y) = 0, ∀y,
which KL divergence would require. Earth Mover’s distance also does not require
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that y1, y2, ...yN are unimodally distributed, or that the error between NeRF-
sampled ray termination distances and depth prior is normally distributed. Earth
Mover’s distance is therefore equipped to address complex uncertainties in our
depth priors, such as those we empirically observe and that previous methods
have not sufficiently captured. As EMD is not differentiable, we use Sinkhorn
Divergence [8] to approximate the LEMD during training.

3.4 Loss Weighting

Given the standard photometric loss and our novel depth guidance framework,
we leverage the uncertainty we can capture for free from DiffDP’s generation pro-
cess to downweight pixels with especially uncertain depth prediction. Our work
aims to provide a framework in which RGB-losses and depth losses complement
each other: If we are certain about the depth of a pixel, we wish to upweight the
depth loss. When we are unsure, we would rather rely on the photometric loss.
Loosely inspired by Focal Loss [14], we define the total loss for a ray as

L = (1 + u)γLphoto + λ(1− u)γLEMD, (8)

where λ is a balancing weight and γ controls the impact of the uncertainties u.
Opposed to Focal Loss which increases the weight of uncertain examples to force
the model to learn hard cases, we apply less weight to uncertain pixels.

4 Results

In this section we evaluate the proposed method in detail, compare it to existing
work, and explore the importance of our design choices.

4.1 Experimental Setup

We evaluate our method on three ScanNet [5] scenes as chosen by DDPrior,
DäRF, and SCADE [22,25,26]. Each scene consists of 18-20 training images and
8 test images. To measure the generalization capability of our framework, we
also evaluate on an additional dataset which we refer to as ScanNet+ containing
additional scenes from ScanNet. Unless otherwise stated, all experiments are
performed and averaged over the three standard ScanNet scenes. For evaluation,
we use the standard photometric measures PSNR, SSIM, and LPIPS [35] as used
in the original NeRF paper [15] and in all baselines we compare to. As we are
especially interested in the ability to render accurate depths, we adapt the depth
metrics used in DäRF, namely relative error (Rel) and RMSE [25].

We compare our work to several baselines that use depth-supervision for
NeRF training in indoor environments. The most related baseline is DäRF [25],
as it also leverage a frozen out-of-the-box pre-trained monocular depth prior
to supervise NeRF training. SCADE is related to our work as well, but uses a
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Fig. 4: Good RGB rendering quality does not imply good geometric understanding. In
this test example, SCADE [26] accurately renders the image (PSNR and SSIM above
average), while misinterpreting the geometry of the depicted scene (five-fold average
RMSE). The model does not capture the cabinet below the desk in the depth map.

custom-trained depth prior, and does not evaluate the depth accuracy of their
method. As SCADE provides pre-trained weights, we evaluate their method on
all depth metrics. Additional baselines are a standard NeRF [15], DS-NeRF [7],
and DDPrior [22], where we use the results reported by DDPrior. We report re-
sults on DDPrior using an out-of-domain prior as trained by SCADE, to replicate
our setting where the depth network is trained on a different dataset.

4.2 Implementation Details

Our depth prior is the pretrained DiffDP network that was trained on the indoor
depth dataset NYU [4]. During training we initialize the scale of the depth
priors as 1, and learn the scale with a small learning rate. The uncertainty
maps from DiffDP are derived once during construction of the prior and used
at the beginning of NeRF training (normalized to [0, 1]). We use 1024 rays per
batch, and sample 64 and 128 ray termination distances for the coarse and fine
network, respectively. For the Earth Mover’s distance we sample an additional
128 samples. We use the geomloss implementation of Sinkhorn with standard
hyper-parameters. We employ dropout layers (p = 0.1) and weight decay (λwd =
1e−6) for regularization. Further details of the prior construction, NeRF training,
and evaluation can be found in the supplementary material.

4.3 Reconstruction Quality

In this section we evaluate our method’s ability to render novel views, and,
importantly, its ability to understand the geometric layout of a scene. We thus
report both photometric and depth-based metrics. But first, we demonstrate that
photometric and depth errors do not always go hand in hand. Observe in Figure
4, that a model can yield great photometric results, while misunderstanding the
geometry. In the illustrated example, the cabinet is visible in two training images
only and from similar angles. This leads to a misinterpretation of the scene such
that the carpet appears to have a beige box pattern. Correcting the geometry
in such cases does not improve rendering quality.

We compare our method on RGB-based and depth-based metrics in Table
1. Our method reduces all depth metrics of all baselines by at least 11%, and



10 A. Rau et al.

Table 1: Experimental results on ScanNet [6]. D = Depth supervision during training:
✗ none, ✓ in-domain, ✢ out-of-domain. DiffDP is the depth prediction network we use
as a prior. Our method dramatically improves NeRF’s underlying scene geometry over
initial depth priors while maintaing photometric reconstruction quality. Note that our
method also outperforms DDPrior which has in-domain pretrained depth maps.

RGB-based metrics Depth-based metrics

D PSNR ↑ SSIM ↑ LPIPS ↓ AbsRel ↓ SqRel ↓ RMSE ↓ RMSE log ↓

DiffDP [11] ✢ - - - 0.100 0.032 0.261 0.128

NeRF [15] ✗ 19.03 0.670 0.398 - - 1.163 -
DS-NeRF [7] ✓ 20.85 0.713 0.344 - - 0.447 -
DDPrior [22] ✓ 20.96 0.737 0.294 - - 0.236 -
DDPrior* [22] ✢ 19.29 0.695 0.368 - - 0.474 -
SCADE** [26] ✢ 21.54 0.732 0.292 0.086 0.030 0.252 0.118
DäRF [25] ✢ 21.58 0.765 0.325 0.151 0.071 0.356 0.168

Ours ✢ 21.69 0.737 0.373 0.070 0.024 0.221 0.105
* Trained by SCADE authors. ** Depth metrics evaluated by us based on SCADE’s weights.

Fig. 5: Qualitative results of rendered RGB images and depth maps. Our method
produces less artifacts in the left example and learns a better geometric representation
of the table in the right example.

reduces the error of the most related work, DäRF, by 54%, 66%, 38%, and 38% on
the four depth metrics. Our method also outperforms DDPrior [22] whose depth
prior was trained in-domain. Our NeRF setup even improves the initial depth
estimates of the depth prior DiffDP. Moreover, our method not only outperforms
SCADE, but also avoids the need for a custom-trained depth prior. Training this
prior requires evaluating the entire training set 20 times after each epoch to find
the best hypothesis for each training example. Our training of SCADE’s cIMLE-
based prior takes more than one week on four 24GB NVIDIA Titan RTX GPUs.

When comparing RGB metrics to the closest baseline, SCADE, our method
yields a 0.7% worse SSIM, while the PSNR is 0.7% better. Though our method
yields an LPIPS that is on average worse than SCADE’s reported result, when
reproducing SCADE’s results, some runs lead to an extremely high LPIPS above
0.5 (see Figure 9). Compared to DäRF, our SSIM is 3.7% worse, but all depth
metrics are 37% to 66% improved. Overall, we highlight that when geometric
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Fig. 6: Additional qualitative depth results. Our method produces less artifacts than
SCADE, while more accurately capturing the underlying geometry than DäRF. The
smoothness of DäRF’s predictions is a result of it’s strong supervision by the depth
prior, but does not speak to the accuracy of the learned geometry.

consistency is desired, our method enables substantial gains in depth metrics
while maintaining comparable RGB metrics.

We qualitatively compare results in Figure 5. In the illustrated examples,
our method leads to less severe artifacts, and crisper and more accurate edges
in RGB renderings and depth maps. Additional qualitative examples of depth
maps are shown in Figure 6. Our model more accurately reconstruct the depicted
layouts, like the area underneath the piano in the second image, or the area under
the table in the third image. Interestingly, DäRF’s depths are extremely crisp.
However, the quantitative evaluation in Table 1 confirms that DäRF learns an
inaccurate representation of the geometry. Its strong L2-loss enforces the depth
maps to look like their prior, although they do not correctly represent the scene.

To demonstrate the robustness of our method we report results on ScanNet+
that were not previously used by the baselines. We observe in Table 2, that our
method reduces the RMSE of the baselines by at least 56%, while producing
comparable photometric results. Please see the supplement for more results.

4.4 Role of Depth Supervision and Uncertainty

We wish to better understand how NeRFs leverage depth priors during training
and conduct extensive ablations studies under various settings.
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Table 2: To further demonstrate the generalization strength of our approach, we
evaluate on a second dataset, ScanNet+ , which includes novel scenes not tested by
prior work. We retrain all prior methods on these scenes and compare with ours.

PSNR ↑ SSIM ↑ LPIPS ↓ AbsRel ↓ RMSE ↓

SCADE [26] 20.57 0.687 0.369 0.396 1.032
DäRF [25] 22.01 0.751 0.319 0.745 1.765
Ours 22.29 0.722 0.391 0.156 0.456

Table 3: Ablation studies for the components of our method, varying depth priors and
the objectives leveraging them. All reported results are on ScanNet scenes.

Reg. z EMD u PSNR ↑ SSIM ↑ LPIPS ↓ AbsRel ↓ RMSE ↓

✓ 21.28 0.735 0.370 0.119 0.354
✓ ✓ 21.24 0.734 0.377 0.100 0.295
✓ ✓ ✓ 21.70 0.736 0.369 0.071 0.222
✓ ✓ ✓ ✓ 21.69 0.737 0.377 0.070 0.221

(a) Impact of Regularization Reg., the DiffDP
prior z, the Earth Mover’s distance loss EMD,
and uncertainty u on the baseline NeRF model.

AbsRel ↓ SqRel ↓ RMSE ↓ RMSE log ↓

DiffDP 0.125 0.056 0.324 0.151
DepthAnything 0.144 0.061 0.357 0.180

(b) Comparison of our depth prior DiffDP [11]
and DepthAnything [30] evaluated on the train-
ing images used as input to our model.

With our loss (EMD) PSNR ↑ SSIM ↑ LPIPS ↓ RMSE ↓

Ours w/ DiffDP‡ 21.70 0.736 0.369 0.222
Ours w/ DepthAnything‡ 21.62 0.732 0.378 0.290

(c) Impact of the depth priors in (b) on our
model. For both priors, our EMD objective
allows the NeRF to learn smaller depth errors
than the priors used for supervision yield.
With L2-H loss PSNR ↑ SSIM ↑ LPIPS ↓ RMSE ↓

Ours w/ DiffDP‡ 21.34 0.726 0.382 0.334
Ours w/ DepthAnything‡ 21.04 0.717 0.394 0.349

(d) Comparison of different depth priors under a
L2-objective applied to depth hypotheses (L2-H
loss ≡ space-carving loss [26] with only one
depth hypothesis). ‡Without uncertainty u, as it
cannot be used with DepthAnything prior.

In Table 3 (a) we evaluate the importance of design choices of our model
compared to a basline NeRF model. We ablate Regularization Reg., use of depth
supervision z (by default with L2 loss), use of EMD depth supervision instead
of L2 loss, and uncertainty weighting u. We observe that depth supervision plays
a vital role in improving results, especially depth metrics. But depth alone (Reg.
+ z) does not yield satisfactory depth results. Replacing a naive L2-loss with the
EMD (Reg. + z + EMD + u) considerable reduces the depth error, highlighting
the importance of depth guidance.

Although the impact of u is small when averaged across entire images, u
makes a difference where it matters: in uncertain areas. In Figure 7 (a), we eval-
uate how well the uncertainty measure can distinguish reliable from unreliable
pixels. We compute the depth error of DiffDP for pixels that have an uncer-
tainty of ≥ t and compare it to more certain pixels with u < t for thresholds
t = {0, 0.1, ...0.8}. For t = 0.5, for instance, the depth error of uncertain pixels
is 63% higher than the error of certain pixels. Our uncertainty measure thus
reliably highlights pixels that should not be trusted. To evaluate its impact on
our model, we ablate the use of u in Figure 7 (b) in a similar manner as the
ablation in Table 3 (a); but instead of averaging over an entire image, we look
at uncertain and certain regions of an image. We observe, that most pixels have
a low uncertainty (64% of all pixels have an uncertainty of < 0.1), and for those
pixels incorporating uncertainty only marginally (1.9%) helps. But for pixels
with high uncertainty (>0.8), incorporating u improves the RMSE by 5.1%.
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(a) (b)

Fig. 7: (a) Our uncertainty measure can identify areas in the DiffDP depth prior that
we should not trust. We plot the error of the depth prior for pixels that are above or
below a threshold for several thresholds. Both RMSE and Abs Rel are considerable
higher in areas we predicted as uncertain. (b) We show the impact of incorporating
our uncertainty u in our model. We plot depth errors for all pixels above a uncertainty
threshold and ablate our method in comparison to a version without u. Especially for
high uncertainty (> 0.6) incorporating u helps improve depth accuracy.

It is important to note that our model’s ability to predict accurate depth
does not solely stem from a good prior. We compare our prior to SCADE’s
LeReS-based prior [32] in Figure 8, where we adjusted the scale between prior
and ground truth as ratio between their mean depths before calculating the
RMSE. We make two interesting observations. First, sorting SCADE’s 20 priors
by accuracy, we find that the error increases rapidly. The additional priors in-
troduce noise rather than adding beneficial information. This might explain why
SCADE’s training is at times unstable, and why learning accurate depth is so
important for NeRFs. We can observe in Figure 9 that SCADE depends highly
on the chosen random seed. The depth RMSE varies dramatically between runs.
Comparing this to the PSNR, we observe that even when the depth prediction
is widely off (depth error of 1.6 in scene 781), the NeRF can still produce de-
cent RGB quality with a PSNR of at least 20. So while a NeRF can learn to
produce realistic looking RGB images, it has no knowledge of the geometry (as
seen in Figure 4). This not only prevents applications such as augmented reality
in which a user would interact with the 3D world or when meshes need to be
extracted for the scene, but also renders reported photometric results unreliable.

In Table 3 (b), we evaluate the initial accuracy of our DiffDP based prior and
the prior from [30]. We show that DiffDP is a good choice for depth prior even
in comparison to priors generated from large-scale pretraining like in DepthAny-
thing [30]. Given this context, Table 3 (c) exemplifies our EMD-based objec-
tive’s role in leveraging information from the priors. Irrespective of prior, our
loss encourages a reduction in the initial prior’s depth error (with our DiffDP
prior, RMSE drops 31.4%, and with DepthAnything prior, RMSE drops 18.8%).
Through EMD depth guidance, NeRFs can leverage these priors without en-
forcing them, leading to a smaller overall depth error. To further examine the
impact of our objective, we construct a strong baseline under different depth
priors that mimics the loss presented in [26] but with a single depth hypothesis.
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Fig. 8: Depth errors
of cIMLE priors in-
crease rapidly when
arranged in ascend-
ing order.

Fig. 9: We repeat the experiment in Table 1 with four ran-
dom seeds and show the depth RMSE, PSNR, and LPIPS for
each scene in ScanNet. While SCADE can sometimes produce
accurate depths (low RMSE), the variability between runs is
large. Our method produces consistently accurate depths.

Specifically, we use L2 loss on depth hypotheses during NeRF training. We make
two observations in Table 3 (d): First, depth metrics remain constant or even
worsen in comparison to the initial depth priors from (b) under the L2 objec-
tive. Secondly, our EMD-loss strongly outperforms the L2 objective for both
priors. These experiments highlight the importance of supervising NeRF with
an EMD-based objective that can selectively incorporate information from the
depth prior irrespective of the prior’s strength.

5 Conclusions

While NeRFs can reliably render images from novel viewpoints, the underlying
geometry is not always accurately learned. To improve the geometric under-
standing of NeRFs, we revisit depth supervision in NeRF training for the re-
construction of challenging indoor scenes. We present a simple, novel framework
that leverages the depth estimates from pretrained diffusion models and their
intrinsic notions of depth uncertainty. We show that noisy depth estimates com-
ing from off-the-shelf depth estimation networks should not be used to directly
supervise NeRF-rendered depths. Rather, weighted by uncertainty, the distribu-
tion of ray termination distances during NeRF optimization should be guided
by depth priors through the Earth Mover’s distance, allowing for selective su-
pervision. Our method achieves strong empirical results and serves as an easy
drop-in replacement for existing depth-supervised NeRFs.

Limitations and Future work: While different monocular depth priors can be
leveraged in our EMD-guided framework, our uncertainty measure can only
be obtained from diffusion-based depth networks. Future work should therefore
include model-agnostic uncertainty measures. Additionally, the construction of
the uncertainty map for the depth estimates can be sensitive to hyperparame-
ters. An interesting direction for future work could be dynamically learning a
threshold of uncertainty during the construction of the depth prior.
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