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Abstract. Affordance denotes the potential interactions inherent in ob-
jects. The perception of affordance can enable intelligent agents to nav-
igate and interact with new environments efficiently. Weakly supervised
affordance grounding teaches agents the concept of affordance without
costly pixel-level annotations, but with exocentric images. Although re-
cent advances in weakly supervised affordance grounding yielded promis-
ing results, there remain challenges including the requirement for paired
exocentric and egocentric image dataset, and the complexity in ground-
ing diverse affordances for a single object. To address them, we propose
INTeraction Relationship-aware weakly supervised Affordance ground-
ing (INTRA). Unlike prior arts, INTRA recasts this problem as rep-
resentation learning to identify unique features of interactions through
contrastive learning with exocentric images only, eliminating the need
for paired datasets. Moreover, we leverage vision-language model em-
beddings for performing affordance grounding flexibly with any text,
designing text-conditioned affordance map generation to reflect interac-
tion relationship for contrastive learning and enhancing robustness with
our text synonym augmentation. Our method outperformed prior arts on
diverse datasets such as AGD20K, IIT-AFF, CAD and UMD. Addition-
ally, experimental results demonstrate that our method has remarkable
domain scalability for synthesized images / illustrations and is capable
of performing affordance grounding for novel interactions and objects.
Project page: https://jeeit17.github.io/INTRA

Keywords: Affordance grounding · Weak supervision · Exocentric im-
age · Contrastive learning · Interaction relation

1 Introduction

Affordance [17] refers to the perceived possible interactions based on an object’s
inherent or recognized properties (e.g., the rim of a wine glass affords sipping
while stem of it affords holding). Humans can identify affordances of objects
and interact with proper parts despite the diversity in their physical attributes.
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Fig. 1: Prior works on weakly-supervised affordance grounding like LOCATE [25] of-
ten failed to ground different affordances for the same object. However, our proposed
INTRA yielded finer and more accurate grounding results for them that are closer to
the ground truth (GT) by considering interaction relationship among them.

This ability can be acquired through individual learning, by directly interacting
with objects, and observational learning [8], by observing others’ interactions.
The sense of affordance enables effective interaction in new environments or with
novel objects, without step-by-step instructions [57]. Affordance plays an essen-
tial role across numerous applications involving intelligent agents, enabling them
to provide flexible and timely responses in complex, dynamic environments [5].
These applications include task planning, robot grasping, manipulation, scene
understanding and action prediction [2, 6, 7, 16,51,62].

Affordance grounding is the task to teach intelligent systems how to locate
possible action regions in objects for a certain interaction. While fully super-
vised learning [4, 18, 42, 58] is the most straightforward approach, its reliance
on costly annotations may limit its applicability across diverse contexts. An-
other approach is weakly supervised learning, similar to human’s observational
learning [8], that does not require GT, but weak labels. In this setting, exo-
centric images illustrating human-object interactions, along with corresponding
egocentric images depicting the objects, are provided during training. During
inference, intelligent systems perform affordance grounding on the egocentric
images, identifying object parts relevant to the given interactions. Recent ad-
vances in weakly supervised affordance grounding [25, 31, 32, 41] proposed to
use pairs of exocentric and egocentric images, yielding great performance. The
deep neural networks learn affordances by pulling features from exocentric and
egocentric images closer, aiming to focus on object parts related to interactions.

However, weakly supervised affordance grounding remains challenging. Firstly,
the requirement for current weak labels with pairs of exocentric and egocentric
images is still strong. Note that human observational learning does not usu-
ally require egocentric images. Secondly, a complex relationship between inter-
actions exists, which has not been adequately addressed in prior works. Many
instances in object-interaction relationships exhibit intricate many-to-many as-
sociations, occasionally with one entailing another. For example, some distinct
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interactions represent the same affordance regions (e.g., ‘wash’ and ‘brush with’
a tooth brush), and there are closely related interactions that always come to-
gether (e.g., ‘sip’ usually includes ‘hold’. ‘ride’ usually includes ‘sit on’). This
complexity poses challenges in extracting interaction-relevant features based on
image-level affordance labels, introducing biases towards objects in affordance
grounding as illustrated in Fig. 1 (LOCATE [25] often yielded similar affordance
grounding with different interactions for the same object).

Here, we propose a novel weakly supervised affordance grounding method,
INTRA (INTeraction Relationship-aware weakly supervised Affordance ground-
ing) to address these unexplored challenges. While previous studies [31,41] solved
the weak supervision problem as supervised learning by pulling object features
of exocentric and egocentric images closer and LOCATE [25] enhanced this ap-
proach by generating more localized pseudo labels based on prior information for
exocentric images for supervised learning (i.e., containing human, object part,
and background), our INTRA framework recasts the weak supervision problem
as representation learning. This novel reformulation allows us to use weaker la-
bels (i.e., exocentric images only) for training so that the requirement to use
pairs of exocentric / egocentric images is now alleviated. Moreover, unlike prior
works, our INTRA method actively exploits large language model (LLM) as well
as the text encoder of the vision-language model (VLM) to leverage linguistic in-
formation and existing textual knowledge on affordances, which further enhances
our interaction relationship-guided contrastive learning. This novel scheme also
allows excellent scalability for unseen objects across diverse domains as well as
zero-shot inference for novel interactions, which was not possible in prior arts.
In summary, our main contributions are three-fold as follows:

– We propose a novel approach for weakly supervised affordance grounding
by recasting the problem as representation learning and by leveraging VLM,
leading to relaxing the need for paired training datasets for more weak su-
pervision and enhancing scalability across domains for unseen objects.

– We proposed INTRA, a novel method that consists of text synonym aug-
mentation and text-conditioned affordance map generation module along
with interaction relationship-guided contrastive learning, so that inference
on unseen interactions is possible.

– Our INTRA outperforms the prior arts in weakly supervised affordance
grounding on diverse datasets such as AGD20K, IIT-AFF, CAD and UMD,
demonstrating both qualitative and quantitative excellence (see Fig. 1).

2 Related Works

2.1 Affordance Grounding

Supervised affordance grounding. Supervised affordance grounding meth-
ods [10,14] analyze interaction videos / images to predict affordance regions on
an object, trained with pixel-level GT masks / heat maps. Though successful in
localizing fine-grained affordance regions through supervised learning, they are
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limited by the costly GT mask annotation process and their limited generaliz-
ability to unseen objects. Furthermore, they require paired demonstration videos
and target object images, making real-world application challenging.

Weakly supervised affordance grounding. Weakly supervised affordance
grounding methods [13,20,23,25,31–33,41,47] offer the advantage of not requiring
GT, but requiring weak labels such as exocentric images with interaction text
labels. Prior works [25,31,32,41] mainly align interaction-relevant object features
from both egocentric and exocentric images without considering the intrinsic
properties of interactions. The framework in [41] predicts object features engaged
in interactions by analyzing human-object interaction videos. The works of [31,
32] preserve the correlation of affordance features from exocentric and egocentric
images to learn affordances. The work of [25] enhances object feature extraction
by adopting DINO-ViT [9] based Class Activation Maps (CAM) [64] and k-means
clustering [35] for more explicit guidance. However, focusing solely on object
features may introduce biases towards object, hindering the inference of multiple
affordances for a single object. Our INTRA addresses this issue by considering
the complex relationships between interactions using interaction relationship-
guided contrastive loss, while ensuring the network remains attentive to the
objects using object-variance mitigation loss.

2.2 Foundation Models for Affordance Grounding

Self-supervised transformer. Self-supervised transformers, extensively trained
on large-scale datasets and scalability, possess robust representation power. Pre-
vious works [25,52] have explored their potential in affordance grounding. DINO-
ViT [9], a vision transformer foundation model trained in a self-supervised man-
ner, can identify both high-semantics such as overall information of the image
and low-semantics such as details regarding specific object parts. This versa-
tility has led advancements in various tasks, including classification, semantic
segmentation [4, 24] and semantic correspondence [61]. LOCATE [25] leverages
DINO-ViT to extract low-semantic information, resulting in performance im-
provements in affordance grounding. Our INTRA employed DINOv2 [46] as an
image encoder to extract information about objects and their constituent parts.

Vision-language model. The Vision-Language Model (VLM) is a class of
models jointly pretrained on visual and language data for various downstream
tasks [45, 56, 60]. VLM text encoders, trained through contrastive learning with
image-text pairs, capture representations in the joint space of the images and
text [26–28, 50]. These text encoders, incorporating visual information, have
demonstrated excellent performance across multiple tasks. ALBEF [28] notably
enhances vision and language representation learning by aligning image and
text features before fusing them. While supervised affordance grounding meth-
ods leveraging VLM text encoders [44] have been explored, their application in
weakly supervised affordance grounding remains underexplored. We propose a
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Fig. 2: Overall frameworks of (a) LOCATE [25] and (b) INTRA (Ours). LOCATE
takes paired exocentric and egocentric images to generate interaction-aware affordance
maps (CAMs) for predefined interactions and then selects an interaction-related CAM
by the given interaction label. In contrast, INTRA takes only exocentric images and
interaction labels to yield an affordance map through our affordance map generation
module. Training is done via interaction relationship-guided contrastive learning on
exocentric features from affordance maps. Note that all encoder parameters are frozen.

framework leveraging the text encoder of ALBEF to enable novel interactions,
diverging from prior arts limited to inferring predetermined sets of affordances.

Large language model. Understanding affordance relationships is crucial for
affordance grounding, as it enables extending and linking learned visual cues, and
reasoning about affordances for new objects, interactions, or situations. While
prior works like [19] leverage semantically similar object properties and [32]
utilize affordance feature correlation, none directly exploit these relationships.
We use these intricate relationships in affordance learning by adopting Large
Language Models (LLMs). LLMs have gained prominence in robotics due to
their profound natural language understanding, providing valuable priors about
interactions and their complex relationships. Previous works [3, 29, 54, 63] focus
on extracting action knowledge, deriving task-specific plans, and grounding them
in the physical world. LLMs have also been widely used in previous affordance
studies [37,55], demonstrating their exceptional understanding of interactions.

3 Method

Prior arts in weakly supervised affordance grounding [25, 31, 32, 41] typically
align object features of paired exocentric (interaction with object) and egocen-
tric (object only) images to learn interaction-related features. For example, as
illustrated in Fig. 2(a), LOCATE [25] generates CAMs (affordance maps) from
exocentric and egocentric images for a pre-determined interaction label, extracts
egocentric feature as well as exocentric object parts feature selected by PartS-
elect module (pseudo label), and then trains the model by optimizing cosine



6 Jang & Seo et al.

similarity to align (pull) egocentric and exocentric object parts features. In con-
trast, we propose an alternative approach, INTRA, whose overall framework is
illustrated in Fig. 2(b). Our text-conditioned affordance grounding framework
of INTRA leverages VLM text encoder in affordance map generation module
and employs text synonym augmentation to enhance robustness, as will be de-
scribed in Sec. 3.1. Then, INTRA learn affordance grounding via our interaction
relationship-guided contrastive learning, detailed in Sec. 3.2. The framework of
INTRA as depicted in Fig. 2(b) clearly suggests two advantages over prior arts
including LOCATE [25]: 1) it exploits exocentric images only and 2) INTRA
admits novel interactions outside the pre-defined interaction set.

3.1 Text-conditioned Affordance Grounding Framework

To utilize the semantic meanings inherent in interaction labels and enable flexible
inference on novel verbs, our text-conditioned affordance grounding framework
generates affordance maps by conditioning image features with text features via
our affordance map generation module where text and image features extracted
from separately pre-trained text and image encoders are fused. In specific, as
depicted in Fig. 2(b), deep features Fexo ∈ R(h×w)×d are obtained from the
input exocentric images using DINOv2 [46], where h and w represent the height
and width of the affordance map, and d refers to the dimension of the feature.
The text feature Ftext of the given interaction is obtained using the ALBEF text
encoder [28]. See the supplementary material for further details on the rationale
for employing DINOv2 and the ablation study on the text encoder.

Affordance map generation module. Before fusing text and image features,
the class token of Ftext passes through a single linear layer to align the sepa-
rately pre-trained image and text embedding spaces and connect them, as shown
to be effective in previous works [30,65]. Subsequently, image features Fexo and
the class token of text features are concatenated and processed through a trans-
former encoder for conditioning. The image feature part of the resulting vector
is then projected using a multi-layered convolutional network and normalized
using min-max normalization to obtain the affordance map Maff ∈ Rh×w. This
affordance map represents the image regions in exocentric images most relevant
to interactions. During inference, Maff functions directly as an output heatmap,
indicating the image regions in egocentric images most relevant to interactions.

Text synonym augmentation. To enhance the robustness of text condition-
ing, we integrate text synonym augmentation into our interaction embeddings.
Initially, we generate ks synonyms for each interaction label using LLM. Sub-
sequently, any synonyms overlapping with other interaction labels are removed.
These synonyms are then randomly selected to substitue the text conditioning
interaction embedding, while the original interaction label is retained for inter-
action relationship-guided contrastive learning. This module enhances overall
performance by providing models with enriched interpretations of interactions.
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3.2 Interaction Relationship-guided Contrastive Learning

Our INTRA learns via interaction relationship-guided contrastive learning by
comparing exocentric image features across diverse interactions. Our contrastive
learning consists of two key components, 1) extracting exocentric image features
with affordance map and 2) designing loss for interaction relationship-guided
contrastive learning, that enable the grounding of multiple affordances on a
single object.

Exocentric image feature extraction with affordance map. As described
in Sec 3.1, a text-conditioned affordance map, Maff , is generated to represent
interaction-relevant image regions of exocentric images. Then, the exocentric
image features fexo corresponding to the affordance map are extracted as follows:

fexo = (1/hw)Σh
i=1Σ

w
j=1Fexo(i, j) · Maff (i, j) ∈ Rd. (1)

The resulting fexo is then projected and normalized to obtain the exocentric
image feature zexo using an MLP layer, which will be used for training. This
projection layer was also used in previous works [11,12,59], which have demon-
strated the necessity and efficiency of it.

Loss design for interaction relationship-guided contrastive learning.
Supervised contrastive learning [21] effectively derives good representations for
each class by focusing on common characteristics in positive pairs while disre-
garding those in negative pairs like other classes. However, in affordance ground-
ing tasks, treating all other interaction classes as negative pairs may be inade-
quate due to the complex relationship among interactions. To mitigate this issue,
we propose interaction relationship-guided contrastive loss, Linter. Furthermore,
considering the subtle meaning variations within single interaction classes de-
pending on the object and context, we also propose object-variance mitigation
loss, Lobj . Thus, the total loss for our INTRA is formulated as follows:

Ltotal = Linter + λobjLobj (2)

where λobj denotes the control parameter of Lobj .

Interaction relationship-guided contrastive loss. In affordance grounding,
treating all other interaction classes as negative pairs is inadequate due to the
intricate relationships between interactions. For example, ‘Wash’ and ‘Brush
with’ toothbrush or ‘Pour’ and ‘Seal’ bottle represent distinct interactions but act
on the same object parts. Manually finding these relationships is time-consuming
and impractical as the number of pairs grows quadratically with the number of
interaction (see the supplementary). Moreover, although linguistic relationships
like synonyms or co-occurrence were considered as substitutes, they are often
inadequate and degrade performance. For example, ‘Sip’ entails ‘Hold’, but they
act on different part of objects, and ‘Wash’ and ‘Cut with’ a knife have different
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Fig. 3: The overall scheme of interaction-relationship map (R) generation. LLM clas-
sifies all pairs of interactions in the dataset as positive or negative through chain of
thoughts. This process is based on reasoning if interactions occur on same object parts.

meanings, but they act on the same blade. To mitigate this, we leverage LLM
to determine if interaction pairs act on the same object part. Through Chain of
Thoughts (CoT), interaction pairs are categorized as positive or negative in three
steps as described in Fig. 3. In Step 1, LLM deduces five different objects where
both interactions could be performed. In Step 2, LLM identifies object parts
where these interactions could occur by considering five objects one by one,
not simultaneously. In Step 3, if the identified parts of the interaction pair are
the same, the pair is classified as positive; otherwise, negative. Positive pairs are
assigned 1 in the interaction-relationship map R, and negative pairs are assigned
0. We propose interaction-relationship guided contrastive loss by integrating R
into supervised contrastive learning as follows:

Linter =

2N∑
i=1

−1

2Nyi − 1

2N∑
j=1

R(yi,yj) · log
exp (ziexo · zjexo/τ)

2N∑
k=1

1i ̸=k · exp (ziexo · zkexo/τ)
(3)

where i, j are sample indices, yi, yj are class labels, Nyi
is the number of sam-

ples in the batch labeled with yi, N is the total number of distinct samples in
the batch, zjexo is the exocentric image feature vector of each sample, τ is the
temperature, and R(yi,yj) is the value of (yi, yj) pair in interaction-relationship
map.

Object-variance mitigation loss. In the context of affordance, the interpre-
tation of the same interaction can vary significantly based on the object and
context. For instance, ‘Hold’ a baseball bat and a cup may seem similar since
both involve grasping an object. However, the former involves gripping the bat’s
slender part, while the latter entails holding the cup’s rounded, protruding part.
To address this variance within the same interaction category, we implemented



Interaction Relationship-aware Affordance Grounding 9

an object-variance mitigation loss Lobj as follows:

2N∑
i=1

−1

2Noi − 1

2N∑
j=1

1oi=oj · log exp (ziexo · zjexo/τ)
2N∑
k=1

1i̸=k · exp (ziexo · zkexo/τ)
(4)

where oi, oj denote object class of i and j.

4 Experiments

4.1 Experimental Setting

Dataset and metrics. We conducted an evaluation of our method using the
Affordance Grounding Dataset (AGD20K) [32]. AGD20K comprises both exo-
centric and egocentric images, with 20,061 exocentric images and 3,755 egocen-
tric images labeled with 36 affordances. The dataset support evaluation under
two settings: 1) the ‘Seen’ setting, where the object categories of the training and
testing sets are identical, and 2) the ‘Unseen’ setting, where no objects overlap
between the training and test sets. Our approach only used exocentric images in
training for all experiments, while other approaches were trained using both ego-
centric and exocentric images. We employed three evaluation metrics commonly
employed in previous affordance grounding methodologies: 1) Kullback-Leibler
Divergence (KLD), 2) Similarity (SIM), 3) and Normalized Scanpath Saliency
(NSS). These metrics were utilized to quantify the similarity between the distri-
butions of ground truth heatmaps and predicted affordance grounding.

Implementation details. We employed DINOv2 as the image encoder and
ALBEF, fine-tuned with RefCOCO+, as the text encoder. ChatGPT-4 [1] served
as the LLM. Images were resized to 384×384, then cropped to 336×336. Training
utilized the Adam optimizer [22] with a learning rate of 2e-4 and a batch size of
256. The hyperparameter λobj was set to 4, and all experiments were conducted
on a single NVIDIA A100 GPU. More details are provided in the supplementary.

4.2 Comparison to State-of-the-art Methods

To comprehensively assess our method, we conduct quantitative and qualitative
comparisons with state-of-the-art weakly-supervised grounding methods, incor-
porating a user study. We further expand our experiments to include additional
datasets [40,43,53] for a comprehensive evaluation. Refer to the supplementary
materials for more details on the experimental settings.

Quantitative results. We evaluated previous works [15, 25, 31, 32, 36, 41, 48]
and our method based on the metrics mentioned above. Tab. 1 shows the quan-
titative comparison results of our method with prior arts. In both ‘Seen’ and
‘Unseen’ setting, our approach surpasses the baseline performances across all
three metrics: KLD, SIM, and NSS, thereby setting a new state-of-the-art.
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Table 1: Quantitative results of ours and other baselines [15, 25, 31, 32, 36, 41, 48] on
the AGD20K dataset. ↑ / ↓ indicates that higher / lower the metric is, the better the
model performs. INTRA outperformed all baselines, despite being trained only with
exocentric images, whereas other models incorporated both exocentric and egocentric
images during training.

Prior works Seen Unseen
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

Weakly Supervised
Object Localization

EIL [36] 1.931 0.285 0.522 2.167 0.227 0.330
SPA [48] 5.528 0.221 0.357 7.425 0.167 0.262
TS-CAM [15] 1.842 0.260 0.336 2.104 0.201 0.151

Weakly Supervised
Affordance Grounding

Exo+Ego

Hotspots [41] 1.773 0.278 0.615 1.994 0.237 0.557
Cross-view-AG [32] 1.538 0.334 0.927 1.787 0.285 0.829
Cross-view-AG+ [31] 1.489 0.342 0.981 1.765 0.279 0.882
LOCATE [25] 1.226 0.401 1.177 1.405 0.372 1.157

Exo INTRA (Ours) 1.199 0.407 1.239 1.365 0.375 1.209

Table 2: Quantitative results on the modified IIT-AFF, CAD, and UMD dataset for
our method and other baselines [25,31,32]. Models were trained in the ‘Seen’ setting of
AGD20K and tested on the datasets without additional training. INTRA outperformed
all baselines on all metrics across all datasets. * Objects with affordances that prior
works are unable to predict were eliminated from the datasets for fairness, wheares our
method can infer affordances on novel interactions.

IIT-AFF* [43] CAD* [53] UMD* [40]
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

Cross-View-AG [32] 3.856 0.096 0.849 2.568 0.173 0.589 4.721 0.014 1.287
Cross-View-AG+ [31] 3.920 0.095 1.072 2.529 0.176 0.663 4.753 0.013 1.227
LOCATE [25] 3.315 0.115 1.709 2.528 0.187 0.558 4.083 0.026 2.699
INTRA(Ours) 2.663 0.148 2.511 2.095 0.243 1.259 3.081 0.062 4.195

Results on additional datasets. We evaluated the generalization and robust-
ness of the INTRA framework, along with previous works [25, 31, 32] trained in
the ‘Seen’ setting of AGD20K, on the IIT-AFF [43], CAD [53], and UMD [40]
datasets. The experiment was conducted in the ‘Seen’ setting due to overlapping
objects between these datasets and AGD20K. Each GT was processed in the
same way as when evaluating the AGD20K test set. Despite significant domain
gaps across datasets, INTRA outperformed in all metrics on all datasets, demon-
strating its superior generalizability as shown in Tab. 2. Further details of the
experiment can be found in the supplementary material.

Qualitative results. Fig. 4 and Fig. 5 show our superior grounding precision
compared to the baselines, being closer to the GT and finer in granularity. IN-
TRA precisely identifies the exact object part for a given affordance, unlike the
baselines, which ground the same parts regardless of the affordances provided.

User study. Affordance grounding can be ambiguous depending on context
and interpretation, thus relying solely on metrics for evaluation has limita-
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INTRA (Ours)LOCATE GTCross-View-AG Cross-View-AG+

Hold
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Object Image

Fig. 4: Qualitative results of INTRA (Ours) and baseline models [25,31,32] on ground-
ing affordances of multiple potential interactions on a single object. INTRA precisely
localizes relevant interaction spots for each interaction. For example, with a knife,
it grounds the handle for ‘Hold’ and the blade for ‘Cut with’. For a motorcycle, it
accurately grounds the saddle for ‘Sit on’. Additionally, for ‘Ride’, it grounds both
the handle and saddle, slightly deviating from the GT but still producing reasonable
results, as we usually interacts with handle and saddle to ‘Ride’ a motorcycle.

INTRA (Ours)LOCATE GTCross-View-AG+

Open

Drag

Drink with

Hit

INTRA (Ours)LOCATE GTCross-View-AG+
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Hold

Take photo

Push
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Fig. 5: Qualitative results comparison between our approach and other baselines [25,
31,32]. Our approach, INTRA, demonstrates superior precision and detail in grounding
affordances compared to the baselines. For instance, in the example of ‘Drag’, while
baselines either fail to localize the handle or erroneously ground several other parts,
INTRA accurately identifies and grounds the handle of a suitcase with finesse.



12 Jang & Seo et al.

Table 3: The result of user study on validity, finesse, and separability. Users were
asked to score a 5-point scale, and we averaged it for mean opinion score (MOS).

Validity Finesse Separability
Cross-View-AG+ [31] 2.897 3.022 2.732
LOCATE [25] 3.054 2.573 2.651
INTRA (Ours) 3.134 3.112 3.221
Ground Truth 2.905 3.334 3.160

Table 4: Quantitative results of ablation
study on our loss design. We incrementally
added each component of the losses to ex-
amine their impact.

Seen Unseen
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

baseline 1.678 0.338 0.891 1.581 0.300 1.100
Linter 1.439 0.334 1.031 1.569 0.292 1.133
Lobj 1.336 0.387 1.218 1.521 0.334 1.042
Linter+Lobj 1.199 0.407 1.239 1.365 0.375 1.209

Table 5: Quantitative results of abla-
tion study on different R. LWordNet,
LWord2V ec are calculated using word sim-
ilarity from WordNet [39], Word2Vec [38],
respectively. LCo−occur. used co-
occurrence probability in GloVe [49].

Seen Unseen
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

LWordNet 1.701 0.282 0.710 1.698 0.277 0.937
LCo−occur. 1.519 0.309 0.988 1.639 0.274 1.101
LWord2V ec 1.547 0.302 0.958 1.679 0.270 0.980
Linter(Ours) 1.439 0.334 1.031 1.569 0.292 1.133

tions. Hence, we conducted a user study comparing Cross-View-AG+ [31], LO-
CATE [25], GT, and INTRA (Ours) across three categories: 1) Validity: assessing
heatmap reasonableness, 2) Finesse: measuring heatmap detail, 3) Separability:
determining the accuracy of the heatmap when different affordances are assigned
to the same object. A total of 936 responses were collected for randomly selected
samples from 104 respondents. Results presented in Tab. 3 demonstrate that our
approach outperforms baselines and par on GT based on human perception.

4.3 Ablation Studies

We validate our pipeline design choices and parameters with ablation studies.
This section includes ablation studies on loss design, adoption of LLM, and text
synonym augmentation. Refer to the supplementary for further ablation studies.

Ablation study on loss design. To assess the individual impact of the com-
ponents comprising loss on its overall performance, we analyzed by incrementally
adding components. We started with the most basic element: a normal supervised
contrastive loss. Subsequently, we sequentially added an interaction relationship-
guided loss and an object-variance mitigation loss. The performance outcomes of
these incremental modifications were thoroughly evaluated to understand their
contributions, as represented in the Tab. 4.

Ablation study on adoption of LLM. Adopting LLM to create the rela-
tionship map was essential given the intricate nature of affordances. We exper-
imented with various methods to create the relationship map to validate this
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(b) Feature t-SNE before (left) / after (right) training(a) Overall training scheme

Rep
el

Attract

Fig. 6: An illustration of interaction relationship-guided contrastive learning and t-
SNE [34] visualization of feature distribution. (a) In interaction relationship-guided
contrastive learning, positive interaction pairs attract each other, while others repel.
(b) t-SNE visualization of DINOv2 [46] class token and fexo from INTRA, showing
that features of positive interaction pairs become closer as learning progresses.

choice. We measured the similarity of interaction pairs using WordNet [39] and
Word2Vec [38], or computed co-occurence probability of interaction pairs with
Glove [49]. Based on these measurements, we created an Interaction-relationship
Map and trained the INTRA framework. The results are in the Tab. 5.

Ablation study on text synonym augmentation. We conducted an abla-
tion study on the effectiveness of text synonym augmentation on overall perfor-
mance. We compared performance with and without the module. The module
improved performance by up to 21.93%, particularly in the ‘Unseen’ setting,
enriching models with varied meanings of interactions. Additionally, to test its
effectiveness on novel verb inference, we deliberately omitted the subset ‘Hold’
(24.17% of training data) and then performed inference on ‘Hold’. The module
boosted performance for novel verbs by up to 58.06%. Similar tendencies were
observed for other verbs. Detailed results are available in the supplementary.

5 Discussion

5.1 Effect of Interaction Relationship-guided Contrastive Loss

Our rationale for learning affordance grounding solely with exocentric images
relies on the consistent presence of humans within these images. By repelling
common features of negative pairs, such as human parts, the images effectively
exclude irrelevant elements. Conversely, positive pairs, sharing the desired fea-
ture of the object—specifically, the rim of the object near the face—facilitate
learning by attracting these relevant features (see Fig. 6(a)). To visualize the ef-
fectiveness of our loss in learning interaction-relevant features in similar images,
we examine the feature distributions of ‘Hold’ and ‘Sip’ a wine glass, involving
distinct affordances. Prior to training, these distributions overlap. However, af-
ter training with our loss function, the feature distribution for ‘Hold wine glass’
aligns more closely with ‘Hold baseball bat’ than with ‘Sip wine glass’. This indi-
cates that our loss function effectively discriminates between the characteristics
of different interactions without exhibiting bias towards objects (see Fig. 6(b)).
Detailed explanation is illustrated in the supplementary.
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INTRA (Ours)LOCATE

Stick

INTRA (Ours)

Lie on

LOCATE

Ride

INTRA (Ours)LOCATE

Sit on

INTRA (Ours)LOCATE

Take photoHold

LOCATE INTRA (Ours)

Ride

INTRA (Ours)LOCATE

Write

(a) Qualitative results on images with large domain gap

(b) Qualitative results on novel object (c) Qualitative results on novel interaction

Fig. 7: Qualitative results of feasibility study: (a) Inference on diverse images with
significant domain gap such as pixel arts and paintings. (b) Inference on novel objects
that were not in the training data. (c) Inference on unseen novel interactions. IN-
TRA demonstrates superior grounding accuracy in (a)-(c) compared to LOCATE [25],
showing proper affordance region inference without explicit training.

5.2 Feasibility Study on Generalization Property of INTRA

INTRA excels in affordance grounding on images with large domain gaps, such
as pixel art and paintings, as illustrated in Fig. 7(a). Furthermore, our method
showcases strong generalization abilities for novel objects like a horse and quill,
not present in the training set, as shown in Fig. 7(b). Additionally, despite de-
liberately not being trained on specific interaction classes like ‘Hold’ and ‘Take
photo’ for experiment, INTRA successfully infers their affordances, as depicted
in Fig. 7(c). More results and detailed experimental settings are in the supple-
mentary. One possible explanation for this generalization property is that our
INTRA employs VLM so that diverse domains and novel object can be dealt with
without explicitly tuning for them. Another explanation is INTRA’s contrastive
training that may achieve better representation learning.

6 Conclusion

In this paper, we introduce INTRA, a novel framework reformulating the weakly
supervised affordance grounding with representation learning. We suggest inter-
action relationship-guided contrastive learning, informed by affordance knowl-
edge from LLM. Furthermore, INTRA actively leverages VLM text embedding
in proposed text-conditioned affordance map generation for flexible affordance
grounding, further bolstered by text synonym augmentation for robustness. IN-
TRA achieves state-of-the-art performance across diverse datasets, relying solely
on exocentric images for training, unlike prior methods that also use egocentric
images. Moreover, our method demonstrates generalization feasibility on novel
objects, interactions, and images with significant domain gaps.
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