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Abstract. Leveraging Large Language Models’ remarkable proficiency
in text-based tasks, recent works on Multi-modal LLMs (MLLMs) extend
them to other modalities like vision and audio. However, the progress in
these directions has been mostly focused on tasks that only require a
coarse-grained understanding of the audio-visual semantics. We present
Meerkat, an audio-visual LLM equipped with a fine-grained under-
standing of image and audio both spatially and temporally. With a new
modality alignment module based on optimal transport and a cross-
attention module that enforces audio-visual consistency, Meerkat can
tackle challenging tasks such as audio referred image grounding, im-
age guided audio temporal localization, and audio-visual fact-checking.
Moreover, we carefully curate a large dataset AVFIT that comprises 3M
instruction tuning samples collected from open-source datasets, and in-
troduce MeerkatBench that unifies five challenging audio-visual tasks.
We achieve state-of-the-art performance on all these downstream tasks
with a relative improvement of up to 37.12%.

Keywords: Audio-Visual LLM · AV Localization · AVFIT Dataset

1 Introduction

Large Language Models (LLMs) [3,14,15,58,71] have demonstrated remarkable
performance in various natural language processing tasks, achieving human-level
accuracies in comprehension and reasoning abilities. Furthermore, powered by
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Fig. 1: We present Meerkat, an audio-visual LLM that can effectively ground
both spatially and temporally in image and audio. Our model is adept in tasks
that require fine-grained understanding such as Audio Referred Image Grounding,
Image Guided (IG) Audio Temporal Localization & Audio-Visual (AV) Fact-checking.
It can also be extended to perform coarse-grained tasks like AVQA & AV Captioning.

the emergent instruction fine-tuning paradigm [17,49,53], these language models
can be equipped to follow open-ended natural language instructions, or even
combined with other modalities, especially vision [2,4,24,31,38,42–44,65,82,83,
88]. Audio, though often complementary to the associated visual scene, remains
largely under-explored in the context of LLMs. Building Multi-modal LLMs
(MLLMs) that can listen may enable new applications in multimedia content
analysis, multi-modal virtual assistants, education and training, etc.

Limited prior works (refer to Tab. 1) have incorporated audio in MLLMs
[24,50,63]. However, they mostly focus on coarse-grained tasks such as captioning
and question-answering, which is comparatively straightforward to be subsumed
into an LLM interface [43, 63, 65, 82]. Although there have been some recent
advancements in leveraging MLLMs for grounding [8, 9, 56, 73, 74, 79, 86], they
either only focus on the visual modality [8, 9, 30, 56, 79], or struggles to capture
fine-grained details occurring within audio-visual events due to insufficient joint
modeling of the two modalities [43,65,82].

Our goal is to harness the power of LLMs for fine-grained audio-visual under-
standing. This is challenging mainly because: (i) there is a disparity of input and
output formats across different tasks (e.g., image grounding from an audio query,
image-guided audio temporal localization), (ii) no large-scale datasets exist for
training audio-visual LLMs with grounding capabilities. Existing audio-visual
LLMs [43, 63, 65] are restricted to coarse-grained tasks and do not incorporate
cross-modality fusion, which is a crucial component for achieving fine-grained
understanding and reasoning capabilities, as shown in [18, 35]. Although there
exist individual models capable of handling image grounding (BuboGPT [86])
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Audio Types Data FeaturesModel Speech Open-domain
Output Image

Grounding
Output Audio

Grounding End-to-end Convention GPT-Prompted Robustness

VideoLlama [82] ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗

Macaw-LLM [43] ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗

PandaGPT [65] ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗

AV LLM [63] ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗

X-InstructBLIP [50] ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗

TimeChat [59] ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗

BuboGPT [86] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗

Meerkat (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of Meerkat with recent Audio-Visual LLMs. ‘Conven-
tion’ refers to a collection of publicly available data that has been transformed using
templates, ‘GPT-Prompted’ signifies if the generated instructions are obtained/refined
employing GPT, and ‘Robustness’ is the model’s ability to tackle negative samples.
We compare our method against these approaches in Sec. 5.

and temporal localization (TimeChat [59]) separately, they are either not suit-
able for open-domain audio (TimeChat) or are not trained in an end-to-end
fashion (BuboGPT) (refer to Tab. 1).

In light of these challenges, we present Meerkat5 (ref Fig. 1), the first
unified audio-visual LLM framework that can effectively ground both spatially
and temporally in image and audio, respectively. It has two crucial modules
that are key to its strong capability in fine-grained understanding: a modality
alignment module that learns the cross-modal alignment between image and
audio patches in a weakly-supervised manner based on optimal transport, and
a cross-modal attention module that is capable of enforcing consistency in the
cross-attention heatmaps. Together, these two modules enable learning better
joint audio-visual representations that subsequently enhance downstream tasks.

To support Meerkat, we further introduce MeerkatBench that unifies
five different audio-visual tasks (shown in Tab. 2), including audio referred
image grounding, image-guided audio temporal localization, audio-visual fact
checking, audio-visual question answering, and audio-visual captioning (see Fig.
1 for examples). To enable the training of these five tasks, we also curate a large
dataset AVFIT, which contains 3M instruction tuning samples with various de-
grees of difficulties for learning fine-grained audio-visual semantics. Extensive
experiments on these tasks demonstrate the effectiveness of our proposed model.

In summary, we make the following main contributions:

– We present Meerkat, the first audio-visual LLM equipped with fine-grained
spatio-temporal understanding that can ground in image and audio.

– We introduce MeerkatBench that unifies five audio-visual learning tasks,
and a new large instruction-tuning dataset AVFIT to enable learning fine-
grained audio-visual semantics.

– Evaluating on these five benchmark tasks, we set new state-of-the-art results
on all of them with a relative improvement up to 37.12%.

5 Meerkats are known for their strong spotting and listening abilities.
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Task
Granularity Task Name Dataset Train Test Spatial

Bounding Box
Time

Interval
# Samples
Train / Test Metrics

Openimages-AudioSet ✓ ✗ ✓ ✗ 1.07M / – –
Openimages-VGGSound ✓ ✗ ✓ ✗ 180K / – –

AVSBench† ✓ ✓ ✓ ✗ 2.30K / 0.49K cIOU, AUC
VGGSS ✗ ✓ ✓ ✗ – / 4.38K cIOU, AUC

PASCAL Sound ✗ ✓ ✓ ✗ – / 0.56K cIOU, AUC

Audio Referred
Image Grounding

Flickr-Soundnet ✗ ✓ ✓ ✗ – / 2.78K cIOU, AUC
Openimages-AudioSet Strong ✓ ✓ ✗ ✓ 96.5K / 24.1K F1-scoreImage Guided Audio

Temporal Localization LLP ✗ ✓ ✗ ✓ – / 2.32K F1-score

Fine

Audio-Visual Fact-checking Openimages-AudioSet ✓ ✓ ✗ ✗ 1.18M / 321K F1-score
AVQA ✓ ✓ ✗ ✗ 40.4K / 16.9K AccuracyAV Question

Answering Music AVQA ✓ ✓ ✗ ✗ 25.7K / 7.36K AccuracyCoarse
AV Captioning VALOR ✓ ✓ ✗ ✗ 25.0K / 3.50K B@4, M, R, C

Table 2: Task-wise dataset distribution, dataset details, and metrics. We
collect AVFIT, which is a collection of 12 datasets. We denote dataset-wise train/test
usage. The visual grounding datasets contain spatial bounding box annotations while
the audio temporal localization contains time-interval annotations. We consider audio-
visual fact-checking as a fine-grained task as it requires an understanding of spatio-
temporal grounding information (refer to Sec. 5.2 for more details). Here B@4:
BLUE@4, M: METEOR, R: ROUGE, C: CIDEr. For all our experiments we consider
F1@0.5. † We obtain the bounding box from the segmentation maps.

2 Related Works

Multi-modal Large Language Models. Inspired by the success of instruc-
tion following capabilities of large language models [14, 49, 67], the commu-
nity has recently started to leverage LLMs for understanding multi-modal con-
tents. Powered by high-quality multi-modal instructional data, recent meth-
ods [2, 4, 9, 31, 38, 54, 65, 88] extend LLMs for multi-modal learning. While some
approaches such as MiniGPT4 [88], X-LLM [4], and Video-ChatGPT [44] per-
form latent alignment between the pre-trained LLM and other modalities via
learned visual encoder. Other methods like Otter [31], and LLaMA-Adapter [83]
learn cross-attention layers into the LLM to infuse multi-modal information.
Prior works in the realm of LLMs predominantly focus on either visual-only
inputs [31,38,78,88] or tackle coarse-grained tasks [34,44] leaving room for fine-
grained audio-visual understanding. Unlike prior approaches, in this work, we
focus on equipping LLMs with strong audio-visual comprehension abilities.
Fine-grained Multi-modal Understanding. Of late, general-purpose multi-
modal large language models have demonstrated their effectiveness in unifying
a versatile array of vision-language or video-understanding tasks. These models,
powered by LLMs [15, 68, 71, 72, 75, 76, 85] have superior reasoning and under-
standing capabilities. As a natural extension, MLLMs have been leveraged to
unify region-based grounding tasks [8, 9, 30, 54, 73, 74, 79, 84, 86]. Despite signifi-
cant strides, these models are still limited to fine-grained comprehension within a
single modality. In this work, we propose Meerkat to precisely address this re-
search gap under in-the-wild audio-visual event settings. To this end, we present
a novel audio-visual task unification framework which promotes strong multi-
modal reasoning and understanding capabilities.
We discuss further related works in the appendix.
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Fig. 2: Overview of Meerkat. Our model is equipped with fine-grained audio-
visual comprehension abilities. When fed with image I, audio A pairs, the Audio-Visual
Optimal Transport alignment (AVOpT) module B learns the patch-wise image-audio
association to facilitate weak alignment between the two modalities by minimizing
the patch-level Wasserstein distance. Subsequently, the Audio-Visual Attention Con-
sistency Enforcement (AVACE) module A maximizes the region-level alignment by
confining the cross-modal attention maps around the objects of interest and minimiz-
ing the association with the background. After tokenizing the text instruction T, the
modality-specific latents (z̃I , z̃A, zT ) are passed to the instruction tuned Llama 2 model
which serves as a unified interface for the downstream tasks. We employ a LoRA-based
fine-tuning of the LLM.

3 Methodology

In this section, we introduce Meerkat. Fig. 2 provides an overview of our
approach. We first discuss the multi-modal feature extraction in Sec. 3.1. In Sec.
3.2 we introduce our novel audio-visual feature alignment modules. In Sec. 3.3
we add the overall training objective followed by Sec. 3.4 where we elaborate the
numerical representations of the visual bounding box and time intervals.

3.1 Multi-modal Feature Extraction

Image Encoder. Given a batch of k input images I = {Ii}ki=1 : Ii ∈ RH×W×C

where H, W , C represent the height, width and channels respectively, we employ
a pretrained CLIP-ViT-B/16 [57] encoder EI(·) to extract the image embeddings.
Where ith image embedding can be represented as zI ∈ RSI×DI , where SI and
DI denote the number of image tokens and hidden dimension respectively.
Audio Encoder. The audio encoder transforms the raw audio input into an
audio embedding. We use the audio transformer backbone from CLAP [19] as
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our audio encoder due to its success in diverse audio tasks owing to its superior
multi-modal alignment. We leverage this powerful pre-trained encoder (EA(·))
to extract meaningful audio representations. For a batch of k processed audio
inputs A = {Ai}ki=1: Ai ∈ RF×T where F is the number of spectral components
(e.g. Mel bins) and T is the number of time bins. Each ith audio embedding
is denoted as zA ∈ RSA×DA , SA and DA are the number of audio tokens and
hidden dimension respectively.
LLM. Meerkat adopts the open sourced Llama 2-Chat (7B) [71] as the large
language model backbone. Pre-trained LLMs tokenizer projects the text se-
quence T into embeddings zT ∈ RST×DT , where ST and DT refer to token
length and hidden dimension respectively. Before passing the image and audio
embeddings into the LLM, they undergo transformations via additional linear
layers to ensure the embedding dimensions across different modalities remain
consistent. Since the LLM serve as the unified interface for audio-visual inputs,
we rely on the language tokens to carry out the individual tasks.

3.2 Audio-Visual Feature Alignment

Inspired by the success of recent pre-training frameworks in grounding tasks
[8, 18, 35], we equip our model with two different levels of supervision: weak su-
pervision through modality alignment module (AVOpT) and strong supervision
through audio-visual consistency enforcement module (AVACE). We follow a
single-stage training strategy and empirically show our method achieves similar
performance compared to two-stage training (more details in the appendix).
Audio-Visual Optimal Transport Alignment Module (AVOpT). Weak
supervision as a precursor to fine-grained supervision has been proven to be
an effective training strategy in various tasks [18, 33]. Earth Mover Distance
based algorithms [81] involving Optimal Transport (OT) methods [10] have been
recently leveraged for patch-level alignment between the query and the support
images in a siamese network [81]. Furthermore, in the context of vision-language
models, OT-based algorithms have been employed for patch-word alignment [13].
Recently proposed VLAP [51] achieves alignment between vision-language by
predicting assignments via linearly projecting one modality into the other. As the
image (CLIP) and audio (CLAP) encoders are trained separately their learned
embeddings are in a different semantic space. Our intuition is that such a patch-
level alignment can improve vision and audio semantic consistency [23]. We
experimentally demonstrate that this patch-level weak guidance is superior to
contrastive loss-based [25,48] global supervision (more details in appendix).

From a given image I and audio A pair, we obtain patch-level (local) feature
embeddings zI and zA where, zI = EI(I); zA = EA(A). For modeling cross-modal
relations by utilizing the inherent rich semantic structures in these feature rep-
resentations, we generate two discrete distributions, represented by θI ∈ P(ZI)
and θA ∈ P(ZA), for image and audio respectively:

θI =

M∑
k=1

uI(k)δzI (k); θA =

N∑
l=1

uA(l)δzA(l) (1)
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where,
∑M

k=1 uI(k) =
∑N

l=1 uA(l) = 1, uI and uA being the respective weight
vectors for the probability distributions θI and θA. δz is the Dirac delta function
placed at support point z in the embedding space [5]. The goal is to discern the
optimal transport plan while matching these two distributions. Therefore, we
compute the Wasserstein Distance (WD) between these probability distributions
θI and θA while preserving the topological information during the cross-domain
alignment process, mathematically given as follows:

LOT = DWasserstein(θI , θA) = min
Ω∈Ψ(uI ,uA)

∑
k

∑
l

Ωkl · ϕ(zI(k), zA(l)) (2)

Here, Ψ(uI , uA) = {Ω ∈ RM×N
+ |Ω1N = uI ,Ω

⊤1M = uA}, ϕ(zI(k), zA(l)) is
the function computing the cosine distance between the cross-modal embedding
pair, and Ω is the transport plan, imitating the amount of mass shifted from the
distribution θI to the distribution θA. An exact solution to the above expression
leads to a sparse representation of the transport plan Ω which at most (2 ·
max(M,N) − 1) non-zero elements, ensuing an explainable and robust cross-
modal alignment. We defer additional details to the appendix.
Audio-Visual Attention Consistency Enforcement Module (AVACE).
Cross-modal interaction is essential for aligning the audio and visual modalities.
Moreover, region-level supervision can encourage efficient localization. Inspired
by the success of recent methods [16,18,62], we employ an adapter-based cross-
attention strategy for efficient sound source localization. The modality-specific
features in AVOpT lack awareness [28] of information from alternative modalities
which can be infused through cross-modal attention. Therefore, to enable the
audio-visual cross-modal reciprocity, we propose the AVACE module.

Although in a multi-modal context, feature fusion through a cross-attention
scheme is effective in attending to relevant objects in the image, inconsistencies
may arise such as attended regions being dispersed throughout the image includ-
ing background objects. The reasons can be attributed to the quality of interplay
between the feature embeddings. Considering CLAP audio encoder pre-trained
with examples such as ‘a man playing the violin’ (refer Fig. 2) paired with audio
of a violin, the cross-modal knowledge of audio representations encourages it to
focus on both the man and the violin in the image. Therefore, to ensure superior
region-level alignment we confine the cross-modality attention map (Ac) within
the boundaries of the object of interest, denoted by the ground-truth bounding
box. Considering a bounding box represented as [xLeft, yTop, xRight, yBottom], we
define a mask M such that M(yTop : yBottom, xLeft : xRight) = 1, otherwise 0.
Our goal is to maximize the attention within this bounding box and minimize
it elsewhere. Therefore, we mathematically formulate the attention consistency
objective LAC as follows:

LAC = λ1

(
1−

∑
i,j M(i, j)Ac(i, j)∑
i,j M(i, j) + ϵ1

)
+ λ2

(∑
i,j (1−M(i, j))Ac(i, j)∑
i,j (1−M(i, j)) + ϵ2

)
(3)

Here, Ac denotes the audio-visual cross-modality attention, (i, j) represents the
pixel location, λ1, λ2 are the loss hyper-parameters (we keep λ1 = λ2 = 0.5), and
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Algorithm 1 Meerkat: Training

Input: Image: I; Audio: A; Textual Instruction: T ; Pre-trained LLM: ELLM(·); LLM
Tokenizer: τLLM(·); Pre-trained Image Encoder: EI(·); Pre-trained Audio Encoder:
EA(·); AVACE Module: AVACE(·, ·); Masks from GT Bounding-Boxes: M; Loss
Hyperparameters: λOT, λAC; GT Tokens: ϕGT.

Output: Fine-tuned LLM: ET (·); Trained AVACE Module: AVACE(·, ·); Predicted
Tokens: ϕpred.

1: zI ← EI(I); zA ← EA(A) ▷ Obtain Visual and Audio Embeddings.
2: zT ← τLLM(T ) ▷ Tokenize and Obtain Textual Encodings.
3: z̃I , z̃A,Ac ← AVACE(zI , zA) ▷ Obtain Audio-Visual Projections, Cross-Attn Map.
4: zAV T ← (z̃I ∥ z̃A ∥ zT ) ▷ Concatenate Embeddings.
5: ϕpred ← ELLM(zAV T ) ▷ LLM Output.
6: LMeerkat ← LCE(ϕpred, ϕGT) + λOT · LOT(zI , zA) + λAC · LAC(Ac,M)
7: Optimize model parameters to reduce LMeerkat until convergence.
8: return ET (·), AVACE(·, ·), ϕpred.

ϵ1, ϵ2 are the stability factors respectively. In Sec. 5.3, we demonstrate that LAC
encourages efficient localization and audio-visual alignment of the cross-attention
maps, eventually leading to improved fine-grained cross-modal representations
for downstream tasks.

3.3 Overall training objective

Our overall training objective comprises a combination of three sub-objectives:
cross-entropy loss (LCE), weak AV alignment loss (LOT), and attention consis-
tency loss (LAC). These losses are added together to obtain the final training
loss for Meerkat given as:

LMeerkat = LCE + λOT · LOT + λAC · LAC (4)

Here, λOT and λAC are the loss weighting factors. We provide Algorithm 1
outlining the overall training procedure.

3.4 Numerical Representation of Box Location and Time Segment

Representation of Box Location. We embed the location of bounding boxes
with numerical values in the natural language sequence. A box is represented
intuitively by its top-left and bottom-right corners, i.e., [xLeft, yTop, xRight,
yBottom]. Notably, these values are normalized whose factors are determined by
the size of the respective image to which the bbox belongs. These coordinates
may appear in either the input or the output sequences depending on the task.
For instance, in Audio Referred Image Grounding task, Meerkat predicts the
bounding box of the object of interest, whereas, for Audio-Visual Fact-checking
task, the text input to Meerkat might contain the box coordinates.
Representation of Time Segment. We embed the time interval information
using numerical figures in the natural language expression. A time segment is
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intuitively represented by its start and end times, i.e., [tStart, tEnd], designating
the onset of an event or an activity. Similar to boxes, these representations may
appear in either the input or the output sequences depending on the task. For
instance, in Image Guided Audio Temporal Localization task, the model predicts
the time interval within which the query might have occurred, while for Audio-
Visual Fact-checking, the input sequence might contain a reference time window.
We add more details on the instruction preparation formats in the appendix.

4 MeerkatBench: A Unified Benchmark Suite for
Fine-grained Audio-Visual Understanding

4.1 Task Overview

One of our primary contributions is to introduce a novel audio-visual fine-grained
task unification benchmark. To this end, we present MeerkatBench comprising
three fine-grained tasks: (i) audio referred image grounding, (ii) image guided au-
dio temporal localization, (iii) audio-visual fact-checking, and two coarse-grained
tasks: (iv) audio-visual question answering, (v) audio-visual captioning.

4.2 AVFIT-3M: Audio Visual Finegrained Instruction Tuning
Dataset

In this section, we present AVFIT, an AV instruction tuning dataset comprising
3M multi-modal dialogues for model training. AVFIT consists of samples col-
lected in the following ways: (i) suitable adaptation of public datasets and (ii)
instruction-tuning data generation via prompting GPT-3.5 [3]. Next, we discuss
the data curation procedure:
Adaptation of Public Datasets. Depending on the task and availability
of datasets, we either collect the image-audio pairs directly from the publicly
available datasets (VGG-SS [6], AVSBench [87], Flickr-SoundNet [61], LLP [69],
AVQA [77], MUSIC-AVQA [32], VALOR [11]) or follow a semi-automated strat-
egy to prepare the pairs by forming matching image-audio pairs from large-
scale datasets having visual grounding annotation such as Openimages [29],
PASCAL [20] and audio event datasets like AudioSet/AudioSet Strong [22],
VGG-Sound [7]. We retain the original category labels (‘Existential’, ‘Tempo-
ral’, etc.) from the MUSIC-AVQA. To get similar insights in the AVQA dataset,
we categorise every sample into one of the ‘Existential’, ‘Temporal’, ‘Localisa-
tion’, ‘Count’ and ‘World Knowledge’ categories. During the direct collection
of pairs, we augment the audio snippet with a carefully chosen representative
frame from the associated video. On the other hand, while forming pairs our-
selves, we refer to a lookup table which we prepare beforehand by matching the
corresponding class labels from the image and the audio datasets (more details
in the appendix). We associate each image sample with its counterpart from the
audio dataset. Finally, we supplement the image-audio pairs with the generated
instructions as explained next. Details on the task-wise dataset details can be
found in Tab. 2.
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GPT-Assisted Instruction Generation. Instruction tuning datasets [26,38,
41, 55] have primarily focused on coarse-grained details like global image de-
scriptions in the form of captioning or question answering without explicitly
capturing fine-grained details. In this work, we aim to bridge this gap by in-
troducing AVFIT that promotes region-level and time-sensitive understanding
in the following ways: (i) AVFIT includes spatial coordinates of objects of in-
terest (bounding box) along with corresponding audio snippets which leverage
the synergy between audio-visual data. (ii) The designed dialogues audio time
intervals either in input or output or both. (iii) To generate high-quality instruc-
tions we manually write a few example descriptions of each task and resort to
GPT-3.5 [3] to create different variations. For further refinement of the gener-
ated dialogues we re-prompt GPT-4 [1] to ensure quality by reducing its context
size. During training, we randomly pick one instruction for each sample. Fig. 2
illustrates a sample instruction from MeerkatBench. We use special tokens
<image>, <audio>, <obj> which we later replace with instruction-guided image,
audio and object categories respectively to generate prefix-based prompting.

5 Experiments and Results

5.1 Baselines

To the best of our knowledge, Meerkat is the first MLLM that unifies audio-
visual spatial and temporal grounding, alongside possessing strong reasoning
capabilities. We carefully choose the closest baseline for each task and suitably
adapt them for fair comparisons. Owing to BuboGPT’s [86] spatial localiza-
tion ability, we select it as our baseline for the audio referred image grounding
task. Most similar in spirit to our image guided audio-temporal localization task
is TimeChat [59]. It leverages the pre-trained VideoLlama model and suitably
instruction-tune it to tackle temporal grounding tasks. Due to their audio-visual
comprehension abilities, we resort to X-InstructBLIP [50], Macaw-LLM [43],
PandaGPT [65], and VideoLlama [82] as baselines for audio-visual fact-checking,
AV question answering, and AV captioning tasks respectively. Please refer to
Tab. 1 for an overview of the characteristics of the generalist baselines. For
specialist baselines, refer to the corresponding task tables. We finetune all base-
lines on our datasets except for using Openimages-AudioSet and Openimages-
VGGSound train splits from the audio-referred visual grounding task.

5.2 Main Results

Audio Referred Image Grounding (ARIG) This task involves visual ground-
ing by predicting the coordinates of a bounding box around the object of interest
guided by the input audio. We prepare 1.2M image-audio-instruction pairs us-
ing steps explained in Sec. 4.2. We add details of the input instruction format
and model output in the appendix. Meerkat achieves superior performance in
sounding object localization task, setting a new benchmark as shown in Tab. 3.



Meerkat 11

VGG-SS Flickr-SoundNet PascalSound AVSBenchModels Generalist? cIoU ↑ AUC ↑ cIoU ↑ AUC ↑ cIoU ↑ AUC ↑ cIoU ↑ AUC ↑
SSPL [64] ✗ 33.90 38.00 76.70 60.50 51.72 39.79 61.32 48.44
EZ-VSL [46] ✗ 38.85 39.54 83.94 63.60 51.90 40.25 60.06 49.64
SSL-TIE [39] ✗ 38.63 39.65 79.50 61.20 52.14 40.44 62.88 51.28
SLAVC [45] ✗ 39.80 – 86.00 – 52.29 42.19 63.39 51.07
MarginNCE [52] ✗ 39.78 40.01 85.14 64.55 53.61 45.52 65.85 52.92
HearTheFlow [21] ✗ 39.40 40.00 84.80 64.00 55.48 47.40 67.49 54.39
FNAC [66] ✗ 41.85 40.80 85.14 64.30 57.38 48.03 68.78 56.19
Alignment [62] ✗ 42.64 41.48 82.40 64.60 58.34 49.86 71.57 57.52

BuboGPT [86] ✓ 40.31 39.68 81.17 62.29 58.52 51.63 74.33 59.49

Meerkat (ours) ✓ 48.51 45.62 88.35 67.88 65.23 56.10 79.82 65.35

∆Meerkat−BuboGPT ✓ +20.34% +14.97% +8.85% +8.97% +11.47% +8.66% +7.39% +9.85%

Table 3: Audio referred image grounding results. For AVSBench we follow the
same train/test splits for all methods. We use the VGG-SS, Flickr-SoundNet, and
PascalSound datasets only for evaluation.

LLP AudioSet StrongModels Generalist? F1-score ↑ F1-score ↑
AVE [70] ✗ 35.47 37.42
AVSDN [36] ✗ 37.15 41.48
AVVP [69] ✗ 48.93 49.20
TimeChat [59] ✓ 51.28 54.66
Meerkat (ours) ✓ 54.96 56.85

∆Meerkat−TimeChat ✓ +7.18% +4.01%

Table 4: Image guided audio tempo-
ral localization results. We report the
segment level F1-scores and attribute our
performance gain over specialist models
to our multi-task learning strategy.

Type 1 Type 2 Type 3 Type 4
Model

F1-score ↑ F1-score ↑ F1-score ↑ F1-score ↑

Macaw-LLM [43] 0.65 0.70 0.56 0.77
PandaGPT [65] 0.67 0.70 0.66 0.70
VideoLlama [82] 0.71 0.72 0.72 0.78
BuboGPT [86] 0.72 0.66 0.67 0.70
X-InstructBLIP [50] 0.73 0.72 0.72 0.80
TimeChat [59] 0.74 0.76 0.74 0.82

Meerkat (ours) 0.85 0.83 0.84 0.88

∆Meerkat−TimeChat +14.86% +9.21% +13.51% +7.32%

Table 5: Audio-Visual fact-checking
requires powerful reasoning capabilities
across audio-visual modalities.

Image Guided Audio Temporal Localization (IGATL). When prompted
to indicate a time interval within which a certain audio event occurs, Meerkat is
capable of producing accurate time bounds in the form [tStart, tEnd], where
tStart and tEnd are the start and end times, respectively. For all our exper-
iments, we maintain the audio duration to be 30s. Different from prior visual
grounding-based approaches [8, 56, 79], we present a new audio event localiza-
tion task by setting a new baseline. We attribute the superior performance of
our method on fine-grained audio temporal localization task to our specially
designed AVOpT and AVACE modules, which ensure superior modality-specific
guidance. Fig. 3 demonstrates our model can locate a precise time interval as-
sociated with an audio event. Tab. 4 reports the quantitative comparison of our
method against other baselines.
Audio-Visual Fact-checking (AVFact). In this section we introduce a new
suite of tasks that involves a strong comprehension of the audio-visual semantic
information. These tasks broadly require the model to analyze and verify whether
a given statement about an audio-visual scenario holds or not. Although we do
not use GT spatio-temporal annotations to train the model, we classify this task
under the fine-grained category as the task requires the model to attend to a
specific region/time interval as passed in the query. To alleviate inconsistencies
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Fig. 3: Qualitative results. We compare our method against its closest baselines on
all downstream tasks. Meerkat aided by our novel design approach and instruction
tuning datasets achieves superior performance on spatio-temporal grounding as well as
coarse-grained tasks by outperforming prior approaches.

in evaluation, we restrict the model’s response to binary True/False only. We
divide these tasks into the following 4 categories:
Type 1: Given an audio-image pair, verify if the object within the bounding box
produces sound that corresponds to the input audio.
Type 2: Given an audio-image pair, verify if the object in the image is related
to the audio present within the given time segment.
Type 3: Given an audio-image pair, verify if the object present within the pro-
vided bounding box produces sound that corresponds to the audio within a given
time segment.
Type 4: Given an audio snippet, verify whether its visual counterpart is present
in the image or not.
In Tab. 5 we contrast the performance of other baselines against Meerkat on
all four types of AVFact tasks.
Audio-Visual Question Answering (AVQA). Audio-visual question an-
swering aims to answer questions encompassing both audio and visual modali-
ties. We collect question-answer pairs from the AVQA [77] and MusicAVQA [32]
datasets and augment them with instruction tuning templates (details in ap-
pendix) to prepare the data samples. We contrast our method against SoTA
generalist and specialist models on the AVQA task in Tab. 6. We report the
evaluation results on the other metrics like Count and Comp in the appendix.
Audio-Visual Captioning (AVC). This task learns how to generate text
tokens conditioned on audio-visual inputs. In contrast to image/audio-only cap-
tioning methods, this requires strong multi-modal understanding and reasoning
capabilities. We note that Meerkat outperforms existing specialist and gen-
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Model Generalist? AVQA MUSIC AVQA VALOR-32K
Exist ↑ Localis ↑ Temp ↑ Exist ↑ Localis ↑ Temp ↑ BLEU@4 ↑METEOR ↑ ROUGE ↑ CIDEr ↑

AVSD [60] ✗ 81.61 58.79 61.41 - - - - - - -
PanoAVQA [80] ✗ 81.21 59.33 63.23 - - - - - - -
ST-AVQA [32] ✗ 81.81 64.51 63.23 - - - - - - -
CAD [47] ✗ 83.42 73.97 76.16 - - - - - - -
AVST [32] ✗ - - - 72.44 65.54 59.36 - - - -
LAVISH [37] ✗ - - - 73.83 65.00 60.81 - - - -
LAST [40] ✗ - - - 76.21 68.91 60.60 - - - -
SMPFF [12] ✗ - - - - - - 7.59 12.64 28.69 37.18
VALOR [11] ✗ - - - - - - 8.97 14.88 30.86 55.73

Macaw-LLM [43] ✓ 82.19 74.86 78.98 72.99 71.28 59.36 9.36 15.28 33.31 58.98
PandaGPT [65] ✓ 83.38 76.81 79.11 78.48 73.12 65.85 10.35 16.92 34.88 61.22
VideoLlama [82] ✓ 84.48 77.06 81.36 81.21 76.10 67.52 11.45 17.39 35.14 63.63
X-InstructBLIP [50] ✓ 85.53 80.09 83.91 80.28 77.45 68.83 12.31 18.82 37.93 65.73

Meerkat (ours) ✓ 88.24 86.65 86.55 83.62 80.51 73.33 16.88 23.18 45.67 76.84

∆Meerkat−X-InstructBLIP ✓ +3.17% +8.19% +3.15% +4.16% +3.95% +6.54% +37.12% +23.17% +20.41% +16.9%

Table 6: Quantitative results on AVQA and AV captioning tasks. The reported
numbers on AVQA dataset [77] are on the val split. For the MUSIC-AVQA dataset
[32], results are reported on the balanced test set. Here, Exist: Existential, Localis:
Localisation, Temp: Temporal. Evaluation for AV captioning is done on VALOR-32K
[11] val set. Meerkat demonstrates strong coarse-grained understanding abilities.

eralist models by a considerable margin and sets a new baseline on a recent
benchmark dataset VALOR [11], as shown in Tab. 6.

We argue that the seamless extension of Meerkat to coarse-grained tasks is
facilitated by the strong semantic understanding acquired by our model during
training. This comprehension ability enables our model to effectively navigate
and interpret the complexities inherent in coarse-grained tasks, showcasing the
versatility and easy extensibility of our approach.

5.3 Ablation Study

Evaluation on Pre-training Tasks. To study the effect of unified pre-training,
we evaluate our model under single task vs. multi-task learning setting. We
gradually add datasets for each task and assess the model’s performance. On
quantitative evaluation, we note that our multi-task setting is indeed benefiting
from each other in achieving superior performance as shown in Tab. 7. While
the model trained on fine-grained tasks performs significantly well on the coarse-
grained tasks, introducing the coarse-grained tasks in the training set doesn’t
have a considerable impact on ARIG, IGATL, and AVFact - underlining the
importance of our collected fine-grained datasets.
Full vs. LoRA Finetuning We conduct experiments on different modes of
LLM fine-tuning. As shown in Fig. 4, LoRA [27] based fine-tuning with r=32
achieves optimal performance. Lower values of r (4,16) performs poorly compared
to 32 and we empirically find full-finetuning performs slightly worse than LoRA
(r=32). We add more ablation results in the appendix.

5.4 Qualitative Analysis

Fig. 3 illustrates the comparison of Meerkat with its closest baseline on all
downstream tasks. We observe that our model powered by the combination of
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Pre-training Task VGG-SS LLP AVFact AVQA VALOR
ARIG IGATL AVFC AVQA AVC cIOU ↑ F1-score ↑ Avg F1-score ↑ Avg Acc. ↑ CIDEr ↑

✓ ✗ ✗ ✗ ✗ 47.53 18.73 0.71 77.22 67.82

✓ ✓ ✗ ✗ ✗ 47.75 54.26 0.74 79.74 70.19

✓ ✓ ✓ ✗ ✗ 48.17 54.65 0.83 81.11 72.13

✓ ✓ ✓ ✓ ✗ 48.29 54.82 0.83 86.68 74.14

✓ ✓ ✓ ✓ ✓ 48.51 54.96 0.85 87.14 76.84

Table 7: We systematically analyze the effect
of multi-task learning. Here ARIG: audio referred
image grounding, IGATL: image guided audio tem-
poral localization, AVFC: audio-visual fact-checking,
AVQA: audio-visual question answering, and AVC:
audio-visual captioning. AVQA avg accuracy calcu-
lated over Exist, Localis, and Temp.
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Fig. 4: cIoU upper bound
on VGG-SS for Full vs. LoRA
based finetuning.

AVOpT and AVACE is equipped with finer region-level understanding com-
pared to Bubo-GPT [86]. Similarly, on image-guided audio temporal localization,
our method outperforms TimeChat [59]. We attribute the excellent performance
of Meerkat to the strong AV association learning backed by the instruction
tuning data and multi-task learning set-up. For the AVQA task, the recently
proposed X-InstructBLIP [50] achieves comparable results. We argue that fu-
elled by a strong fine-grained understanding acquired through the pre-training
stages, Meerkat can extract additional contextual information from the visual
modality. Our training paradigm emphasizes on both audio and visual modalities
facilitating precise audio understanding by the model when compared against
Video-LLaMA [82]. Finally, on the AVFact tasks, our approach achieves superior
performance due to its better multi-modal comprehension skills.

6 Conclusions and Future Works

We presented Meerkat, a powerful multi-modal LLM adept at processing audio-
visual inputs to comprehend fine-grained spatio-temporal information. Our novel
audio-visual alignment strategy powered by the AVOpT and AVACE modules
instill strong compositional understanding into Meerkat, thereby making it
suitable for various challenging tasks. To pave the way for future research in this
direction, we collect AVFIT comprising 3M instruction tuning samples and in-
troduce MeerkatBench. Extensive experiments demonstrate the effectiveness
of our approach on a wide range of downstream tasks, consistently achieving
state-of-the-art performance.

In future work, we plan to equip our model to address more challenging tasks
like LLM guided AV segmentation. We also plan to extend the model’s capa-
bility to operate on videos and handle associated tasks such as video temporal
grounding, and video summarization. Future work can also focus on collecting
video-centric multi-modal training data and reasoning benchmarks for evaluation
at scale. Finally, our work opens up avenues to study robustness and composi-
tional understanding of AV LLMs with fine-grained comprehension abilities.
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