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Abstract. Hyperspectral image (HSI) reconstruction is vital for re-
covering spatial-spectral information from compressed measurements in
coded aperture snapshot spectral imaging (CASSI) systems. Despite the
effectiveness of end-to-end and deep unfolding methods, their reliance on
substantial training data poses challenges, notably the scarcity of labeled
HSIs. Existing approaches often train on limited datasets, such as KAIST
and CAVE, leading to biased models with poor generalization capabili-
ties. Addressing these challenges, we propose a universal Self-Supervised
Adapter for Hyperspectral Snapshot Compressive Imaging (SAH-SCI).
Unlike full fine-tuning or linear probing, SAH-SCI enhances model gen-
eralization by training a lightweight adapter while preserving the original
model’s parameters. We propose a novel approach that combines spectral
and spatial adaptation to enhance an image model’s capacity for spatial-
spectral reasoning. Additionally, we introduce a customized adapter self-
supervised loss function that captures the consistency, group invariance
and image uncertainty of CASSI imaging. This approach effectively re-
duces the solution space for ill-posed HSI reconstruction. Experimental
results demonstrate SAH’s superiority over previous methods with fewer
parameters, offering simplicity and adaptability to any end-to-end or un-
folding methods. Our approach paves the way for leveraging more robust
image foundation models in future hyperspectral imaging tasks.

Keywords: Compressive imaging · Self-supervised learning · Adapter

1 Introduction

Hyperspectral images (HSIs), which acquire both spatial and spectral informa-
tion, can more accurately characterize the captured scene than traditional RGB
⋆ These authors contributed equally to this work.
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images. Based on spectral features with rich information, HSIs are widely used
in many computer vision tasks, e.g., object detection [18, 32, 33], medical im-
age processing [24, 30], remote sensing [4, 27, 48], etc. Inspired by conventional
compressive sensing (CS) [49,53], snapshot compressive imaging (SCI) has been
proposed to capture HSIs. Compressing 3D HSI cubes into 2D measurements,
SCI can acquire HSIs quickly with low cost and low bandwidth. In recent years,
SCI systems have been developed by various hardware [22,26,45,47], which are
used for 3D spectral images [41–43]. Among many SCI systems, coded aperture
snapshot spectral imaging (CASSI) [13,29,39] stands out for its outstanding per-
formance and has become the mainstream solution for SCI. CASSI modulates
spectral frames by a coded aperture, and samples them by shifting across the
spectral dimension via a disperser [52].

Based on CASSI, a large number of reconstruction algorithms have been
proposed to solve the inverse problem, i.e., reconstructing 3D HSIs from 2D
measurements. Considering the inverse problem is ill-posed, conventional model-
based approaches typically use handcrafted priors such as sparsity [19, 39], to-
tal variation [37, 40], low-rankness [23, 50], etc. These methods require man-
ual parameter adjustments, resulting in poor quality and slow recovery rates.
Thanks to the advancements in deep learning, the speed and accuracy have
been significantly improved through the design of various deep network archi-
tectures [5,6,16,28,29,31]. Due to the complexity of compression in CASSI, it is
very difficult to design a high-quality and fast self-supervised algorithm. Almost
all existing methods in this task train a deep neural network in a supervised
manner, i.e., using datasets with many paired ground truth (GT) images and
their measurements. However, these deep learning methods face a challenge that
needs to be addressed: the lack of available large-scale training data. Supervised
networks often require large amounts of data for high-quality and stable perfor-
mance. Unfortunately, in the hyperspectral domain, there is very limited image
data available. Acquiring sufficient spectral data is difficult and expensive. Most
reconstructed networks are trained based on the KAIST [10] and CAVE [34]
datasets. Although these methods can achieve good reconstruction results on
given synthetic data, the bias in the limited training data might lead to poor
generalization performance of the pre-trained model, e.g., the reconstruction re-
sults of HDNet [16] on ICVL [1] dataset have large errors in spectral accuracy,
which limits the application of the model to real-world datasets.

So how to improve the generalization performance of existing reconstruc-
tion models without sufficient HSI training datasets? A possible strategy is self-
supervised fine-tuning. Conventional self-supervised fine-tuning methods include
full fine-tuning and linear probing. However, these proposed self-supervised fine-
tuning strategies fail to achieve generality and efficiency for SCI models. As
shown in Fig. 1, full fine-tuning leads to model instability, resulting in worse
reconstruction results with much lower PSNR and SSIM [44]. Linear probing
only updates the final linear layer parameters, which fails to be applied with
deep unfolding models resulting in poor generality. To address the above chal-
lenges, we firstly propose a universal self-supervised fine-tuning framework for
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Fig. 1: Comparison of self-supervised fine-tuning methodologies: In this context, the
demonstrated pre-trained model is HDNet [16]. (a) Fine-tune all the model parameters.
(b) Linear probing freezes the feature extractor and updates the final linear layer
parameters. (c) Our SAH-SCI trains a lightweight spatial-spectral (SS) adapter to fine-
tune the outputs of the pre-trained model while preserving its parameters. PSNR/SSIM
and tunable parameters on three datasets demonstrate the superiority of our method.

hyperspectral SCI (SAH-SCI), which can be applied to various types of hy-
perspectral reconstruction models. We keep the parameters of the pre-trained
model unchanged and train an adapter for the model to improve its general-
ization performance, which enhances its visual details of unknown data while
preserving the characteristics of the original model. Since the adapter is trained
in a self-supervised manner and preserves the original model’s parameters, it
requires cheaper memory and computational costs. Additionally, we propose a
lightweight Self-Supervised Adapter (SAH) with a customized self-supervised
loss function. The spatial and spectral properties of hyperspectral images are
effectively exploited through SAH. Simultaneously, the self-supervised loss func-
tion mitigates the solution ambiguity and nullspace information deficiency in
the inverse problem of SCI by exploring the consistency, group invariance and
uncertainty in CASSI imaging.

Overall, our contributions of this work can be summarized as follows:

– We propose a universal self-supervised fine-tuning framework for hyperspec-
tral SCI (SAH-SCI). It is the first attempt to introduce self-supervised fine-
tuning to hyperspectral SCI.

– We design a lightweight Self-Supervised Adapter SAH with a customized
self-supervised loss function to capture spatial and spectral properties and
effectively reduce the feasible solution space in hyperspectral SCI.

– Our SAH-SCI framework can effectively enhance the generalization of the
model while requiring less time and fewer costs. Extensive results on both
synthetic and real datasets verify the superiority of the proposed approach.
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2 Related Work

2.1 Hyperspectral Image Reconstruction

For the HSI reconstruction, traditional methods [12,23,40,46,50] use handcrafted
image priors to solve the inverse problem iteratively. However, these iterative
optimization-based algorithms are limited by hand-crafted priors and the low
reconstruction speed. Recently, inspired by deep learning to solve inverse prob-
lems [3], convolution neural networks (CNNs) and transformer-based networks
have been used to solve the inverse problem of spectral SCI to achieve rapid
reconstruction [5,6,25,28,29,31,52]. The above methods can be categorized into
three main groups, i.e., end-to-end methods, deep unfolding methods and plug-
and-play (PnP) methods. PnP methods plug CNN denoisers into model-based
approaches to address the HSI reconstruction problem, which typically require
hundreds of iterations resulting in no real-time reconstruction. Given enough
training data and time, two other types of methods can achieve desirable results
and output instantaneously, thus building a real-world SCI system (including
sampling and reconstruction). However, their reliance on paired samples of real
HSIs limits their applicability to specific systems with defined bands and charac-
teristics, posing a challenge for generalizability across different scenarios. Conse-
quently, there is a growing demand for efficient self-supervised algorithms capable
of overcoming the limitations associated with large-scale training datasets.

Despite the challenges of implementing self-supervised algorithms for SCI
systems, there have been a few studies on self-supervised deep learning for CS to
remove the prerequisite on GT images. [11] trained generative adversarial net-
works with unpaired samples. [8, 9] proposed a self-supervised scheme based on
image equivariance. [36] proposed a dual-domain self-supervised loss for handling
possible ambiguity and overfitting.

2.2 Adapter Tuning

Models that are pre-trained using comprehensive general domain datasets have
shown impressive capabilities in generalization, greatly enhancing a variety of
applications, ranging from natural language processing (NLP) [35] tasks to multi-
model tasks [21]. To tailor the model for specific downstream tasks, full fine-
tuning is often applied to retrain all model parameters. However, as the size of the
model and dataset increases, fine-tuning the entire model imposes unacceptable
overheads, while inevitably being limited by the original model. Another method
is linear probing [20], this approach only fine-tunes the last layer of the network
which limits its application to deep unfolding methods.

Adapter tuning is proposed to solve the above problem by introducing addi-
tional trainable modules into the frozen backbone [14, 15]. [15] adds the linear
modules in sequence to the existing layer. [14] recommends integrating these
modules in parallel with the original layer to improve performance. However,
due to the complexity of snapshot compressive imaging, traditional adapter tun-
ing method faces initialization sensitivity issues that affects effectiveness.
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3 Mathematical Model of CASSI

Fig. 2: The schematic of CASSI system.

The schematic of the CASSI
system is shown in Fig. 2.
In the CASSI system, the 3D
spectral cube is first modu-
lated via a coded aperture
and then dispersed via a
disperser. Mathematically, let
X ∈ RH×W×Nλ denote the 3D spectral cube, where H, W , and Nλ are the
cube’s height, width, and number of wavelengths. M0 ∈ RH×W denotes the
coded aperture. We use X′ ∈ RH×W×Nλ to represent the modulated signals.
Then the modulation process can be expressed as:

X′(:, :, λ) = X(:, :, λ)⊙M0, (1)

where ⊙ is element-wise multiplication, λ ∈ [1, ..., Nλ] represents the spectral
wavelengths. After that, modulated HSI frames with different wavelengths pass
the disperser. X′ is tilted and is seen as sheared along the y-axis. We then use
X′′ ∈ RH×(W+d×(Nλ−1))×Nλ to represent the tilted data cube, where d refers
to the shift step. Assuming λc to be the reference wavelength, image X′(:, :, λc)
represents frame that is not sheared along the y-axis, we can formulate the
dispersion as:

X′′(u, v, nλ) = X′(x, y + d(λn − λc), nλ), (2)

where (u, v) denotes the spatial coordinates, λn denotes the wavelength of the
nλ-th channel, and d(λn − λc) denotes the shift distance. Based on the previous
model, the measurement Y ∈ RH×(W+d×(Nλ−1)) can be expressed as:

Y =

Nλ∑
nλ=1

X′′(:, :, nλ) +N, (3)

where N ∈ RH×(W+d×(Nλ−1)) indicates random noise generated by sampling.
Then given x ∈ RnNλ , y ∈ Rn and n ∈ Rn with n = H(W + d× (Nλ − 1)),
which denote the vectorized form of X, Y and N respectively, the measurement
in SCI can be modeled by:

y = Φx+ n, (4)

where Φ ∈ Rn×nNλ denotes the sampling matrix. Thus, the reconstruction task
for SCI is to solve x, given the measurement y (sampled by camera) and the
sampling matrix Φ (pre-designed masks).

4 Method

4.1 Overall Architecture

The overall architecture of SAH-SCI is shown in Fig. 3. Firstly, Mask Φ and
measurements y ∈ RH×(W+d(Nλ−1)) are input into the pre-trained model to
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Fig. 3: Top: Framework of SAH-SCI. Mask Φ and measurement y are input into
the pre-trained model to obtain the initial results Xpre, where the pre-trained model
parameters are frozen. Then Xpre is fed into the self-supervised adapter SAH to obtain
the HSI reconstruction result Xrec. Bottom: Self-supervised loss component details.

obtain the initial results Xpre ∈ RH×W×Nλ . It should be noted that pre-trained
model is frozen. Keeping the parameters of the pre-trained model unchanged
saves the overhead of updating model, which is faster to train and occupies less
memory. It also ensures the spectral knowledge and features learned by the pre-
trained model are not forgotten. Secondly, Xpre is fed into the self-supervised
adapter SAH to obtain the fine-tuned HSI reconstruction results Xrec. The SAH-
SCI process can be written as:

Xpre = Pretrained(Φ,y),

Xrec = Adapter(Xpre).
(5)

The SAH adopts a U-shaped structure where a lightweight spatial-spectral con-
volution, and a self-supervised loss are customized. More details about SAH
implementation and self-supervised loss are shown in Sec. 4.2 and Sec. 4.3.

4.2 Architecture of Proposed SAH

As depicted in Fig. 4 (a), SAH adopts the spatial-spectral convolution as the
basic module where different scales of modules are stacked in a U-shaped struc-
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Fig. 4: The architecture of SAH. (a) SAH stacks spatial-spectral convolutions with U-
shaped structure. (b) The structure of the spatial-spectral convolution. (c) Frequency
Adaption. Skip features and backbone features are concatenated by adaptive learnable
weights based on frequency domain information.

ture. By fusing the extracted spatial and spectral information, spatial-spectral
convolution is able to effectively exploit hyperspectral features while requiring
less parameters. Besides, we design a frequency-adaptive feature fusion module,
frequency adaption, to balance the denoising ability of the backbone network
and the ability of skip connections to introduce high-frequency details.
Spatial-Spectral Convolution. Conventional 2D convolution fails to effec-
tively extract the spectral features of HSIs, while 3D convolution results in un-
acceptably large parameter counts. To address above limitations, we propose a
novel spatial-spectral convolution module to exploit the unique spatial and spec-
tral properties of HSIs while ensuring the lightweight structure of the adapter,
as shown in Fig. 4 (b). For the given input features, spatial features and spec-
tral features are extracted by a spatial convolution and a spectral convolution,
respectively. We choose 3×3 group convolution as spatial convolution and 1×1
convolution as spectral convolution. To minimize the number of parameters, we
set the number of groups to be the greatest common divisor of the input and
output channels in group convolution. Then the extracted features are summed
and fused by channel shuffle module [51]. The process is formulated as follows:

Fspatial = GroupConv3×3(Finput),

Fspectral = Conv1×1(Finput),

Ffusion = ChannelShuffle(Fspatial + Fspectral).

(6)
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Finally, the fusion features are channel weighted to get the output, where the
channel weights are computed by a sequence of 1×1 convolution, 1×1 convolution
and sigmoid, which is expressed as:

Fout = Ffusion ⊗ Sigmoid(Conv1×1(Conv1×1(Ffusion))), (7)

where ⊗ means matrix multiplication operation.
Frequency Adaption. In Sec. 5, it is observed that pre-trained models gener-
ally succeed in reconstructing the main structural information of HSI, but they
often fall short in preserving finer details and may introduce artifacts. Conse-
quently, adapters must prioritize the recovery of details and the reduction of ar-
tifacts, both of which are typically associated with high-frequency components.
However, the incorporation of skip connections could potentially compromise
the inherent reconstructing capability of the backbone network, resulting in the
generation of aberrant image details [38]. To address this concern, we propose a
frequency adaptation module, depicted in Figure 4 (c). This module introduces
adaptive learnable weights, denoted as b and s, where b is utilized to augment
the backbone features while s is employed to diminish the contribution of skip
features. Furthermore, to counteract the potential oversmoothing of textures
resulting from enhanced denoising, skip features undergo spectral modulation
in the Fourier domain to suppress low-frequency information. With adaptive
weighting, skip features and backbone features are then concatenated to get the
integration features, which is formulated as:

F′
backbone = Fbackbone ⊗ b,

F′
skip = IFFT(FFT(Fskip)⊗ s),

Fintegration = Concatenate(F′
backbone,F

′
skip),

(8)

where FFT(·) and IFFT(·) are Fourier transform and inverse Fourier transform.

4.3 Self-Supervised Loss Function for Adapter

Solving the severe linear inverse problem of SCI requires an understanding of
the underlying hyperspectral signal model, which has to be learned from data.
However, learning the model from observations obtained by a single incomplete
measurement mask is impossible, as the nullspace of the operator contains no
information about the reconstructed signal model. Thus, methods based on the
incomplete mask are limited by observational data and fail to provide a complete
portrayal of the signal characteristics of HSIs. Besides, as the inverse problem of
SCI is ill-posed, the infinite solutions caused by the nullspace of operator lead to
ambiguity in the solution space. To overcome the above limitations, we propose
a self-supervised loss function that captures the consistency, group invariance
and image uncertainty of CASSI imaging, as shown in Fig. 3. By assuming that
the hyperspectral signal is invariant to certain group action, our self-supervised
loss greatly enriches the completeness of the measurement mask, mitigating the
deficiency of information in the reconstructed signal model resulting from the
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nullspace of incomplete mask. Furthermore, we effectively reduce the solution
ambiguity by modeling the uncertainty in the linear inverse problem of SCI.
Measurement Consistency Loss. Due to the fact that the measurement y
is encoded from the hyperspectral image x by Φx, we use y as a label for self-
supervised training. We first ensure that the inverse mapping f is consistent in
the measurement domain:

Φf(y) = y. (9)

Thus the measurement consistency loss is defined as follows:

Lm(θ) =
1

Nd

Nd∑
i=1

∥yi −ΦFθ(yi)∥22, (10)

where {yi}Nd
i=1 indicates the input measurement, θ indicates the parameters to

be updated by adapter. Fθ : RH×(W+d(Nλ−1)) → RH×W×Nλ denotes the map-
ping from measurement y to reconstructed signal x, which can be viewed as a
composite of pre-trained model mapping and adapter mapping.
Equivariance Imaging Loss. To address the limitations imposed by a single
incomplete measurement mask in the SCI system, we enrich the completeness of
the mask by introducing group transformations that are invariant to the hyper-
spectral signal model applied to the operator Φ:

TgFθ(Φx) = Fθ(ΦTgx), (11)

where {Tg}g=1,...,|G| denotes a group of transformations (e.g., shifts, rotations,
etc.) which satisfies the invariance assumption. By enforcing the equivariance in
Eq. (11), learning hyperspectral model from a single mask becomes possible as
the transformations T1, ..., T|G| allow access to more virtual masks ΦT1, ...,ΦT|G|
with different nullspaces. The equivariance imaging loss is defined as follows:

Lei(θ) =
1

|G|Nd

Nd∑
i=1

|G|∑
g=1

∥TgFθ(yi)− Fθ(ΦTgFθ(yi))∥22 . (12)

Image Uncertainty Loss. The nullspace of the operator leads to infinite
solutions thus making the reconstructed hyperspectral images ambiguous. Image
uncertainty loss solves the solution ambiguity by modeling uncertainty [36]. Since
y contains no information about x in the nullspace of Φ, we use the output Fθ(y)
as an uncertain version of GT for training. Denote Fθ(y) as z, consider z′ = z+n
with random noise n, we have:

Fθ(Φz′) → z = x+ e. (13)

Assume that z′ is a estimate of x, the residual e = z − z′ can be considered
as an approximate calculation of the real residual, which reveals the ambiguity
in nullspace. By minimizing the residual e, the ambiguity in nullspace can be
effectively mitigated. Noting that there is a correlation between e and z, which
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Table 1: PSNR/SSIM performance comparisons with/without SAH on 5 scenes of
ICVL dataset (S1-S5).

Models Category S1 S2 S3 S4 S5 Avg

λ-Net [31] CNN 31.31/0.898 30.40/0.816 26.45/0.774 22.70/0.720 28.28/0.839 27.83/0.810
λ-Net-SAH 33.11/0.935 32.92/0.865 28.71/0.814 24.09/0.761 31.06/0.876 29.98/0.850

TSA-Net [29] CNN 27.97/0.733 28.52/0.717 25.70/0.748 23.59/0.753 28.47/0.843 26.85/0.759
TSA-Net-SAH 33.39/0.925 30.52/0.827 30.60/0.853 26.11/0.826 31.44/0.902 30.41/0.867

DGSMP [17] Deep Unfolding 29.24/0.862 31.35/0.854 26.28/0.786 23.87/0.738 25.17/0.765 27.18/0.801
DGSMP-SAH 34.97/0.957 33.83/0.888 31.65/0.897 27.75/0.867 30.92/0.920 31.82/0.906

GAP-Net [28] Deep Unfolding 30.22/0.911 32.73/0.882 25.63/0.824 23.80/0.769 25.40/0.813 27.55/0.840
GAP-Net-SAH 34.01/0.952 35.04/0.899 30.32/0.871 26.28/0.837 28.90/0.893 31.11/0.890

DAUHST [6] Deep Unfolding 33.80/0.958 38.72/0.946 30.84/0.905 26.77/0.860 30.95/0.916 32.22/0.917
DAUHST-SAH 34.65/0.963 39.00/0.948 31.77/0.913 27.48/0.871 31.51/0.921 32.88/0.923

HDNet [16] Transformer 31.26/0.912 33.69/0.876 27.32/0.837 25.02/0.797 27.28/0.832 28.91/0.851
HDNet-SAH 37.99/0.971 37.31/0.930 34.46/0.928 30.51/0.913 33.64/0.941 34.78/0.937

MST++ [5] Transformer 32.13/0.937 35.29/0.901 28.67/0.880 25.60/0.826 28.42/0.881 30.02/0.885
MST++-SAH 36.68/0.966 38.40/0.941 33.70/0.927 29.34/0.898 34.04/0.940 34.43/0.935

is not consistent with the law of real residual, e is generated by random sign-
flipping the calculation. The image uncertainty loss is defined as follows:

Liu(θ) =
1

Nd

Nd∑
i=1

∥∥Fθ

(
Φ(zi + e)

)
− zi + e

∥∥2
2
, (14)

where zi = Fθ(yi). Finally, we add total variation loss [37] to remove noise
and eliminate artifacts that might caused during HSI reconstruction:

Ltv(θ) =
1

Nd

Nd∑
i=1

TV (Fθ(yi)). (15)

In summary, the overall self-supervised loss L is defined as follows:

L(θ) = Lm(θ) + αLei(θ) + βLiu(θ) + γLtv(θ), (16)

where α, β and γ denote the equilibrium constants.

5 Experiments

5.1 Experiment Settings

Datasets. Different from the training datasets KAIST [10] of most pre-trained
models, the simulation experiments are conducted on three publicly available
HSI datasets ICVL [1], Harvard [7], and NTIRE2022 [2] with randomly clipped
patches of size 256×256×28, i.e., 28 spaces of size 256×256. For real datasets,
we use the 660 × 660 × 28 data captured in TSA-Net [29].
Pre-trained Models. We follow the same experiment setting and pre-train 7
base models including two CNN-based methods (λ-Net [31], TSA-Net [29]), two
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Fig. 5: Simulated HSI reconstruction comparisons on ICVL, Harvard and NTIRE2022
datasets. The right shows the spectral curves corresponding to the selected region.
Choose patch for better visualization. Please zoom in for better view.

transformer-based methods (HDNet [16], MST++ [5]) and three deep unfolding
methods (DGSMP [17], GAP-Net [28], DAUHST [6]).
Implementation Details. The implementation details of SAH are given in the
supplementary materials. The PSNR and SSIM [44] are employed to assess HSI
reconstruction quality.

5.2 Quantitative Results

We apply our adapter SAH to 7 pre-trained models described above. The PSNR
and SSIM performance results on 5 scenes of ICVL dataset are listed in Tab.
1. It can be seen that our approach is universal and works for both end-to-end
and deep unfolding methods. The HSI reconstruction results of models can be
improved by over 2dB in average PSNR and over 0.4 in average SSIM with
adaption. For HDNet, using SAH, even the best reconstruction quality can be
obtained with 5.87dB/0.086 improvement where the pre-trained model does not
perform well. To verify the generality of adapter on different datasets, we conduct
experiments on other two datasets and the results are shown in Tab. 2. We can
see that fine-tuning with our SAH brings significant improvements in the HSI
reconstruction of all datasets. Besides, additional parameters and flops are just
0.29M and 5.18G, which proves the lightness of the proposed adapter.
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Table 2: The average PSNR/SSIM performance, Params and GFLops with/without
SAH on two datasets. Each dataset chooses 5 scenes.

Models Category Params GFLops Harvard [7] NTIRE2022 [2]

λ-Net [31] CNN 62.64M 117.98 28.85/0.778 30.08/0.836
λ-Net-SAH 62.93M 123.16 31.89/0.839 30.54/0.841

TSA-Net [29] CNN 44.25M 110.06 27.68/0.726 28.18/0.772
TSA-Net-SAH 44.54M 115.24 31.73/0.835 30.49/0.833

DGSMP [17] Deep Unfolding 3.76M 646.65 28.85/0.770 31.97/0.884
DGSMP-SAH 4.05M 651.83 32.87/0.867 33.22/0.904

GAP-Net [28] Deep Unfolding 4.27M 78.58 31.59/0.851 33.40/0.890
GAP-Net-SAH 4.56M 83.76 34.19/0.882 34.31/0.903

DAUHST [6] Deep Unfolding 3.44M 44.61 33.76/0.885 38.44/0.957
DAUHST-SAH 3.73M 49.79 34.77/0.901 38.71/0.959

HDNet [16] Transformer 2.37M 154.76 30.68/0.827 34.93/0.925
HDNet-SAH 2.66M 159.94 34.04/0.882 37.10/0.943

MST++ [5] Transformer 1.33M 19.42 32.91/0.868 35.86/0.938
MST++-SAH 1.62M 24.60 34.77/0.891 37.45/0.947

5.3 Qualitative Results

Results on Simulation Dataset. Fig. 5 compares HSI reconstruction visual-
ization with and without adaption on ICVL, Harvard, NTIRE2022 datasets. We
choose patch for better view. It can be seen that the pre-trained model produces
bad reconstruction results with a lot of noise and artifacts as it has not been
trained on similar datasets. In contrast, using our adapter SAH significantly
reduces the noise and has fewer artifacts while recovering sharper details. The
results of GAP-Net in the lower band show that our method can correct the
problem of HSI reconstruction band shift caused by the limitation of training
data. This is because our adapter enhances the generalization of the model to ex-
tract more spectral information through designed self-supervised loss. Besides,
we calculate the spectral density curves. As shown in Fig. 5, with SAH, the
HSI reconstruction results become more similar and correlated with GT, which
proves the ability to improve the spectral-dimension consistency of models.
Results on Real Dataset. We further validate our method on real datasets.
Following the same setting in [16,29], 11-bit shot noise is injected into the mea-
surements to retrain the pre-trained model. Since our method does not require
GT, the real measurements are input as labels for self-supervised training of the
adapter. We apply fine-tuning with SAH on λ-net [31] and HDNet [16]. The
specific visualization results are shown in Fig. 6. Obviously, our method can
further suppress reconstruction noise and restore clearer details based on the
pre-trained models. These results demonstrate the robustness and universality
of our method, which also has good prospects for real world.
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471.5nm

λ-Net

λ-Net-SAH
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558.5nm 567.5nm 584.5nm 604.0nm 614.5nm 636.5nm

Fig. 6: Real HSI reconstruction results comparisons on Scene 1 with 6 (out of 28)
spectral channels. Our SAH-SCI can effectively suppress more noise and recover clearer
content. Please zoom in for better visualization performance.

6 Ablation Study

Loss Weights. The loss weights α and β in Eq. (16) are introduced to adjust
Table 3: Comparisons of dif-
ferent loss weights on HDNet.

α
β 0.1 0.4 0.7 1.0

0.1 33.86 34.02 34.38 34.17
0.928 0.934 0.936 0.935

0.4 34.17 34.57 34.35 33.64
0.931 0.937 0.937 0.932

0.7 34.48 34.78 34.41 34.30
0.936 0.937 0.936 0.935

1.0 34.29 34.46 34.52 34.24
0.934 0.937 0.936 0.937

the importance of Lei and Liu in the loss func-
tion. We compare the performance of different
loss weights on HDNet and the results are shown
in Tab. 3. Considering the primacy of the con-
sistency loss Lm, α and β are maximised to 1.0.
It can be seen that better performance is usually
achieved when α ≥ β, which indicates that Lei

plays a more important role in the loss function.
When α = 0.7 and β = 0.4, the model achieves
the highest PSNR and SSIM performance. Since
our loss function is primarily designed to reduce
the feasible solution space, the weight γ is set to
0.001 to embellish the HSI reconstruction results.
Model analysis of SAH. We analyze the performance of different components
of SAH in Tab. 4, where FA refers to frequency adaption, SSconv refers to
Spatial-Spectral convolution and CW refers to channel weight. Case (a) uses the

Table 4: Components analysis in SAH on λ-Net.
Case Layers FA SSconv CW PSNR SSIM Params GFLops

(a) 2 × × × 29.21 0.836 2.09M 35.14
(b) 2 ✓ × × 29.95 0.849 2.09M 35.14
(c) 3 ✓ × × 30.15 0.854 8.58M 50.86
(d) 2 ✓ ✓ × 29.45 0.838 0.26M 4.78
(e) 2 ✓ ✓ ✓ 29.98 0.850 0.29M 5.18

original UNet structure. Tab.
4 (a,b) shows that our fre-
quency adaption can bring an
improvement of 0.74dB. Com-
pared to a 2-layer structure,
the result is only improved by
0.2dB when using a 3-layer
structure, while requires more than four times parameters (case (b,c)). Thus
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the 2-layer structure is chosen as the infrastructure of SAH. We test the use
of the preliminary SSconv without channel weighting (case (d)), the results in-
dicate that using SSconv instead of normal convolution can reduce parameters
and GFLops to about one-eighth, while only dropping the performance by 0.5dB,
which demonstrates the lightweight nature of the SSConv. Finally, we add the
channel weighting module to further enhance the reconstruction quality by uti-
lizing inter-spectral information from the shuffled results (case e), SSconv with
channel weights can achieve better performance while remaining lightweight. The
above results demonstrate the effectiveness of our SAH structure.
Loss ablations. To evaluate the contribution of different loss components, we
conduct the ablation study on ICVL by turning them on and off. Tab. 5 shows the
effects of each loss composition on the HSI reconstruction performance, where ✓
indicates that the method applies this loss component. We can observe that Lm

significantly acts as the main loss component, improving the pre-trained model
by 1-4dB. Compared to Liu, Lei can improve the reconstruction quality more
effectively by about 1dB, which is in line with what we mentioned in the precious
ablation study. The results of case (e) show that Liu and Lei jointly contribute to
reducing the feasible solution space, which is consistent with the starting point
of the loss function design. Our method achieves the best performance when
including all the loss components, as shown in Tab. 5 (f).

Table 5: Ablation study of different loss components on ICVL.

Case Adaption Lm Liu Lei Ltv λ-Net [31] GAP-Net [46] HDNet [16] MST++ [5]

(a) × × × × × 27.83/0.810 27.55/0.840 28.91/0.851 30.02/0.885
(b) ✓ ✓ × × × 28.89/0.823 29.86/0.864 33.35/0.926 33.05/0.922
(c) ✓ ✓ ✓ × × 28.92/0.823 29.92/0.867 33.79/0.930 33.58/0.926
(d) ✓ ✓ × ✓ × 29.82/0.849 30.78/0.888 34.31/0.934 34.28/0.932
(e) ✓ ✓ ✓ ✓ × 29.95/0.850 31.03/0.889 34.50/0.936 34.40/0.933
(f) ✓ ✓ ✓ ✓ ✓ 29.98/0.850 31.11/0.890 34.78/0.937 34.43/0.935

7 Conclusion

In this paper, we consider the common problem with existing SCI reconstruction
algorithms, i.e., poor generalization ability due to reliance of training data. To
address this problem, a universal self-supervised fine-tuning framework SAH-
SCI is proposed for HSI restoration. SAH-SCI preserves the parameters of the
pre-trained model and enhances model generalization via training a lightweight
self-supervised adapter. Furthermore, we develop a lightweight adapter, SAH,
incorporating spatial-spectral convolution to simultaneously capture spatial and
spectral characteristics and reduce the adapter’s complexity. Additionally, we
customize a self-supervised loss function for the adapter to address the issues of
solution ambiguity and nullspace information deficiency. With these novel tech-
niques, the generalization of pre-trained models can be effectively enhanced by
adaption. Extensive experiments demonstrate SAH-SCI superiority over previ-
ous methods with fewer parameters, offering simplicity and adaptability to di-
verse image pre-trained models, which paves the way for leveraging more robust
image foundation models in future hyperspectral imaging tasks.
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