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Abstract. As extended reality (XR) is redefining how users interact
with computing devices, research in human action recognition is gain-
ing prominence. Typically, models deployed on immersive computing de-
vices are static and limited to their default set of classes. The goal of
our research is to provide users and developers with the capability to
personalize their experience by adding new action classes to their device
models continually. Importantly, a user should be able to add new classes
in a low-shot and efficient manner, while this process should not require
storing or replaying any of user’s sensitive training data. We formal-
ize this problem as privacy-aware few-shot continual action recognition.
Towards this end, we propose POET: Prompt-offset Tuning. While ex-
isting prompt tuning approaches have shown great promise for continual
learning of image, text, and video modalities; they demand access to
extensively pretrained transformers. Breaking away from this assump-
tion, POET demonstrates the efficacy of prompt tuning a significantly
lightweight backbone, pretrained exclusively on the base class data. We
propose a novel spatio-temporal learnable prompt offset tuning approach,
and are the first to apply such prompt tuning to Graph Neural Networks.
We contribute two new benchmarks for our new problem setting in hu-
man action recognition: (i) NTU RGB+D dataset for activity recogni-
tion, and (ii) SHREC-2017 dataset for hand gesture recognition. We find
that POET consistently outperforms comprehensive benchmarks. *

Keywords: 3D Skeleton Activity Recognition - Extended Reality (XR)
- Continual Learning - Prompt Tuning.

1 Introduction

A key input modality to virtual, augmented and mixed reality (often together
termed as extended reality, XR) devices today is through recognizing human

4 Source Code at https://github.com/humansensinglab/POET-continual-action-
recognition
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Fig. 1: Proposed POET method continually adapts skeleton-based human action
recognition models pretrained on a pre-defined set of categories to new user cate-
gories with few training examples. Users can thus expand the capabilities of XR
systems with novel action classes by providing a few examples of each new class. We
discard the user-sensitive data as soon as the model is updated on the new categories.

activity and hand gestures based on body and hand pose estimates. Recogniz-
ing human actions® facilitates seamless user interactions in head-mounted XR
devices such as the Meta Quest 3 and Apple Vision Pro. If the provided action
recognition models are static, then developers and users are limited to a pre-
defined set of action categories. With the growing use of such devices in new
contexts and the increasing demand for personalized technology delivery, there
is an impending need to enable the action recognition models in such systems to
adapt and learn new user actions over time. Defining their own action categories
allows users to customize their experience and expand the functionality of their
XR devices. Addressing this need is the primary objective of this work.
Adapting human action models to new user categories over time faces a few
challenges. Firstly, the model must be capable of learning new actions with mini-
mal amount of training data so users can add new classes by providing just a few
training examples per class. Secondly, due to the increasing use of XR devices
for personal assistance, there is a need for privacy preservation in user action
recognition-based pipelines [2, 141]. Hence, the adaptation of such action recogni-
tion models to new user categories must also be ‘data-free’, i.e., it cannot store
and replay previously seen user training data in subsequent continual sessions.
Considering these requirements, we leverage the recent success of ‘data-free’
prompt-based learning [19] and propose a new spatio-temporal prompt offset
tuning approach to efficiently adapt the default model without finetuning.
Human action recognition systems are moving to skeleton-based approaches,
especially in applications that require low-shot action recognition capabilities
such as medical action recognition [27,56]. Skeletons offer a robust and compact
alternative to videos in such low-shot regimes, due to their relatively low di-
mensionality and lesser variance under background conditions. While there have
been a wide variety of efforts in skeleton-based human action recognition over
the years [30,52,53], there have been fewer efforts on adapting such models to
newer user categories. Efforts like [1,22] attempted to continually learn new user

5 We use human action as an umbrella term for both hand gesture and body activity in this work
for ease of presentation.
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categories over time in skeleton-based human action recognition, but relied on
fully-supervised data for the new classes. On the other hand, few-shot learning
works [27,46,50] adapt a pretrained skeleton-based action recognition model to
new data, but without explicitly retaining past categories. In this work, we seek
to learn new user categories in trained human action models with very few labeled
samples for the new classes, while being data-free (not storing samples from pre-
viously trained categories). Fig 1 summarizes our overall objective. One could
view our setting as privacy-aware few-shot continual learning for skeleton-based
action recognition.

To this end, we propose a prompt offset tuning methodology that can be in-
tegrated with existing backbone architectures for skeleton-based human action
recognition. Our learnable (soft) prompts are selected from a shared knowledge
pool of prompts based on an input instance dependent attention mechanism.
In particular, we propose prompt selection using an ordered query-key match-
ing that enables a temporal prompt frame order selection consistent with the
input instance. We show that such an approach allows us to learn new user
categories without having to store data from past classes, without overwriting
the pre-existing categories. To the best of our knowledge, this is the first effort
on leveraging prompt tuning for skeleton-based models, as well as on spatio-
temporal prompt selection and tuning.

Our key contributions are summarized below:

— We formalize a novel problem setting which continually adapts human action
models to new user categories over time, in a privacy aware manner.

— To address this problem, we propose a novel spatio-temporal Prompt OffsEt
Tuning methodology (POET). In particular, it is designed to seamlessly plug-
and-play with a pretrained model’s input embedding, without any significant
architectural changes.

— Our comprehensive experimental evaluation on two benchmark datasets brings
out the efficacy of our proposed approach.

2 Related Works

2.1 Prompt Tuning

The idea of prompting, as it originated from Large Language Models (LLMs),
is to include additional information, known as a text prompt, to condition the
model’s input for generating an output relevant to the prompt. Instead of ap-
plying a discrete, pre-defined ‘hard’ language prompt token, prompt and prefix
tuning [20,23] formalized the concept of applying ‘soft prompts’ to the input. A
set of learnable parameters are prepended (concatenated) to the input text and
trained along with the classifier while keeping the backbone parameters frozen.
Similar to prompt tuning of LLMs, recent works have popularized prompt tuning
of ViTs [16] as an effective way of adapting large pretrained models to down-
stream tasks [19,57]. However, it remains unexplored and undefined (to the best
of our knowledge) for non-transformer architectures such as GNNs.
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2.2 Prompt Tuning for Continual Learning

Prompt tuning provides a simple and cost-effective way of learning task-specific
signal condensed into ‘soft prompts’. For continual learning, training a set of
prompts for each sequential task provides a natural alternative to storing privacy
violating exemplars and replaying them. Training task-specific prompts for each
sequential task is straightforward when authors assume access to task identity at
both train and inference time, like in Progressive Prompts [34]. However, if task
identity is unavailable at inference, the model will not know which task’s prompts
or classifier to use for evaluating a test sample. In this respect, S-prompts [47] and
A-la-carte prompt tuning (APT) [4] learn an independent set of prompts for each
domain/task and employ a KNN-based search for domain/task identity at test
time. Since these methods learn stand-alone prompts for every task, the prompt
feature space is task-specific, and there is no forgetting of old knowledge when
learning new tasks (by design). At the same time however, these ‘no forgetting’
prompts cannot share knowledge across tasks.

This leads to another ideology for continual prompt tuning, i.e., treat each
prompt unit as being a part of a larger shared (knowledge) pool of prompts.
Then the desired number of prompt units can be selected from the pool, condi-
tioned on the input instance itself [41,48,49]. Given the scarcity of new data in
our setting, we hypothesize that sharing of knowledge will benefit new tasks and
draw inspiration from this line of works. Most recently, Adaptive Prompt Gener-
ator (APG) [42] challenges the intensive ImageNet21K pre-training assumption
as it prompts a ViT pretrained only on the continual benchmark’s base class data
(similar to us). However, they use replay and knowledge distillation-style ‘anti-
forgetting learning’, in addition to using prompts. Even though our backbone is
trained only on the base classes, we propose a simple prompt tuning-only
strategy to counter forgetting. This implies that a prompt strategy is all we need
to continually add new action semantics in a few-shot manner.

2.3 Few-Shot Class Incremental Learning

FSCIL is a challenging continual learning setting where a model overfits to
new classes, with the simultaneous heightened (often complete) forgetting of old
knowledge as soon as the base model is fine-tuned on few-shot data [10,43]. Since
the backbone feature extractor is the only source of previously seen knowledge,
if it is updated, knowledge is lost forever. Typically, existing works decouple the
learning of (backbone) feature representations from the classifier by learning the
model only on the base data and relying on non-parametric class-mean classifiers
for classification in subsequent steps [13,31,55]. This leads to a feature-classifier
misalignment issue [32,51] because new class prototypes are extracted from a
backbone representation trained only on the base classes. We hypothesize that
optimizing input prompt vectors along with a dynamically expanding parametric
classifier on top of a frozen backbone can alleviate this misalignment issue. Our
work not only provides a fresh perspective into FSCIL, but to our best knowledge
is also the only work not designed for and evaluated on image benchmarks.
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3 Preliminaries

Skeleton Action Recognition Using Graph Representations. Our input
X € RT*/*3 is a video sequence of T' frames, each frame containing J joints
of the human body (25 joints) or hand skeleton (22 joints) in 3D Cartesian
coordinate system. Such a skeleton action sequence is naturally represented as
a graph topology G = {V, £} with V vertices and £ edges. Graphs are modeled
using Graph Neural Networks (GNNs) [12], which can either be sparse graph
convolutional networks (GCN) or fully connected graph transformers (GT). Our
main model (a GNN) is defined as f(X) = f. o fq o fe(X) (as also shown in
Fig. 2). Input X is first passed through an input embedding layer f. to get an
embedding of human joints X = f.(X), X, € RT*/XC with feature dimension
Ce. X is further passed to a graph feature extractor f;, composed of a stack
of convolutional layers (in GCNs) or attention layers (in GTS), and finally a
classifier f. which predicts the action class label y. In POET, we propose to
attach learnable parameters Pt (called prompt offsets) to the embedding Xe.

Problem Definition. Given a default (pre)trained model deployed on a user’s
device, we would like to extend this model to new action classes over T subse-

quent user sessions (also called tasks) {US W us (T)}G. In each user session

o
US| the model learns a dataset D) = (X, yf)ﬁl | of skeleton action sequence

and label pairs provided by the user, X! € RT*/x3 yt ¢ RY" . In each session,
the user typically provides a few training instances F' (e.g. F' < 5) for each of the
N new classes being added, such that |D®)| = NF. The base (default) model’s
session UB? is assumed to have a large number of default action classes )
trained on sufficient data D), which is most often proprietary and cannot be
accessed in later user sessions. In each session, the user adds new action classes
such that, Y N Yy = 0,vt # t'". Due to the aforementioned privacy con-
straints, in any training session US (t), the model has access to only D®); after
training this data is made inaccessible for use in subsequent sessions (no exem-
plar or prototypes stored). After training on every new session YS ®) | the model
is evaluated on the test set of all classes seen so far U!_,)(?). The challenge is to
alleviate forgetting of old classes while not overfitting to the user-provided new
class samples. One could view our setting as privacy-aware few-shot continual
action recognition, a problem of practical relevance in human action recognition
— which has not received adequate attention.

4 Methodology: Prompt Offset Tuning (POET)

Overview. We propose to prompt tune a base GNN model f(.) by prompts Pt
to address our overall objective. As shown in Fig. 3, for each input instance X,
corresponding prompts Pt are selected from a pool of prompt parameters, using
an input-dependent query and key attention mechanism. The selected prompts

6 User sessions may be spaced at arbitrary time intervals.

7 We make this assumption considering this is a first of such efforts; allowing for overlapping action
classes and users to ‘update’ older classes would be interesting extensions of our proposed work.
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are added to the input feature embedding (and hence the term ‘prompt offsets’),
before forwarding to the feature extractor and classifier (shown in Fig. 2).

To this end, our method, POET uses the same
number of prompts as the number of temporal
frames in the input, to maintain temporal consis- i .
tency between the prompt and the input. Focus- T frames of ﬁ
ing solely on prompt offsets allows us to adapt the | s sisietons .G

: Main Model, f(x)

model to subsequent user sessions without having i xem
to update the input embeddings or the feature ex-
traction backbone. Our prompt selection mecha- X, € R <J %)
nism is learnable and trained along with the clas-

Prompt Selection, Fig. 3

sifier to make this method simple and efficient. Py e RUXIXCe)

. ADD Prompt
What are Prompt Offsets? Learnable (or soft ;- Offsets
[20]) prompts are parameter vectors in a continu- i

ous space which are optimized to adapt the pre-
trained frozen backbone [, to each continual task. !
We define our spatio-temporal prompt offsets P E%Freeze Action Prediction
as a set of T' prompts (same in number as skeletal Fig.2: POET: Prompt-offset
frames in input), each prompt P; having length Tuning proposes to offset the
equal to the number of joints in a frame J and input feature embedding Xe of
feature dimension same as input feature embed- the main model by learnable
ding X, ie., P; € RI*Ce prompt parameters Pt for
privacy-aware few-shot contin-
ual action recognition. We ex-
plain prompt selection mecha-
nism in Fig. 3.

ilﬂ Fine-tune Classifier f, \

Existing prompt tuning efforts, for example in
image classification, focus on concatenating learn-
able prompts to the input token sequence in trans-
former architectures [16,20]. Even though trans-
formers can be generalized to graphs [7,11,29], it is non-trivial to attach prompts
to a GNN. This is because transformers can be viewed as treating sentences or
images as fully connected graphs where any word (or image patch) can attend
to any other word in the sentence [12]. However, our input is a spatio-temporal
graph skeleton of the human joint-bone structure with its own edge connectivity.
Concatenating prompts along spatial or temporal dimensions would affect the
graph semantics, and also affect standard training strategies such as a forward
pass or backpropagation (especially in GCNs). Hence, we attach the selected
prompts Pt to the corresponding input feature embedding X, via a prompt
attachment operator f,(.). The class logit distribution y is thus obtained as:

Yy = f(X7PT) = f( © f,(/ © fp(f((x)v PT) (1)

In every user session t > 0, the classifier output dimension expands by N to
accommodate the new action classes. Unlike most existing continual prompt
tuning works, our feature extractor backbone f, is trained only on the base class
data D and is never fine-tuned on classes from new user sessions US (t), t>0.
After the base session training, parameters of f,. f. are frozen.

Prompt Pool Design. As stated in Sec. 2.2, to encourage knowledge sharing
across user sessions, we choose to construct a single prompt pool P which encodes
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. < .
= Prompt Selection Mechanism ", Input Feature Embedding ,”
LA Prompt Pool Memory \ " from Main Model, Fig.2 /
Key Parameters . } '\‘ ]
LA K‘h::l:-} e Ce \ X, €RITxJxC |
X € RTxJx3} P 2] .,:: ntas 7[
.. Cosine Similarity i :

T frames of
3D skeletons

Query Function f; Argsort Select prompts

in order(s))T_,

SMBnOE

Fine-tune %Freeze i—-“i Embedding

Fig. 3: Selection of our prompts Pr: Input-dependent query g is matched with keys K using
sorted cosine similarity to get an ordered index sequence (si)z;l of the top T keys. This ordered
index sequence is used to select the corresponding ordered prompt sequence Pt from prompt pool
P. We add Pt to X, thereby adding an offset to it. Our experimental evaluation confirms that
such an additive spatio-temporal prompt offset can balance the plasticity to learn new classes from

a few action samples, while maintaining stability on previously learned classes.

Py Selected prompts

Read Pool Memory

knowledge across the sessions:
P={P,.P;,.. Py}, P; ¢ R7*C; M = #prompts at time t  (2)

For selecting prompts from this pool (Fig. 3), we construct a bijective key-value
codebook, treating prompts in the pool P as values and defining learnable key
vectors K = {ky,...ki,...,kar}, ki € R. A cosine similarity matching ~(.)
between the query q and keys K is used to find indices of the T closest keys Z,
which in turn are used to select prompts from the pool:

Z= argmax Y(f4(X), K) (3)

This quantization process is enabled by a query function f,(.), which is a pre-
trained encoder that maps an input instance X to a query q as:

q= fq(X) = fgao f(// o f(/(X), fq: RT*Jx3 __ mCe (4)

where the query adaptor [, is a fully connected layer mapping the »/‘r// output
dimension to the desired prompt embedding dimension C..

Coupled Optimization in User Sessions t > 0. Typically, the argmax op-
erator in Eq. 3 decouples the optimization of keys from the prompt pool and
main model as it prevents backpropagation of gradients to the keys (also seen
in earlier works such as [48,49]). However, this approach does not work for our
setting, even more so since we assume no large-scale pre-training of our base
model. Due to the lack of off-the-shelf availability of large-scale models for skele-
tal action data, our query function f, is pretrained only on base class data DO,
Hence, it becomes important that f; is updated as the model learns new classes.
As shown in red boxes in Figs. 2 and 3, we propose to couple this optimization
process such that the overall cross-entropy loss for new tasks updates: (i) the
classifier f., (ii) selected prompts in P, (iii) selected keys in K, as well as (iv)
query adaptor f; .. We achieve this by approximating the gradient for /K and
fo4 by the straight-through estimator reparameterization trick as in [3,44]. We
freeze the query feature extractor layers /(/] /L in t > 0 to prevent catastrophic
forgetting of base knowledge in f,. Our cross-entropy loss is hence given by:
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min

L(f(X,Pt),
o B, LUK Pr).)

(5)
To move queries closer to their aligned T' keys during training, we use a vector
quantization clustering loss inspired from VQ-VAE [44] as:

max A3 4(f,(X), Ki) (6)
i€Z

Orga-fK
where A is the clustering loss coefficient. Our end-to-end optimization thus es-
tablishes a prompt optimization framework which is amenable to prompt tuning
when extensive pre-training is not possible. This sets the foundation for our
spatio-temporal prompt selection module, described next.

Spatio-Temporal Prompt Selection. In order to ensure that our learned
prompts respect temporal information in the input video sequence, we choose
the number of selected prompts to be equal to the number of frames in the input
video T'. After coupling the prompt
pool and keys, we observed in our ini-
tial experiments with pool size M > T'
that the same set of prompts get se-
lected across training iterations and
user sessions (Fig. 4A). More con-
cretely, as the vector quantization loss
(Equ 6) brings the query close to

UsO,M =72 Us®,M =72

Selection Frequency

" Promptindex Prompt Index

(A) Prompt Pool Collapse

USO,M=70,R=6 US®W, M =88,R=6

the selected keys, the same set of
active prompts get selected and op-
timized in each iteration, not using
other prompts at all. This is similar to

Selection Frequency

)

Prompt Index Prompt Index
(B) POET, Expand Pool with R prompts
Fig. 4: M > T Case: Prompt Pool Col-
lapse. (Top) Certain prompt indices remain un-
used across user sessions. (Bottom) Our POET

the well-known issue of ‘codebook col- pool expansion strategy alleviates pool collapse.

lapse’ in VQ-VAE [9, 50, 54]. Based on this observation, we design two prompt

pool update mechanisms in user sessions ¢ > 0 as below:

1. Case 1, M = TVt: No pool expansion, Algorithm 1. All prompts are selected
in all tasks. But the order of their selection (s;)’_, varies with each input
instance as we replace Eq. 3 by sorting the cosine similarity before selecting
the top T indices as follows:

Z = argsort y(f4(X), K)
(s:)74
In Fig. 5, we visualize the positions occupied by indices in this (sorted) ordered
key index sequence (s;)I_,. Entropy increase across tasks t = 1 to t = 4
(bottom row of figure) shows that our selection mechanism learns to select a
unique temporal code for all inputs.

2. Case 2, M = T + (R =«t),t > 0. Ezpand pool with R prompts. We also
propose an order-aware prompt pool expansion strategy (Appendix B) that
selects prompts from an expanded pool in a temporally coherent manner, for
t > 0. This alleviates prompt pool collapse as shown in Fig. 4B.

(7)

Prompt Offset Attachment. Since concatenation is not meaningful for graph
data, we use addition as our choice for the prompt attachment operator as:
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fp(XeaPT) =Xe+Pr (8)

Hence, we call our approach as prompt offset tuning. We also study this empiri-
cally through experiments that support this choice in Sec. 6.

Interpreting Prompt Offset Tuning of GNNNs. Our additive prompt offsets
are open to interpretation, as shown in Fig. 5. (i) Adding our selected prompts
Pt to input feature embedding X, acts like an input-dependent transformation
for spatio-temporal joints. ) Us® Us® Us®
(ii) As our prompts
have same size as X,
it can also be thought
of as a learned prompt
encoding, bearing sim-
ilarity with learnable
position encoding works
[12, 24, 26]. Our pur-
poOse 18 different how- Fig. 5: Here we visualize the order (57‘,)?:1 in which the M =
ever as prompt off- 64 prompts in the pool are selected at train time, across 4 user
sets seek to dynami_ sessions US ). X-axis: prompt index, Y-axis: index position in selected
.. . sequence. Top: The no sorting case uses the default sequence (hence
Cauy condition the in- diagonal matrices), giving equal importance to all prompts. Bottom

put for adapting the (Our Method): Even though the same 64 prompts are selected and
updated, the ordering is temporally unique and consistent with input.

POET (NO Sorting)

POET (Ours)

backbone continually,
instead of learning positions. (iii) POET also bears similarity with auto-decoders
like DeepSDF [30] which learn latent codes for each style or shape and use
relevant codes along with a frozen decoder at inference. (iv) Prompt tuning
can also be thought of as a parameter isolation technique for continual learn-
ing [28,34,35,38]. POET’s ordered prompt selection as seen in Fig. 5 learns to
isolate the relevant sequence of prompts for each input action sequence.

Algorithm 1 POET at Train Time, t > 0 (Case 1 M = T, No pool expansion)

T .
j=13

Input: Query function fg, keys K = {k; }3;1, prompt pool P = {P;}
Initialize: P, K from ¢ — 1; Expand f. by N new classes. Initialize f. as: (i) copy f:ld weights,
(i) e « Mean(fo'?)

Freeze: query layers ﬂ/- f!; main model layers f.. f,

for epochs and batch (X§7 yf)i\gf do

1. Get query feature g (Eq. 4) ; Compute v(.) b/w query q and keys K
. Sort v(.); Get ordered key index sequence (si)?:l (Eq. 7)

main model fe, fga fe

. Read pool memory P in order (si)?zl — Get prompt offsets Pt

. Get Xe; Add Pt to it (Eq. 8); get prediction y from prompted input (Eq. 1)
. Use cross entropy loss (Equation 5) to update foa, K,P, f.

. Use clustering loss (Equation 6) to update fga and K

end

DT W N

5 Experiments and Results

Datasets. We evaluated our method on well-known action recognition datasets®:
(i) activity recognition on the NTU RGB+D dataset [39]; and (ii) hand gesture

8 The datasets used in this work were accessed and processed at and by CMU. They
were not accessed, processed, stored, or maintained at Meta.
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recognition on the SHREC-2017 dataset [10]. As we introduce a new problem
setting in human action recognition, we contribute two new benchmarks to the
community for this setting, on the NTU RGB+D and SHREC-2017 datasets.

For the NTU RGB+D dataset, we divide the 60 daily action categories into
40 base classes, learning the remaining 20 classes in subsequent user sessions.
In few-shot learning parlance, our protocol is 4-task 5-way 5-shot, i.e. 5 novel
classes using 5 user training instances in 4 user sessions. Each input 3D skeleton
sequence has 64 temporal frames, each consisting of 25 body keypoints, such
that z € R%*2°X3_ We use the spatio-temporal GCN, CTR-GCN [3], as the
architecture for NTU RGB+D, where we choose the joint input modality for
better interpretability of prompt tuning.

For SHREC-2017, we divide the 14 fine-grained hand gesture classes into 8
base classes and 6 classes learned in subsequent user sessions. This is done in a 3-
task 2-way 5-shot protocol, i.e. 2 novel classes using 5 user training instances in 3
user sessions. For each input instance of SHREC-2017, we use 8 temporal frames
each having 22 hand keypoints, such that input z € R3*22%3. We use a fully-
connected graph transformer backbone, DG-STA [7] for SHREC-2017. We select
DG-STA due to easily reproducible code and to validate if our method POET
works equally well across graph convolutional networks and graph transformers.

Evaluation Metrics. Following earlier work in similar settings [31], we report:
(i) Average accuracy ‘Avg’ of all classes seen so far, and (ii) Harmonic Mean A gy
between ‘accuracy only on Old classes’ and ‘accuracy only on New classes’ after
learning each new user session. Note that the average accuracy tends to be biased
towards the base session 7(?) performance due to more number of base classes.
A higher Ag s implies better stability-plasticity trade-off between new task per-
formance and old tasks’ retention. Unlike many earlier CIL efforts, we report
accuracy for both Old and New classes in each user session for transparency.

Implementation Details. We observe that a key source of forgetting in our
setting is from the classifier as the logits tend to become heavily biased towards
the few-shot samples of new classes. We use a cosine classifier for activity recog-
nition experiments on CTR-GCN. For gesture recognition on the lightweight
DG-STA, we use a standard fully-connected layer as classifier, but freeze old
class parameters in the classifier by zeroing their gradients. We attach prompts
after the 1st layer of DG-STA and 1st CTR-GC block of CTR-GCN. For both
datasets, we have equal or higher learning rates in user sessions when compared
to the base model’s training in order to accommodate new knowledge in the
model (for better plasticity). For exact implementation details (including learn-
ing rates, epochs, hyperparameter analysis, and backward forgetting metric),
see Appendix A. In earlier efforts that more generally tune prompts for class-
incremental learning [11,45,47-49], it is common to rely on an ImageNet21K
pretrained ViT [37] or CLIP [33] as the backbone. However, such backbones do
not exist for skeleton-based human action recognition. Our base feature extractor
is hence trained on the base session dataset itself without any pretraining, mak-
ing this one of the first efforts of prompt tuning without extensive pretraining
(scale of data 3-5 times lower order of magnitude).
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Results. Since there are no existing baselines for our proposed setting in skeletal
action recognition, we compare our method by adapting continual learning (CL)
baselines to skeletal data in Sec 5.1, Tables 1, 2. We first compare POET with
prompt tuning based class-incremental learning (CIL) approaches originally de-
signed for images (L2P [19], CODA-P [11], APT [4]) and find that it has very
low performance on new classes as they do not update their query function.
We find any fine-tuning or knowledge distillation based approaches (LWF [25],
EWC [17], LUCIR [15]) lead to rapid forgetting of base knowledge as the model
overfits to user’s few-shots. We also compare with multiple variants of Feature
Extraction (FE) to check if prompts truly have merit (POET=FE+Prompts)
and provide upper bound baselines. In Sec 6, we first show the importance of
prompts in POET by removing the prompts. We discuss the value of our cou-
pled optimization, query function update and ordered key index selection in our
prompt selection ablation Tab 3. We also study the impact of proposed additive
prompt tuning as compared to other possible prompt attachments f, in Tab 4.

5.1 Comparison with State-of-the-Art

POET sets the SOTA on existing prompt tuning works (Tab 1,2). We
adapt three standard CIL works that prompt tune ViTs for images - L2P [49],
CODA-P [11] and APT [4] to our setting. L2P and CODA-P share prompt pool
across tasks (similar to us), whereas APT learns task-specific prompts. L2P de-
couples the optimization of keys from the prompt pool and concatenates the
selected prompts. Since concatenation is not defined for our GNN backbone, we
adapt these SOTA to our setting by concatenating along the temporal dimen-
sion (L2P*, CODA-P*). CODA-P [41] couples keys with the prompt pool by
using a cosine similarity weighing over all prompts in the pool, forming a ‘soft
prompt selection’, different from our ‘ordered hard prompt selection’. In APT,
we train prompt-classifier pairs for each continual task separately (* denotes
task-specific), and use task identity at test time. See details in Appendix A.
These methods by design rely on extensively pretrained (ImageNet21k) query
functions which does not require updates; and require full supervision on new
classes, perhaps explaining their poor ‘New’ accuracy in our few-shot setting.
Standard Continual learning Baselines. We compared with two well estab-
lished knowledge-distillation approaches, learning without forgetting (LWF') and
LUCIR. Both of them perform poorly on both old and new classes. EWC [17]
learns better on new but does not retain old knowledge. We conclude that any
CL method that fine-tunes the backbone feature representation in subsequent
sessions t > 0 will not be able to retain base/old class knowledge (a finding
consistent with existing FSCIL literature for images [10,43]). We also adapt and
compare with one of the latest FSCIL baselines ALICE [31], originally developed
for image classification benchmarks on our gesture recognition benchmark in Ta-
ble 2. Note the high retention of base task performance (due to non-parametric
classifier on top of frozen base model). However, it suffers from poor plasticity
and adaptation to new classes. This is the issue of feature-classifier misalignment
that we hoped to alleviate through prompt tuning.
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Table 1: Activity Recognition Results (%, 1), Comparison with SOTA: NTU RGB+D [39]
dataset on CTR-GCN [&] backbone. After training on each incremental task, we report Average of all
classes seen so far (‘Avg’). We also report (i) Agar, (ii) old classes accuracy (‘Old’), (iii) new classes
accuracy (‘New’) in the last session. We report Mean and STD across 10 sets of 5-shots. POET
achieves the best stability-plasticity trade-off across all baselines indicated by the Agy = 56.3%.
POET also has the highest Avg across all user sessions outside of upper bound baselines

H un© ‘ us® us® us® us@w
Method [[Base (] Avg (D) | Avg(t) | Avg(t) | Ol (1) New () Avg(D) Anmu ()
Upper Bounds
Joint (Oracle) 88.4 79.0 71.0 66.8 63.5
Joint POET (Oracle) 67.2
FE, Task-Specific” 88.4 70.1 £ 2.6 | 52.5 £ 5.8 | 448 £ 5.0 | 70.3 £ 21 46.7 £+ 2.0 NA NA
FE+Replay 88.4 824+ 1.1 | 782+ 12| 745+ 1.2 |73.1 £ 1.0 433 £33 70.6 £ 1.2 543 + 26
Continual Linear Probing
FE 88.4 720 £ 1.1 604 £ 24 | 47.7 £ 2.1 | 40.0 £ 16 51.0 23 409 14 448 £ 11
FE, Frozen 88.4 76.1 £1.0 | 52.4 41 | 383 £ 2.7 | 284+ 16 224 F45 279+ 14 248 k30
FE+Replayf 88.4 72.0 £ 1.5 | 59.5 £ 4.0 | 58.7 £ 2.8 | 56.7 = 25 34.7 £ 56 549 £ 2.7 428 &+ 44
FT 88.4 62+f14| 43+ 15 28+ 10| 02+05 36.0+x101 32F08 03F10
Standard Continual Learning
LWF [25] 88.4 62+15| 28+07| 3.7+13| 00+o00 389+s88 32407 0.0=£00
EWC [17] 88.4 66+15| 41+£14| 31+09| 00+00 421+95 35+08 0.0%00
Experience Replay 88.4 35.1 £83 | 50.6 50 | 60.6 £ 5.4 | 54.6 65 43.7 £ 146 53.7+ 71 478 £ 11.2
Experience Replayt 88.4 62+15| 90+26|11.2+£30| 109 +26 346+79 129+30 163+ 35
LUCIR [15] 87.9 43+21| 41+13| 27+08| 02+04 260+92 23+09 04+o0s8
Continual Prompt Tuning
CODA-P [11]* 874 | 76.1+10 66.7+13|586+27|565+29 05+04 518+27 11+to7
L2P [19]* 88.6 | 789+01 71.0+1.0|642+01|620+07 00=+00 56.8+06 0.0=+00
APT [1]° 86.6 273 £ 1.6 | 30.8 =34 | 37.6 £ 2.3 NA 33.4 £ 20 NA NA
POET (Ours) || 879 |82.3+ 0.6 76.8 + 0.9|68.4 + 0.7|57.2 + 1.0 55.8 + 5.9 57.1 + 1.1 56.3 £ 3.2

Fine-tuning (FE) and Feature Extraction (FE) Baselines. We implement
standard continual learning baselines to understand stability-plasticity trade-offs
in our new benchmarks. In all these baselines, we expand the classifier output
dimension by N new classes. In ‘FT (Fine-Tuning)’, we tune all model param-
eters on cross entropy loss of new task. FSCIL is challenging for this modality
as old task performance sharply reduces to zero starting from US 1) as model
overfits to user’s few-shots. ‘FE (Feature Extraction)’® differs from FT as
we freeze the feature extractor to preserve base knowledge. This serves as a
competitive baseline in our findings. In ‘FE, frozen’, we zero out the gradients
of previous class weights in classifier f. to prevent forgetting from the classifier.
‘FE’ and ‘FE, Frozen’ exhibit different New-Old trade-offs in Tables 1, 2 because
the scale of pretraining is different (gesture more lightweight than activity).

Upper-bound baselines, top section Tables 1, 2. In ‘Joint (oracle)’ ex-
periment, we train on all task data at the same time in a multi-task (non-
sequential) manner. Training POET in a multi-task manner (‘Joint POET”)
outperforms ‘Joint Oracle’ demonstrating the strength of our approach. In ad-
dition to these generalist upper bounds, we point out that ‘FE, Task-specific™’
is a competitive specialist upper bound. In this, we perform feature extraction
from base model to each task individually, storing separate task-specific models
(US(O) — Z/{S(i), i > 0). POET outperforms ‘New’ accuracy compared with this
baseline, achieving a forward transfer on each ¢t > 0. This indicates that prompt

9 ‘FE’ is the same as ‘w/o prompts’ in Table 3. We highlight key baselines in gray color.
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Table 2: Gesture Recognition Results (%, 1), Comparison with SOTA: SHREC 2017 [40]
dataset on DG-STA [7] graph transformer backbone. Reporting mean and standard deviation across
5 runs. POET achieves best Ay = 56.2%.

H un®© ‘ us® us® us®

Method ||Base (1) | Avg (1) | Avg (1) | Old (1) New (1) Ave (1) Aum (D)

Joint (Oracle) 88.8 |79.4 407|773 £ 21 70.9 + 1.2 62.4 + 0.4
FT 88.8 |20.3+ 08124+ 21| 00+o00 8.8+94 134+15 0.0=Fo00
FE 88.8 |62.7 £24|419 £6.9| 175 £51 773 £88 268+*34 285+64
FE, Frozen 88.8 |71.3+ 1.9 614+ 27| 44.7+32 545+67 462+27 491+ 43
LWF [25] 88.8 202+ 1.4|125+10| 0.0+t00 88.4 + 137 138+21 0.0+ 00
L2P [10]** 88.8 [20.3 £5.9[10.5 £48| 82+ 40 6.9+ 85 79+39 T75+£55
CODA-P [11]**|| 87.7 |156 +45|11.6 £19| 79+t18 141 +214 88+24 10.1=+32
ALICE [31] 92.1 |724 %57 633 £76|62.5+68 11.9+99 54.6 £6.9 200 %81
POET (Ours) | 919 [732+37 619+ 158|459 +26 724471 500416 56.2 + 1.6

tuning benefits New performance due to the pre-existing knowledge in the shared
knowledge pool. Avg in sessions 0 < ¢ < 4 indicates New for task-specific” .
Experience Replay Baselines, Tab 1. Even though our privacy-aware set-
ting prohibits previous data replay, we compare with ‘Experience Replay’
(store and replay 5-samples of base and incremental sessions) and ‘Experi-
ence Replay{’ (replay only previous incremental sessions) for completeness.
‘FE+Replay’ serves as the best upper bound (even better than Experience
Replay as we are freezing backbone in addition to replay). It is noteworthy that
POET (which is FE+4prompts) learns an implicit ‘data-free’ form of prompt pool
memory, and yet has a better Ay, trade-off as compared to explicitly stored
and replayed samples from previous classes in FE+replay.

6 Ablation Studies and Analysis

Importance of prompts in POET. First, we consider the contribution of
prompt offsets in POET. Since we only attach prompts to address continual
learning in POET, removing prompts gives the Feature Extraction (FE) baseline
(‘w/o prompts’, Table 3) where the backbone is frozen after base training and
only the classifier is expanded and updated on classification loss of new classes.
POET improves both, ‘Old’ (1 20.1%) and ‘New’ (1 10.6%) marked in blue.

Pr()mpt Selection Mechanism. Table 3: Prompt Selection Mechanism Analysis
In Table 3 . . on NTU RGB+D dataset (%, 1): ‘w/o’ denotes re-
n able , We 1nvest1gate our moving that component from POET, numbers in brack-

prompt selection mechanism and ets are wrt POET (M = T') experiment. ‘Avg’ accuracy
.. . hoi The ¢ is biased towards ‘Old’ classes accuracy, Agn is good
optimization choices. € W/O indicator of trade-off between ‘New’ and ‘Old’.

coupled optim.’ experiment iS Xruresip [uB®us® us® us® us®
a direct Comparison Of our addi_ Method Base | Avg | Avg | Avg |Old New Avg Apnm
w/0 prompts 88.4 | 74.5 | 66.3 | 49.5 (39.2 (-20.1) 46.8 (-10.6) 39.9 42.7

tive prompt attachment with the « o coupled optim.|| 88.0 | 82.8 | 75.3 | 65.8 |56.5 ( -2.8) 51.3 .
L. . w/o clustering loss || 85.5 | 81.6 | 74.3 | 64.5 [62.0 (+2.7) 18.2 (-39.2) 57.0 ¢
de-coupled optimization in L2P [ QA update || 87.9 | 82.8 | 77.4 | 69.1 [59.4 (10.1) 52.8 ( -4.6) 58.7 55.9

3 w/o sorting 88.2 | 82.2 | 75.2 | 68.8 [59.9 (+0.6) 46.6 (-10.8) 58.8 52.4
[ ] Updatlng key parameters POET (M >T) 87.9 | 82.7 | 77.2 | 68.8 |60.3 (+1.0) 54.4 ( -3.0) 59.8 57.2

but keeping only query adaptor POET (M =T) | 87.9 |82.8 768 | 68.6 |59.3 57.4 59.2 58.3

QA frozen after uB training (‘w/o QA update’) reduces ‘New’ only per-
formance of US™ by 4.6% as the query function stays fixed at base session
learning and is not discriminative towards new classes. ‘W /o clustering loss’
from Eq. 6, performance drops starting from UBO) itself. The only difference
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between the experiment ‘w/o sorting’ and ‘POET (M=T)’ is that we do not
sort the cosine similarity before selecting top T indices (same as Fig 5). The
10.8% 1 in ‘New’ performance validates that our prompt selection mechanism is
learning to chose a distinct temporal ordering for prompt tuning of new input
samples. With pool expansion (‘POET, M > T”), we get more flexibility in the
stability-plasticity trade-offs depending on how many new prompts we attach.
For R = 6, ‘Old’ is improved. In Table 3, we keep POET’s additive prompt
attachment and only vary prompt selection.

Prompt Attachment Mechanism. In Table 4, we keep our end-to-end opti-
mization and ordered prompt selection as a constant and ablate prompt shape
and attachment operator f,(.). Drawing a parallel with transformers which con-
catenate prompts along the token dimension, we conduct experiments concate-
nating prompts along the (i) temporal dimension of the skeleton input feature
embedding Xe (‘CONCAT temporal’) and (ii) feature dimension C. (‘CON-
CAT feature’). We find that addition works better than concatenation and
cross attention. We also verify our hy- Table 4: Prompt Attachment Analysis (%,
pothesis that selecting the same num- Q&d;}‘;;ﬁcﬁ s 3::;2?535 Choice (J%’ 2)435_
ber of prompts as the input temporal

NTU RGB D [uB®us® us® us® us®
dimension (T = 64 for NTU RGB+D  Methoa Base | Avg | Avg | Avg |Old New Avg Ay
. CONCAT temporal, 7" = 64]| 88.6 | 70.3 | 624 | 49.8 [33.6 50.5 35.1 403
and T = 8 for SHREC-2017) ylelds CONCAT feature, T = 64 || 87.7 | 82.4 | 75.5 | 66.9 |57.141.5 56.0 48.1
. Cross Attention, 7/ =64 || 82.9 | 77.4 | 72.2 | 65.0 |57.1 32.3 55.0 412
better results as compared to addlng ADD, T = 1 88.7 | 73.3 | 62.7 | 455 |33.747.0 34.839.3
the same prompt frame to each input A2 T =64 (Ours) 870 82.8 | 76.8 | 68.6 |59.357.450.2 58.3

embedding frame (‘Addition T' = 1’).

7 Conclusions and Future Work

The problem of continually adapting human action models to new user cate-
gories over time has gained prominence with the rising availability of XR de-
vices. However, this setting poses unique challenges: (i) the user may be able
to provide only a few samples for training, and (ii) accessing data from earlier
sessions may violate privacy considerations. We hence propose a method based
on prompt offset tuning to address this problem in this work. Prompt tuning to
address learning over newer tasks has been attempted in recent years. However,
these works have: (1) typically been designed for image-based tasks, (2) relied on
strongly pretrained transformer backbones, (3) required full supervision for new
tasks, and (4) exclusively applied prompt tuning to transformer architectures.
This work departs from these four characteristics. Our work demonstrates that
prompt offset tuning is a promising option to evolve and adapt skeleton-based
human action models to new user classes. The careful design of each component
of the proposed methodology finds validation in the promising results across
well-known skeleton-based action recognition benchmarks. Our ablation stud-
ies and analysis corroborate our design choices in our implementation. Looking
ahead, it will be interesting to explore how our approach and its design choices
adapt when a “generalist backbone" trained on a large corpus of action recog-
nition data becomes accessible. Extending our method for differential privacy is
another interesting direction of future work.
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