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Abstract. Compositional Zero-Shot Learning (CZSL) aims to classify
unseen state-object compositions using seen primitives. Previous meth-
ods commonly map an identical primitive from different compositions to
the same area within embedding space, aiming to establish primitive rep-
resentation or assess decoding proficiency. However, relying solely on the
intersection area of primitive concepts might overlook nuanced seman-
tics due to conditional variance, thereby limiting the model’s capacity to
generalize to unseen compositions. In contrast, our approach constructs
primitive representations by considering the union area of primitives. We
propose a Multiple Representation of Single Primitive learning frame-
work (termed MRSP) for CZSL, which captures composition-relevant
features through a state-object-composition three-branch cross-attention
architecture. Specifically, the input image feature cross-attends to multi-
ple state, object, and composition features and the prediction scores are
adaptively adjusted by combining the output of each branch. Extensive
experiments on three benchmarks in both closed-world and open-world
settings showcase the superior effectiveness of MRSP.

Keywords: Compositional Zero-Shot Learning · Attention · Graph Con-
volution Networks · Vision-Language Models

1 Introduction

Human beings effortlessly merge familiar visual primitives to form novel composi-
tion concepts, such as purple apple, drawing on their comprehension of states like
purple and objects like apple. However, imparting this capacity to machines to
recognize zero-shot compositions, where they must generate unseen composition
features by coupling state and object primitives, remains a formidable challenge.
This problem is termed Compositional Zero-Shot Learning (CZSL) [4,22], which
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(a) CZSL setting (b) conditional variance

Fig. 1: CZSL Task: (a) Models aim to classify compositional concepts such as sliced
banana without prior knowledge, relying solely on provided instances like sliced, banana.
(b) Conditional variance refers to the phenomenon where individual primitives display
varied visual characteristics when combined.

aims to classify unseen compositions relying on seen state and object primitives,
as shown in Fig. 1a.

The key to CZSL lies in learning exhaustive primitive representations. Pre-
vious methods [4,18,28] learn to disentangle compositions into single primitive,
where each primitive is represented by single representation. Then, these prim-
itives are coupled into compositions with a coupling module. During inference,
the module is employed to generate unseen composition features for recognition.
However, we argue that the approach of associating a primitive with single repre-
sentation may not sufficiently enable the model to generalize to unseen composi-
tions. This is because a primitive may only manifest a portion of its significance
within a composition. For example, while both old tiger and old town share old
primitive, the former denotes senior, whereas the latter suggests historical. This
phenomenon, as shown in Fig. 1b, is known as conditional variance [8].

If excluding conditional variance, the learning process of a primitive is akin
to identify a compact region in the semantic space that holds a dense cluster
of training samples, thus acting as an intersection area for semantic informa-
tion. However, considering conditional variance, a primitive can exhibit multiple
distinct semantics concurrently, enclosing all these in a larger region introduces
incorrect information. Instead, leveraging the union of several disjoint regions
markedly enhances the model’s ability to accurately capture the concept.

In this work, we propose a Multiple Representation of Single Primitive
framework (MRSP) for CZSL that is designed to learn union embeddings for
each primitive. To this end, MRSP utilizes graph convolution networks (GCN)
to encode primitive and composition features and cross-attention decoding to
output prediction scores. Specifically, each node of the GCN module represents
a primitive or composition concept, and the feature of each node is extracted with
the CLIP text encoder. In the compositional graph, a primitive is represented
by multiple nodes, and each node is initialized with the primitive representation
and exhibits distinct features after graph convolutional operations.
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After learning multiple representations of the primitives, we utilize three
cross-attention [3] branches: the composition branch, state branch and object
branch. The composition branch receives inputs of composition representation
and image features, while the state (object) branch receives inputs of state (ob-
ject) representations and image features. We employ cross-attention to model
semantic correlations between the two modal inputs, with each branch learning
to assign higher weights to the correct representations. By supervising the rep-
resentational capacity of the branch outputs, the model ultimately comprehends
the interaction of primitives within seen compositions and achieves remarkable
performance on unseen compositions by leveraging multiple representations.

Mancini et al . [20] introduced a more challenging open-world setup that ex-
pands the prediction space to encompass the Cartesian product of the state
and object set. To assess the effectiveness of MRSP, we conduct extensive ex-
periments on the MIT-States, UT-Zappos, and Clothing16K datasets, under
the closed-world and open-world settings. The results demonstrate that MRSP
achieves state-of-art performance across all these benchmarks. The contributions
of this work can be summarized as follows:

– We introduce a novel framework named MRSP which leverages Multiple
Representation to construct the union of Single Primitive concepts.

– The multiple representation construction module learns from the union set
of language features fused with images features to enhance the model’s ability
of generalizing to unseen compositions. We also design a three-branch cross-
attention decoder for decoding both seen and unseen compositions, enabling
concept decomposition at the attention level.

– Extensive results across multiple datasets indicate that MRSP achieves state-
of-the-art performance, highlighting its efficiency in recognizing unseen state-
object compositions.

2 Related Work

Compositional Zero-Shot Learning seeks to elucidate the interplay between
states and object compositions, facilitating flexible information transfer from
seen to unseen compositions. Various approaches in this domain employ diverse
strategies. For instance, some methods measure distance by transforming and
coupling elements, projecting them into a unified hidden space alongside visual
images [4,23,24,28]. Pioneering work by Misra et al . [22] showcased the feasibil-
ity of computers learning compositional concepts through decoupling. Karthik
et al . [11] leverage external knowledge bases, akin to large language models,
employing designs such as Can a xxx be xxx? to tackle a range of composi-
tional challenges in open-world scenarios. Additionally, Hao et al . [8] utilize a
cross-attention mechanism to establish correlations between positive and nega-
tive sample instances, serving as the foundation for subsequent model discrim-
ination. Lastly, Li et al . [14] have recently pioneered the use of large language
model-generated cue words to aid CZSL model understanding. As shown in
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(a) Previous methods (b) MRSP(Ours)

Fig. 2: Comparison between intersection-based methods and our union-based method,
MRSP: (a) Single representation result in inappropriate compositional information. (b)
Multiple representations yield more accurate composition concepts.

Fig. 2, our work differs significantly from previous studies in that our focus is
on achieving a comprehensive representation of primitives, rather than solely
aiming to extract the maximal concept intersection.
Graph Convolutional Networks were proposed by Kipf et al . [13], leverage
hierarchical structures embedded in data to generate features, enabling the ex-
ploitation of feature hierarchies from supervised learning data. However, GCN
methods often encounter limitations due to the phenomenon of over-smoothing,
hindering their scalability. Criticisms of GCN methods have been voiced by Felix
et al. [30] and Zhewei et al . [5]. Inspired by techniques such as residual struc-
tures, dropout layers, and skip connections, recent advancements in GCNs [5,30]
have significantly broadened the scope of applications for graph-based methods.
Attention mechanisms, as demonstrated by Transformer [29], are powerful
tools for extracting sequence relations and have achieved remarkable success
in natural language processing. Building upon this, Alexey et al . [6] applied
transformer architectures to computer vision tasks, showcasing the attention
mechanism’s ability to extract global image features that rival or even surpass
those extracted by convolutional methods. Inspired by these advancements [3,8],
we leverage cross-attention as a model for relationship extraction in images.
Vision-Language Models pretrained on large datasets can effectively learn
semantic coherence between image and text modalities across different levels
[27]. This presents an appealing avenue for leveraging textual modality data to
enhance open-world visual comprehension. This work builds upon the pre-trained
CLIP [7] image-text encoder.

3 Method

In Sec. 3.1, we formalize the CZSL problem and delineate open-world and closed-
world settings. Sec. 3.2 elaborates on the construction of multiple representations
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from text using GCN, aimed at deriving the union of primitive concepts as well
as seen and unseen composition concepts. Following that, in Sec. 3.3, we delve
into the utilization of cross-attention for decoding primitives and composition
concepts from images, yielding decoding results at the attention level. Sec. 3.4
outlines the training objectives and the utilization of attention-level decoding
results for prediction purposes. The entire framework is illustrated in Fig. 3.

3.1 Problem Formulation

Given the training set T = {(x, y)|x ∈ X , y ∈ Yseen}, where x is an image
in the RGB image space X ; y is a compositional label in seen class set Yseen;
composition label set Y = Yseen ∪ Yunseen. A compositional label y consists of
two parts y = (s, o), where s ∈ S is a state primitive in the state primitive space
S;o ∈ O is an object primitive in the object primitive space O, and all primitive
elements in both spaces S and O are included in the seen compositions. CZSL
attempts to classify an image instance labeled yunseen ∈ Yunseen. The setting
of the size of the model prediction space can be divided into Closed-world [22]
setting and Open-world [20] setting. For Closed-world setting, the prediction
space is Ypred = Ytest = Yseen∪Yunseen. For Open-world setting, the prediction
space is Ypred = S ×O with × represents the Cartesian product.

In this work, we denote the text encoder as ϕ(·) and the image encoder as
ψ(·). Let pj represent the feature vector of a concept j ∈ S ∪ O ∪ Ypred after
encoding with ϕ(·), and let the compositions containing pj in the prediction
space constitute Ypj

. Let pyi

j represent a subset representation associated with
the combination yi = (si, oi), where yi ∈ Ypj

. We use Pj to denote the union
of pj , i.e., Pj =

⋃
yi∈Y p

yi

j . Let vx denotes the feature vector of input x after
encoding with ψ(·).

3.2 Multiple Representation Construct via GCN

Training a model to learn multiple representations for each primitive concept
from scratch is computationally demanding. Alternatively, a more efficient strat-
egy involves extracting relevant subsets from comprehensive CLIP [27] represen-
tations. Subsequently, we utilize graphs to delineate topological relationships,
enabling the derivation of the union of primitive and composition concepts.
Primitives and Compositions Embedding. Given a label text s ∈ S, o ∈ O,
or y ∈ Ypred, we utilize a pre-trained CLIP text encoder [7], denoted as ϕ(·),
to generate corresponding representations ps, po, py as shown in Eqs. (1) to (3):

ps = ϕ(“A photo of something [s].”), (1)
po = ϕ(“A photo of [o].”), (2)
py = ϕ(“A photo of [s] [o].”). (3)

Prompt design is not the focus of this work, therefore, we use the simplest hard
prompt to generate pj .
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(a) Train of MRSP.

(b) Inference of MRSP.

Fig. 3: MRSP Architecture. (a) During training, the model initializes a compo-
sitional graph based on the prediction space, updates node features using a GCN
module, and evaluates the quality of multiple representations with image features.
Subsequently, both node and image features are inputted into a three-branch cross-
attention decoder, with decoding quality assessed using image features. (b) During
inference, pre-constructed multiple representations and image features are fed into the
three-branch cross-attention decoder, considering decoding results from state, object,
and composition branches to obtain the final inference at the attention level.

Node Embedding. We employ copies of pj to initialize Pj and pyi

j with yi ∈
Ypj , obtaining Pj = pj ∈ Rd and PY

j = [pj ; . . . ; pj ] ∈ R(|Ypj
|×d) where d is the

dimension of features encoded by ϕ(·). Since the nodes in the composition graph
include the universal representation Pj and the multiple representations Pyi

j , we
can initialize all nodes as shown in Eqs. (4) to (7):

Hs = [Ps1 ;PY
s1 ; . . . ;Ps|S| ;P

Y
s|S|

] ∈ R(|S|+NS)×d, (4)

Ho = [Po1 ;PY
o1 ; . . . ;Po|O| ;P

Y
o|O|

] ∈ R(|O|+NO)×d, (5)

Hy = [Py1
; . . . ;Py|Y| ] ∈ R|Y|×d, (6)

H(0) = [Hs;Ho;Hy] ∈ R(|S|+|O|+|Y|+NO+NS)×d, (7)

where NS =
∑|S|

i=1 |Ysi | and NO =
∑|O|

j=1 |Yoj |. Clearly, NS +NO = 2 · |Y|, so we
ultimately obtain H(0) ∈ R(|S|+|O|+3·|Y|)×d as the initial node features.
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Fig. 4: Constructions of graph.
Colored edges are added edges,
colored nodes are affected nodes,
gray parts are unaffected graph.

Compositional Graph Constructions. We
aim to internalize compositional dependencies
within the graph to assist the model in lever-
aging pertinent information. The nodes in the
graph consist of representations for each primi-
tive and each composition, resulting in a total of
K = |S|+NS+|O|+NO+|Y| = |S|+|O|+3·|Y|
nodes. As shown in Fig. 4, the construction of
compositional graph can be described as: given
a yi = (sj , ok) ∈ Ypred, it effects 5 nodes in-
clude sj , yi, ok, and sjoi , oksi , connecting them
with undirected edges (sj ↔ sjoi),(sjoi ↔ yi),
(yi ↔ oksi), and (oksi ↔ ok). Ultimately, this
yields an adjacency matrix Ã ∈ RK×K and de-
gree matrix D̃ ∈ RK×K .
GCN Module. With the adjacency matrix,
degree matrix and node features, we can update
the concepts using Eq. (8):

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l);Θ(l)) ∈ RK×d, (8)

where H(l) denotes the node features of the lth layer, σ represents the ReLU
activation function, Ã is the adjacency matrix, D̃ is the node degree matrix
with row sums of Ã as its diagonal elements, and Θ(l) indicates the learnable
parameters of the lth layer.

Similar to Eqs. (4) to (7), we can obtain updated concept representations p′s,
p′o, and p′y from H(l). After that, we utilize residual connections to derive the
final concept representations, as shown in Eq. (9):

ppres = p′s + ps, ppreo = p′o + po, pprey = p′y + py. (9)

To assess the quality of representations, we construct a cross-entropy loss based
on this, as shown in Eqs. (10) and (11):

u = H(N)vx ∈ RK , q̂i =
exp(ui/τ)∑K
j=1 exp(uj/τ)

∈ R, (10)

LMR = −
K∑
i=1

I(i ∈ y) log q̂i, (11)

where H(N) is the node feature matrix outputted by the last layer of GCN, vx
calculated by Eq. (12), τ is the temperature coefficient, I(pn ∈ y) equals 1 if the
condition inside the parentheses is met, otherwise 0.

3.3 Multiple Representation Decoding via Cross-Attention

We utilize a three-branch cross-attention [3] decoder to decode composition con-
cepts from images, enabling concept decomposition at the attention level by
supervising the representation capabilities of each branch output.
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Visual Embedding. Given an image input x, we employ a pre-trained CLIP [7]
image encoder followed by a two-layer MLP to generate visual features vx:

vx = MLP(ψ(x);Ωv) ∈ Rd, (12)

where Ωv denotes the parameters of MLP.
Cross-Attention Module. For the decoding of states, objects, and composi-
tions, we employ three distinct multi-head cross-attention branches. Each branch
shares a similar structure but differs in inputs and parameters. The state branch
takes ppres and vx as inputs, the object branch receives ppreo and vx as inputs,
and the composition branch takes pprey and vx as inputs. In each branch, query
tokens are generated from the image features vx, while key-value tokens are
derived from the text features ppre, as shown in Eq. (13):

qv = vxW
q
i , kt = ppreW k

i , vt = ppreW v
i , i = 1, 2, . . . , h, (13)

where h represents the number of attention heads, and W q
i , W k

i , and W v
i ∈

Rd×(d/h) are weight matrices. The outputs from each attention head dposti are
concatenated to form dpost, after that, the branch output dpostv is computed using
a feed-forward network (FFN) with layer normalization (LN) and an additional
residual connection,as shown in Eqs. (14) to (16):

dposti = π

(
qvk

T
t√

d/h

)
vt ∈ R(d/h), (14)

dpost = concat(dpost1 , dpost2 , . . . , dposth ) ∈ Rd, (15)

dpostp = vx + FFN
(
LN(vx + dpostWO)

)
∈ Rd, (16)

where WO ∈ Rd×d represents the weight matrix.
Decoding at the attention level. We employ attention weights from the three
branches to decode composition concepts, as expressed in Eq. (17):

Corr(x, (s, o)) = ω(vx, p
pre
y ) + α · ω(vx, ppres ) + β · ω(vx, ppreo ), (17)

where the composition label y = (s, o) and ω(vx, p
pre
y ) denotes the weight from

the composition branch, ω(vx, ppres ) denotes the weight from the state branch,
ω(vx, p

pre
o ) denotes the weight from the object branch, and α and β are hyper-

parameters utilized for balancing the loss terms.
Moreover, we devise a cross-entropy loss by assessing the representation qual-

ity of the outputs from the three branches, as delineated in Eqs. (18) and (19):

ap = vTx d
post
p ∈ R, ĝEi =

exp(ai/τ)∑E
j exp(aj/τ)

∈ R, (18)

LCA =−
|S|∑
i

I(i ∈ s) log ĝS i −
|O|∑
j

I(j ∈ o) log ĝOj

−
|Y|∑
k

I(k ∈ y) log ĝYk.

(19)



MRSP: Learn Multi-Representations of Single Primitive for CZSL 9

3.4 Training and Inference

Finally, we compute the overall model loss using cross-entropy loss as shown in
Eq. (20):

L = LCA + γLMR, (20)

where γ serves as a balancing parameter to ensure the scales of the individual
losses are roughly equivalent.

During inference, given an image x, we feed it into the cross-attention branches
along with the multiple representations of state primitives, object primitives, and
composition concepts. The final inference result is determined by maximizing the
correlation score Corr(x, (s, o)) by Eq. (21):

ŷ = arg max
y=(s,o)∈Y

Corr(x, (s, o))

= arg max
y=(s,o)∈Y

[
ω(vx, p

pre
y ) + α · ω(vx, ppres ) + β · ω(vx, ppreo )

]
,

(21)

where α and β are hyperparameters for balancing contributions, adaptable across
diverse downstream tasks through parameter tuning on different datasets.

4 Experiments

4.1 Experiments Setting

Dataset. We conducted experiments on three datasets: MIT-States [10], UT-
Zappos [33], and Clothing16K [34], to assess the model’s performance. MIT-
States contains general compositional concepts, while Clothing16K focuses specif-
ically on cloth-related compositions, and UT-Zappos focuses on shoe-related
compositions. These datasets represent both general and specific domain testing
scenarios, with a training-test set split consistent with [4, 8, 23] (see Tab. 1).
Evaluation metrics. Zero-shot learning models tend to favor predicting seen
classes over unseen classes [2,20]. To comprehensively assess the model’s perfor-
mance, we employ the AUC metric proposed in [26]. We introduce a bias ranging
from −∞ to +∞ for unseen compositions to regulate the model’s preference for
seen classes. The evaluation metrics we use are as follows: (1) Best seen accuracy
(S). (2) Best unseen accuracy (U). (3) Best harmonic mean (H): This metric is
the harmonic mean of S and U. (4) Area under the curve (AUC): It measures
the area under the accuracy curve.

Table 1: Dataset statistics.

Primitives Train Val Test
Dataset state object seen image seen unseenimage seen unseenimage

MIT-States [10] 115 245 1262 30k 300 300 10k 400 400 13k
UT-Zappos [33] 16 12 83 23k 15 15 3k 18 18 3k

Clothing16K [34] 9 8 18 7k 10 10 5k 9 8 3k
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Table 2: Closed-world results. Please refer to Sec. 4.1 for the definition of each
evaluation metric, where AUC serves as the primary metric.

Setting Method MIT-States UT-Zappos
S U HM AUC S U HM AUC

C
lo

se
d
-W

or
ld

CLIP [27] ICML’21 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0
CoOp [35] IJCV’22 34.4 47.6 29.8 13.5 52.1 49.3 34.6 18.8

Co-CGE [21] TPAMI’22 46.7 45.9 33.1 17.0 63.4 71.3 49.7 36.3
ProDA [19] CVPR’22 37.4 51.7 32.7 16.1 63.7 60.7 47.6 32.7

PromptCVL [32] arXiv’22 48.5 47.2 35.3 18.3 64.4 64.0 46.1 32.2
CSP [25] ICLR’23 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0

DFSP(i2t) [17] CVPR’23 47.4 52.4 37.2 20.7 64.2 66.4 45.1 32.1
DFSP(BiF) [17] CVPR’23 47.1 52.8 37.7 20.8 63.3 69.2 47.1 33.5
DFSP(t2i) [17] CVPR’23 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0

Troika [9] CVPR’24 49.0 53.0 39.3 22.1 66.8 73.8 54.6 41.7
PLID [1] arXiv’23 49.7 52.4 39.0 22.1 67.3 68.8 52.4 38.7

GIPCOL [31] WACV’24 48.5 49.6 36.6 19.9 65.0 68.5 48.8 36.2
PLO-VLM [14] arXiv’23 49.6 52.7 39.0 22.2 67.8 75.6 53.1 42.0
PLO-LLM [14] arXiv’23 49.6 53.2 39.0 21.9 68.3 73.0 54.8 41.6
MRSP(Ours) 53.5 52.7 41.3 23.8 71.9 81.7 65.2 52.5

Baselines. We compare MRSP with some CLIP-based methods on MIT-States
and UT-Zappos. The methods including CLIP [27], CoOp [35], Co-CGE [21],
ProDA [19], PromptCVL [32], CSP [25], DFSP [17], Troika [9], PLID [1], GIP-
COL [31], PLO [14]. The results are shown in Tabs. 2 and 3. We also compare
MRSP with some methods on Clothing16K. The methods including SymNet
[16], CompCos [20], CGE [23], Co-CGE [21], SCEN [15], IVR [34], OADis [28],
ADE [8]. The results are shown in Tab. 4.
Implementation details. We conducted experiments on MRSP under two set-
tings: Closed-world [22] and Open-world [20]. We use the Adam optimizer [12]
with a learning rate set to 5 × 10−4 and weight decay set to 5 × 10−5. Dur-
ing training, the learning rate decays by a factor of 0.8 every 10 epochs. For
MIT-States, we set α = 0.7, β = 1.3, γ = 1, for UT-Zappos, we set α = 0.7,
β = 0.8, γ = 1, and for Clothing16K, we set α = 1, β = 1, γ = 1. We employ
a pre-trained CLIP [7] image encoder concatenated with a 2-layer MLP with a
embedding dimension of 1024. The GCN has 2 layers with input dimension 1024,
the first layer has a dimension of 8192, and the second layer has a dimension
of 1024. Both layers use a dropout probability of 0.5 during training. The num-
ber of attention heads in cross-attention is set to 16, and the input and output
dimensions are 1024. We train the model with a batch size of 64 and 200 epochs.

4.2 Comparison with the SoTA

Closed-world evaluation. In Tabs. 2 and 4, we present a comparison between
MRSP and state-of-the-art methods in closed-world settings. While MRSP shows
a slight 0.5% decrease in best unseen accuracy on the MIT-States dataset, it



MRSP: Learn Multi-Representations of Single Primitive for CZSL 11

Table 3: Open-world results. In contrast to Tab. 2, here the prediction space com-
prises the Cartesian product of the sets of state and object primitives.

Setting Method MIT-States UT-Zappos
S U HM AUC S U HM AUC

O
p
en

-W
or

ld
CLIP [27] ICML’21 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2
CoOp [35] IJCV’22 34.6 9.3 12.3 2.8 52.1 31.5 28.9 13.2

Co-CGE [21] TPAMI’22 38.1 20.0 17.7 5.6 59.9 56.2 45.3 28.4
ProDA [19] CVPR’22 37.5 18.3 17.3 5.1 63.9 34.6 34.3 18.4

PromptCVL [32] arXiv’22 48,5 16.0 17,7 6.1 64.6 44.0 37.1 21.6
CSP [25] ICLR’23 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7

DFSP(i2t) [17] CVPR’23 47.2 18.2 19.1 6.7 64.3 53.8 41.2 26.4
DFSP(BiF) [17] CVPR’23 47.1 18.1 19.2 6.7 63.5 57.2 42.7 27.6
DFSP(t2i) [17] CVPR’23 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3

Troika [9] CVPR’24 48.8 18.7 20.1 7.2 66.4 61.2 47.8 33.0
PLID [1] arXiv’23 49.1 18.7 20.0 7.3 67.6 55.5 46.6 30.8

GIPCOL [31] WACV’24 48.5 16.0 17.9 6.3 65.0 45.0 40.1 23.5
PLO-VLM [14] arXiv’23 49.5 18.7 20.5 7.4 68.0 63.5 47.8 33.1
MRSP(Ours) 46.5 23.0 22.4 8.4 69.0 65.1 52.4 38.8

Table 4: Results on Clothing16K.

Dataset Method Closed-World Open-world
S U HM AUC S U HM AUC

C
lo

th
in

g1
6K

SymNet [16] CVPR’20 98.0 85.1 79.3 78.8 98.2 60.7 68.3 57.4
CompCos [20] CVPR’21 98.5 96.8 87.2 90.3 98.2 69.8 70.8 64.1

CGE [23] CVPR’21 98.0 97.4 84.2 89.2 98.5 69.7 68.3 62.0
Co-CGE [21] TPAMI’22 98.5 94.7 87.9 88.3 98.7 63.8 69.2 59.3

SCEN [15] CVPR’22 98.0 89.6 78.5 78.8 96.7 62.3 61.5 53.7
IVR [34] ECCV’22 99.0 97.0 86.6 90.6 98.7 69.0 72.0 63.6

OADis [28] CVPR’23 97.7 94.2 86.1 88.4 98.0 58.6 63.2 53.4
ADE [8] CVPR’23 98.2 97.7 88.7 92.4 99.0 73.1 74.2 68.0

MRSP(Ours) 99.0 99.7 95.5 96.4 99.7 88.4 89.1 86.0

exhibits overall performance improvements across all other metrics. For example,
compared to PLO-LLM, MRSP achieves a 7.8% increase in best unseen accuracy,
a 5.9% increase in HM, and an 8.7% increase in AUC. Particularly noteworthy is
MRSP’s significant outperformance of the previous state-of-the-art PLO-VLM
method on the UT-Zappos dataset, with a remarkable 25% improvement in
AUC performance and a first-time elevation of best unseen accuracy to 81.7%.
This substantial enhancement indicates that MRSP greatly improves conceptual
understanding accuracy. Similar occurrences are observed on the Clothing16K
dataset, MRSP emerges with all metrics soaring above the 95% mark for the
very first time. Remarkably, MRSP attains stellar scores of 99.0% for best seen
accuracy and an impressive 99.7% for best unseen accuracy, underscoring the
significant prowess of MRSP in tackling compositional discrimination tasks.
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Table 5: Experiments with different backbones on
the MIT-States dataset.

Backbone Methods MIT-States
S U HM AUC

ResNet18
CGE [23] 32.8 28.0 21.4 8.6

MRSP 38.3 36.8 24.8 9.9

ViT-B/32

DFSP [17] 36.7 43.4 29.4 13.2
PLO-VLM [14] 41.1 44.2 31.3 14.8
PLO-LLM [14] 44.2 47.9 34.3 17.4

MRSP 49.8 48.9 37.4 20.0

ViT-L/14

DFSP [17] 46.9 52.0 37.3 20.6
PLO-VLM [14] 49.6 52.7 39.0 22.2
PLO-LLM [14] 49.6 53.2 39.0 21.9

MRSP 53.5 52.7 41.3 23.8

Table 6: Ablation study on
MIT-States. a) MR. ✓: Utilizing
{s sy y oy o} nodes for repre-
sentation, ✗: Using only {s y o}
nodes; b) cross-attention (CA).
✓: Employing cross-attention for
decoding, ✗: Using 3-layer MLP
decoding.

Component MIT-States
MR CA S U HM AUC

✗ ✗ 34.8 30.9 23.1 8.2
✓ ✗ 49.1 51.1 38.5 20.0
✗ ✓ 42.5 40.0 28.6 12.6
✓ ✓ 53.5 52.7 41.3 23.8

Open-world evaluation. In Tabs. 3 and 4, we provide a comparison between
MRSP and other methods in the open-world setting. Despite a 3% decrease in
best seen accuracy on the MIT-States dataset, our approach surpasses various
previous methods across all metrics. For example, compared to the state-of-the-
art PLO-VLM, MRSP achieves a 7.2% increase in AUC on MIT-States and an
impressive 25% increase on UT-Zappos. In comparison to ADE, our method en-
hances the AUC metric by 26.5% on Clothing16K. Furthermore, when examining
the performance degradation of different methods transitioning from the closed-
world to open-world settings, we are pleased to observe that on the Clothing16K
dataset, MRSP experiences only a 10.7% decrease in AUC, whereas previous
methods suffer a decrease of at least 26.4% (ADE) and up to 39.6% (OADis).
This underscores the robustness of MRSP in specific domain tasks.

4.3 Ablation Studies

Backbone: ResNet and ViT. The quality of node feature vectors significantly
impacts MRSP model performance, as evidenced by our comparisons using dif-
ferent backbones (see Tab. 5). As expected, models utilizing ViT outperformed
those using ResNet18, demonstrating improvements of 102% (ViT-B/32) and
240% (ViT-L/14), respectively. Furthermore, despite not employing a more effi-
cient encoder, MRSP still achieved a 15.1% improvement in performance (mea-
sured by AUC) compared to the CGE method with the same configuration. This
underscores MRSP’s robustness to lower-quality encoding results.
Module effects. We evaluated the effectiveness of multi-representation (MR)
and cross-attention decoders, with results presented in Tab. 6. The adoption of
the MR strategy yielded an 11.2% improvement in AUC performance compared
to using a single representation, underscoring the enhanced conceptual under-
standing achieved by MR when combined with cross-attention. Moreover, even
with a single representation, employing cross-attention instead of a three-layer
MLP decoder resulted in a 4.4% increase in AUC performance, highlighting the
efficiency of attention-based decoders in concept recognition tasks.



MRSP: Learn Multi-Representations of Single Primitive for CZSL 13

Table 7: Experiments with different set-
ting of GCN.

GCN Settings MIT-States
S U HM AUC

Layers

d4096, d1024 50.6 48.8 37.8 20.9
d4096× 2, d1024 50.4 51.3 38.8 21.3
d4096× 3, d1024 47.9 52.1 37.4 20.1

d8192, d1024 53.5 52.7 41.3 23.8
d8192× 2, d1024 50.8 53.5 39.8 22.5

LN
no norm 48.7 52.5 39.4 20.0

post-norm 53.1 54.5 42.2 22.5
pre-norm 53.5 52.7 41.3 23.8

Table 8: Experiments with different set-
ting of cross-attention (CA).

CA Settings MIT-States
S U HM AUC

MLP
1 layer 52.6 51.7 40.8 23.4
2 layers 53.5 52.7 41.3 23.8
3 layers 50.9 50.0 38.9 22.5

Inference y + δ · s · o 47.4 52.1 38.9 19.7
y + α · s+ β · o 53.5 52.7 41.3 23.8

Heads
8 heads 52.3 50.9 39.9 22.4

16 heads 53.5 52.7 41.3 23.8
32 heads 52.2 51.1 39.5 22.0

(a) image-to-text retrieval (b) text-to-image retrieval

Fig. 5: Retrieval. We denote state primitives in orange font, object primitives in blue
font, correct classifications in green font (box), and incorrect classifications in red font
(box), (a) shows retrieval on MIT-States and (b) shows retrieval on Clothing16K.

Adjustments on GCN. We adjusted several key parameters of GCN and sum-
marized the results in Tab. 7. In this table, ’d’ denotes the use of dropout, while
the accompanying numbers represent the dimensions of node features for each
layer. Generally, larger feature dimensions tend to enhance performance, as ev-
idenced by a notable 13.8% increase under the 2-layer GCN setting. However,
performance varies across different GCN depths due to uncertainties in determin-
ing the neighborhood scope of nodes in current compositional graph generation
strategies. For instance, under the 8192-dimensional setting, the best unseen ac-
curacy of a 3-layer GCN reaches a maximum of 53.5, whereas the AUC indicator
of a 2-layer GCN peaks at 22.5. Future research may explore more controllable
and effective methods for compositional graph generation to enhance graph net-
work performance. Lastly, the utilization of pre-norm [29] resulted in a significant
19% improvement in GCN performance.
Adjustments on cross-attention. We conducted fine-tuning on several key
parameters of cross-attention and summarized the results in Tab. 8. The model’s
performance showed slight fluctuations with changes in the number of MLP lay-
ers and attention heads (up to 5.7% in the MLP setting and 8.1% in the attention
head setting). Additionally, we explored two different inference approaches. Ini-
tially, we utilized the formula ω(vx, pprey )+δω(vx, p

pre
s )·ω(vx, ppreo ) for calculating
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Fig. 6: Attention Visualization. Images were randomly selected from MIT-States.
Below images is the query input, and on the right side is the attention map.

Corr(x, (s, o)), with δ = 5. However, due to the significant scale change induced
by multiplication, it proved challenging to control.

4.4 Visualization

Retrieval experiments. We randomly sampled 9 images in MIT-States and
sorted the Corr scores with different compositions, as shown in Fig. 5a. Ensuring
that the top-1 result is correct presents a challenge. However, the model could
accurately identify the top-3 compositions in most cases. In the Clothing16K,
we selected several labels and sorted their Corr scores with different images, as
shown in Fig. 5b. Only occasional failures were observed, particularly in cases like
“green suit”, affected by environmental lighting and closely resembling categories
such as “shorts” and “skirt”.
Attention Visualization. We randomly selected 8 images and used their cor-
responding labels as queries to retrieve model responses, as depicted in Fig. 6.
The model’s regions of interest are highlighted in red, while blue areas indicate
regions the model considers unrelated to the given query. This demonstrates
MRSP’s ability to accurately comprehend concepts.

5 Conclusion

In this work, we address the challenges of CZSL and propose MRSP as a novel
solution to mitigate conditional variance by providing multiple representations
for individual primitives. Our approach utilizes GCN to construct these multiple
representations and employs cross-attention for attention-level decoding. By inte-
grating knowledge of states, object primitives, and compositions into the model’s
inference process, MRSP significantly enhances concept understanding and com-
position discrimination accuracy. Experimental results on the MIT-States, UT-
Zappos, and Clothing16K datasets demonstrate MRSP’s superiority over state-
of-the-art methods in both closed-world and open-world settings. However, it’s
important to note that while MRSP enhances conceptual understanding, it also
increases computational and storage demands. Our future work will focus on
exploring more efficient approaches to multiple representations construction.
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