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Fig. 1: Annotation Process Overview. Data is collected using UAVs with thermal
and sRGB sensors. The process starts with detecting Horizontal Bounding Boxes(HBB)
in thermal images, followed by the Segment Anything Model(SAM) outlining vehicles
accurately. Oriented Bounding Boxes(OBB) are then created using the OBB Calcula-
tor and high-definition maps(HD-MAP) for precise spatial context. The TrafficNight
dataset process results in a comprehensive collection of synchronized sRGB and ther-
mal images, OBB annotations, HD-map data, and raw video files.

Abstract. In autonomous simulation and surveillance, realistic scenar-
ios are crucial for advancing object detection algorithms. Existing aerial
datasets suffer from sample class imbalance, especially in larger vehicles
like trucks, and unrealistic lighting conditions. This hampers progress
in driving behavior analysis and imitation. To address these limitations,
we introduce a novel multimodal vehicle surveillance dataset, integrating
aerial thermal infrared and sRGB imagery. It contributes: (1) A novel
thermal infrared vehicle detection benchmark, ensuring robust object
detection in nighttime lighting conditions. (2) Thermal infrared surveil-
lance videos paired with corresponding HD-MAPs for improved multi-
vehicle tracking. (3) Specialized annotations for semi-trailers, precisely
documenting their movement trajectories and physical coordinates. Traf-
ficNight significantly advances understanding of larger vehicles in traffic
dynamics, serving as a benchmark for enhancing Autopilot systems and
traffic surveillance in challenging environments. 3

Keywords: Nighttime · Thermal infrared · Traffic flow
3 See TrafficNight project webpage for the code and more.

https://github.com/AIMSPolyU/TrafficNight
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1 Introduction

Recent advancements in autonomous vehicle (AV) and Simulation systems owe
significantly to the evolution of training datasets,particularly aerial observations.
These offer unique insights into traffic dynamics, vehicle behaviors, and spatial
relationships, often missed in ground-level data [4,8,10,23]. The aerial perspec-
tive is key for algorithmic accuracy in applications ranging from traffic manage-
ment to autonomous navigation.

However, existing aerial surveillance datasets [16,30,31] face two main limita-
tions: a bias towards ideal lighting conditions and a skewed representation of ve-
hicle types. The former can compromise the safety and efficiency of autonomous
systems through detection errors. Despite efforts in data augmentation and al-
gorithmic adjustments, the nuances of natural lighting are often inadequately
replicated. The underrepresentation of larger vehicles, affects the understanding
of traffic flow. Remedies like oversampling and synthetic sample generation [5,20]
have been used but often introduce new biases or inadequately capture complex
behaviors. Our response to these challenges is a comprehensive aerial multimodal
dataset, integrating vertical RGB and thermal infrared imaging. It is designed to
address diverse lighting conditions and ensure balanced vehicle representation,
aiming to provide a realistic foundation for advancing object detection research.
To address limitations in existing aerial surveillance datasets, we present Traffic-
Night—a comprehensive aerial multimodal dataset that integrates vertical RGB
and thermal infrared imaging. In Table 1, we compare TrafficNight with other
widely used datasets, including B3D, Citysim, INO, and LLVIP. Our dataset
excels in providing a balanced representation across diverse lighting scenarios
and vehicle types, which is crucial for training robust computer vision models
under real-world conditions.

Table 1: Compare with existing data content. TrafficNight excels in multimodal
representation. Simultaneously, it demonstrates strengths in semi-trailers, nighttime,
and 3D tools, crucial for detailed object detection in diverse real-world conditions

Data Semi-trailer Nighttime 3D Mapping

B3D [3] sRGB ✗ ✗ ✗

Citysim sRGB ✗ ✗ ✗

INO sRGB,cIF ✗ ✗ ✗

LLVIP [12] sRGB,cIF ✗ ✗ ✗

Our sRGB,cIF,IF ✓ ✓ ✓

We addressed key challenges in annotation, overcoming conventional meth-
ods’ limitations in scalability and precision. Our innovations include: (1) An Au-
tomated Annotation Framework, integrating a target detection algorithm with
Meta’s SAM model for efficient vehicle segmentation in infrared images, as in
Fig.1. (2) Thermal infrared surveillance videos with corresponding HD-MAPs
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(a) Vehicle Type Interference (b) U-turn at intersection (c) Multi-Veh Curve Trailing

Fig. 2: Nighttime typical scenarios. TrafficNight enriched with semi-trailers sam-
ple. Encompasses a large number of scenarios with mutual interference and vehicle
following behaviors on curved road segments.

enhance multi-vehicle tracking. (3) A specialized model for accurately labeling
semi-trailers, identifying tractor and carriage sections separately. (4) A algo-
rithm for converting 2D image coordinates into 3D spatial coordinates, crucial
for calibrating Car Following Models (CFM) parameters.

2 TrafficNight

2.1 Dataset Construction And Structure

Data collection, focused in Shenzhen, China, utilized the DJI Mavic 3T drone
equipped with RTK technology for accurate geospatial coordinates and real-time
acquisition. Each scene is uniquely identified by a SceneID, featuring synchro-
nized sRGB and thermal image pairs. Details of video durations and image
counts per scene are listed in Table. 2. The dataset preserves original thermal
image data, allowing developers to select their preferred color mapping tech-
niques. Areas with high truck and semi-trailer traffic, particularly in low-light
conditions, were prioritized for data collection. These locations are urban ar-
eas representative of typical regions where large vehicles, such as trailers, are
frequently found. This approach allowed us to capture diverse urban traffic sce-
narios, including those involving numerous semi-trailers.

The dataset includes critical scenarios for traffic management and autonomous
driving research. For instance, a multi-vehicle interference scenario, shown in
Fig.2a, demonstrates interactions among various vehicles, aiding traffic flow
model development. A scenario in Fig.2b, capturing a semi-trailer executing
a U-turn, offers insights for behavior prediction algorithms in intersection sit-
uations. Additionally, Fig. 2c depicts semi-trailers navigating turns, crucial for
trajectory prediction in dynamic environments. These scenarios are instrumental
in advancing trajectory and behavior prediction research, improving traffic flow
models, and enhancing the safety and efficiency of autonomous driving systems.

Raw Videos: The raw video data in this dataset comprises synchronized
sRGB and thermal images, captured using the DJI M3T drone’s integrated sen-
sors, as depicted in Fig. 3. The sensor configuration consists of a Complementary
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Fig. 3: Sensor intergretion (left) and Color palette of raw video (right). Visu-
alization results after using different color palettes on the same thermal infrared data.

Table 2: All collection result

SenceID Video’s ID Duration ImagePair

TN01 TN10262209 18min 237
TN02 TN10272135,TN10272206 32min 405
TN03 TN10290421,TN10290446 30min 388
TN04 TN10281958,TN10282031 36min 237
TN05 TN10292044,TN10292118 36min 134
TN06 TN10312124,TN10312150 35min 179
TN07 TN11012013,TN11012037 28min 400

Metal Oxide Semiconductor (CMOS) for sRGB data and an uncooled Vanadium
Oxide (VOx) sensor for thermal imaging. sRGB videos are recorded in low-light
mode at 3840x2160 resolution and 30 frames per second (fps), while the thermal
videos, captured in low gain mode (0-500°C) to enhance thermal detail, have a
resolution of 1280x1024 at 30fps.

R-JPEG Images: This format preserves the original temperature data of
objects, which can inspire other researchers to develop higher-performance visual
algorithms based on this raw temperature data. It is significant to mention that
there are no standard post-processing tools to modify the color grading of these
thermal videos,as existing tools are primarily designed for image data. However,
our development kit includes the ColorPalette.py script, which addresses this
gap. Using ColorPalette.py script to represent temperatures in thermal imaging
data is shown in Fig. 3.

HDMAP: In developing our High-Definition Mapping (HDMAP) annota-
tions, we utilized high-accuracy point cloud data, acquired through multi-view
reconstruction techniques using the Mavic M3T drone equipped with Real-Time
Kinematic (RTK) systems. RTK technology enables the capture of highly pre-
cise point cloud data, crucial for detailed mapping. The point cloud’s color vi-
sualization, shown in Fig.4, facilitated the identification of lane markings for
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Fig. 4: The color visualization of the point cloud and the Digital Surface Model (DSM)

HDMAP. Additionally, we generated a digital surface model (DSM) from the
point cloud to represent terrain height variations, as illustrated in Fig.4. Em-
ploying this high-fidelity point cloud data, we used the RoadRunner tool for
map creation. Renowned for its precision, RoadRunner enabled us to produce
detailed HDMAPs that accurately represent the physical layout of scenes and
include essential topological information like lane positions and relationships,
vital for research in autonomous driving and traffic flow analysis.

Fig. 5: Dataset structure overview

File Structure: The dataset comprises
seven traffic scenes, encompassing intersec-
tions and road segments. It contains a com-
prehensive array of original videos, total-
ing 150GB from both thermal infrared and
sRGB cameras. Additionally, it includes 4GB
of RGB and thermal infrared image data
with corresponding annotations. The Ori-
ented Bounding Box (OBB) annotations are
carefully aligned with the image files, adher-
ing to consistent naming conventions for easy
access and reference. Moreover, the dataset
is enriched with 3D High-Definition Map
(HDMAP) data, offering detailed insights into
lane positioning and topology within each
scene. Also included is a suite of development
toolkits, facilitating the use of this dataset in training computer vision algo-
rithms. The dataset’s structure is detailed in Fig. 5.

2.2 Dataset Annotation

Category Definition: The dataset encompasses annotations for various vehicle
types such as cars, buses, trucks, tractors, semi-trailers, and empty semi-trailers.
A key feature is the distinct labeling of detachable towing semi-trailer objects
and tractors. This separation is vital for analyzing and predicting the movement
trajectories of each component of these vehicles.



6 G. Zhang et al.

(a) Obb label example (b) Semi-trailer split results (c) Each part of the semi-trailer

Fig. 7: Annotation geometry definition. All objects in the dataset, from individual
vehicles to semi-trailer parts, with semi-trailers distinctly segmented into tractors and
trailers.

Different vehicle types often exhibit unique driving styles, which is critical in
traffic flow and driving behavior studies. To address this, our dataset establishes
a tree-like hierarchy of vehicle categories, as illustrated in the Fig. 6. Special
attention is given to differentiating between Tractor Units, Cargo space semi-
trailers, and Empty semi-trailers. This distinction is essential for accurate visual
perception and trajectory prediction, enabling more precise modeling of various
vehicle dynamics and behaviors.

Fig. 6: Category definition in
TrafficNight

Geometry Definition: An Oriented
Bounding Box (OBB) is a rectangular bound-
ing box that can be rotated, unlike Horizontal
Bounding Boxes (HBB) which align parallel to
base axes. OBBs’ rotational capability allows
for a more accurate representation of objects
in various orientations and poses.

Within our dataset, bounding boxes are
defined by the coordinates of their four cor-
ners, as shown in Fig. 7a. Each bounding box
is represented by the coordinates of its top-
left (x1, y1), top-right (x2, y2), bottom-right
(x3, y3), and bottom-left (x4, y4) corners in
the image plane. These coordinates precisely
outline the object’s boundaries within the im-
age. For semi-trailer vehicles, annotations are
based on the definitions in Fig. 7c, as demon-
strated in Fig. 7b.

Employing OBBs for object geometry definition significantly enhances anno-
tation accuracy and application effectiveness. This precise object representation,
regardless of orientation, improves the dataset’s utility for complex computer vi-
sion tasks, offering more accurate and descriptive annotations than traditional
HBBs, especially for irregularly shaped or variously angled objects.
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Fig. 8: Automated labeling pipeline

Oriented Bounding Box Generation. To reduce the costs associated with
manual data labeling, we introduced an automated labeling pipeline, depicted
in Fig. 8. This pipeline includes four main components: a simplified color palette
tool from our development kit, the YoloV8 Horizontal Bounding Box (HBB)
detector, the MobileSAM [15, 28] model for vehicle mask generation, and an
Oriented Bounding Box (OBB) calculator.

HDMAP. In this dataset, high-definition (HD) maps for each scene were
precisely developed using RoadRunner and aligned with the WGS84 (EPSG
4326) reference system, ensuring accuracy. Stored in xord format and created
from spatial point cloud data, the maps provide detailed three-dimensional rep-
resentations. The inclusion of these HD maps is essential, as they improve the
understanding of context in complex traffic environments. This aligns with so-
phisticated predictive models like VectorNet [9, 11, 19], enhancing accuracy in
multi-agent system behavior analysis.

2.3 Dataset Statistics

The dataset encompasses 2200 pairs of annotated thermal and sRGB image
data, with a relatively even distribution across different vehicle categories, in-
cluding semi-trailers and trucks. The distribution of labeled categories, spatial
locations, and sizes on the image is depicted in Fig. 9. Thermal images are cap-
tured in floating-point format, stored in R-JPEG format (16 bits) at 1280x1024
resolution. In contrast, sRGB images are recorded at 4000x3000 resolution in
standard JPEG format (8 bits). Annotations are formatted similarly to those in
DOTA-v2 [7].

The sRGB and thermal images are captured independently, not extracted
from raw video, allowing researchers to apply preferred color palettes using tools
like the DJI Thermal Analysis Tool. For sRGB data, camera settings automati-
cally adjust for optimal image quality. The thermal sensor operates in low-gain
mode, adjusted for ambient temperature conditions during capture.
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Fig. 9: Distribution of categories, spaces and size

3 Toolkit

3.1 Pre-training Model

In autonomous vehicle technology, thermal infrared imagery offers significant
advantages over traditional RGB imaging, especially in low-visibility situations.
For our pre-training model, we selected thermal infrared images, post-processed
with a color palette to highlight thermal signatures.

The accompanying toolkit for this dataset includes pre-trained models and
specialized tools for coordinate transformation. It features the YoloV8-obb object
detection network, tailored for thermal infrared vehicle images. These pre-trained
models are designed to enhance vehicle detection and tracking in thermal videos,
and to improve night-time vision algorithms with RGB data.

Fig. 10: Tracking vehicles in
thermal infrared videos.

Furthermore, the toolkit contains the
script, enabling the conversion of pixel co-
ordinates from images to physical space lat-
itude and longitude coordinates. This feature
is critical for applications requiring accurate
physical dimensions, such as calibrating driv-
ing models and advancing trajectory predic-
tion research.

We compiled a dataset of 2,200 thermal
images, each precisely annotated with ori-
ented bounding boxes (OBB) for accurate
object localization. This dataset underpins
the training of our YoloV8-obb model, an
advanced object detection framework. The
model has been meticulously fine-tuned to rec-
ognize and categorize various objects in ther-
mal imagery, focusing on living beings and vehicles, typically difficult to detect
in poor visibility. The pre-trained YoloV8-obb model enables efficient object de-
tection from unique thermal signatures, crucial for high-accuracy applications
in challenging environments. Its output can be integrated with sophisticated
tracking algorithms like BoT-SORT [1] or ByteTrack [29]. These trackers, used
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post-detection, aid in robust trajectory tracking, augmenting the model’s appli-
cability in dynamic scenarios prevalent in autonomous vehicle navigation and
surveillance.

3.2 3DMapping Toolkit

Contrasting with aeronautical datasets like NGSIM [21] and Citysim [30], which
predominantly rely on affine transformations for vehicle coordinate conversion,
our script employs the Perspective-n-Point (PNP) algorithm [22], focusing on
minimizing reprojection error for more precise physical coordinate determina-
tion.

Fig. 11: Use RayTrack method to
mapping 2d to 3d.

While affine transformation offers simplic-
ity, it fails to account for parallax errors in
images, leading to inaccuracies in vehicle po-
sitioning. In comparison, our PNP-based ap-
proach more accurately reflects real-world sce-
narios, providing a significant improvement in
positional accuracy.

The script in our toolkit is crucial for con-
verting vehicle coordinates from image frames
to geographic coordinates. It employs the
Perspective-n-Point (PNP) algorithm [22] to
determine the camera’s external parameters:
rotation matrix R and translation vector T ,
as defined in Eq.1. These parameters are cal-
culated using the UAV camera’s internal pa-
rameters K and the world coordinates Cgn of
a reference point on the Digital Surface Model
(DSM), along with its corresponding image
projection coordinates Pgn.

[R, T ] = fpnp(K,Cgn, Pgn) (1)

After determining the external parameters, we can convert the camera coor-
dinates Pvgt of any vehicle on the image to Cve the coordinates on the DSM, by
tracking the light path form vehicle.

Pvgt = K · (R · Cvgt + T ) (2)

4 Application

4.1 Perception Algorithm Enhancement

Vehicle detection in visual algorithms faces challenges from low-light conditions,
dynamic shadows, and headlight glare, which impair image quality and algorithm
performance.
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Fig. 12: YoloV8 inference results

Our dataset addresses these challenges by focusing on nighttime scenarios
and incorporating thermal imaging data. Thermal imaging, unaffected by low-
light conditions, reliably detects vehicles using heat signatures. The dataset also
ensures a balanced representation of larger vehicles, enriching training inputs.

We conducted rotating object detection experiments using sRGB and cIF
(Colorlize Infrared) data as inputs, testing SOTA methods (LSKNet [18], RTMDet-
R [2], and YoloV8-OBB [24]) on our dataset (75.0% training, 25.0% testing). The
training parameters were optimized using grid search on two 3090Ti GPUs. The
results, shown in Tab. 3, indicate that all networks perform better with cIF
than sRGB, enabling detection of some vehicles in darkness. Notably, as (b)
in Fig. 12 illustrated, networks trained on our data can detect vehicles in ex-
tremely low-light conditions even with sRGB input. Additionally, our dataset’s
vehicle annotations, based on Colorlize Infrared Images, prove more effective
than human annotations in low-light conditions, making it a robust nighttime
benchmark.

Table 3: Experiment results of SOTA Method (OBB) on TrafficNight. AP50 meansthe
AP at loU threshold of 0.5, AP75 means the AP at loU threshold of 0.75.

LSKNet-S* [18] RTMDet-R-I [2] Yolov8-obb [24]
AP50 AP75 AP50 AP75 AP50 AP75

sRGB 79.45 53.44 79.33 52.25 77.83 51.71
cIF 94.46 86.35 93.10 85.69 91.10 85.32

Another key strength is the precision of our annotations. In difficult condi-
tions, accurate annotations are essential for developing robust algorithms. Our
dataset, using both RGB and thermal data for labeling, guarantees annotations
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that are not only precise but also applicable to real-world situations. This metic-
ulous labeling, along with the dataset’s distinctive features, makes it a crucial
resource for advancing nighttime vehicle detection [6, 17, 26] and tracking algo-
rithms [25,27].

4.2 Calibration of CFM and Semi-Trailer Parameters

Fig. 13: Use tarcking result to cal-
ibrating of CFM. Vehicle speed
distribution in an intersection
scence.

Calibrating the parameters of Car Follow-
ing Models (CFM) is crucial for enhancing the
accuracy and reliability of traffic flow predic-
tions. Proper calibration aligns the model’s
behavior with real-world observations, lead-
ing to precise traffic simulations and forecasts,
essential for traffic management, infrastruc-
ture planning, and autonomous driving sys-
tems development. However, existing research
data often lack nighttime and low-visibility
environmental conditions. Our dataset ad-
dresses this gap with an emphasis on night-
time scenarios. Using our toolkit, developers
can extract vehicle trajectories from nighttime
videos, enabling the calculation of traffic flow parameters through various meth-
ods [13,14]. This nighttime data ensures comprehensive CFM parameter calibra-
tion, improving the model’s predictive accuracy in diverse lighting conditions.
The Fig.13 depicts vehicle speed distribution, derived from tracking results in
an intersection scene within the dataset . By using the tracking results, we can
calculate the speed distribution of different vehicle models, and use the aver-
age speed of each vehicle model as a parameter to set up CFM for traffic flow
simulation.

5 Conclusion

This dataset marks a significant advancement in Autopilot and surveillance sys-
tems, overcoming the constraints of existing datasets. It accurately represents
traffic scenarios, with a focus on semi-trailers and low-light conditions. The com-
bination of thermal infrared imaging and oriented bounding boxes greatly im-
proves object detection in varied lighting situations. Our automated annotation
framework, incorporating sophisticated algorithms and Meta’s SAM model, op-
timizes the labeling process. The use of the PNP algorithm for 3D coordinate
transformation and specialized annotations for articulated trucks further en-
hances its application in spatial analysis and trajectory prediction. However, we
acknowledge that thermal imaging sensors might introduce unknown noise un-
der extreme weather conditions. Additionally, our current data is collected from
tropical regions.
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In future work, we plan to supplement it with data from colder regions and
expand the dataset to include unstructured traffic scenarios and high-speed en-
vironments. This expansion aims to offer a more comprehensive resource for
researchers, increasing the dataset’s applicability in developing detection tech-
niques for complex traffic conditions. It will also address the growing demand for
diverse data in autonomous vehicle technology, maintaining the dataset’s critical
role in advancing the field.
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