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This supplementary material provides additional information on matching
matrix space (Sec. 1), more details of network design, experiments, and analysis
about 3D registration (Sec. 2), 2D-3D registration (Sec. 3), the derivation of the
simplified version loss Lsimple (Sec. 4) for denoising module gθ, and limitations
(Sec. 5).

1 Revisiting Doubly Stochastic Matrix.

We can represent the point clouds P and Q as two graphs, denoted as
G1 =

{
P,EP

}
and G2 =

{
Q,EQ

}
, where EP and EQ are respective edge

sets. The matching matrix between these two graphs is a one-to-one mapping
E ∈ {0, 1}N×M . In cases where N ̸= M(e.g.,N > M), we can introduce N −M
dummy points in Q to make a square matching matrix, also known as a per-
mutation matrix M =

{
A : A1N = 1N , AT 1N = 1N , A ≥ 0

}
. Then, we further

employ sinkhorn iterations [5] to convert this non-negative real matrix into a
“doubly stochastic” matrix, which has uniform row sum M and column sum
N [2]. In paticular, in our method, we use the focal loss function to approximate
the predicted full doubly stochastic matrix to a non-full ground truth matching
matrix; the matching scores of inlier correspondences are prone to be higher,
while those of outlier correspondences are prone to be lower. Consequently, we
can safely select the correspondences with the top-k highest matching scores as
our inlier correspondences.
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These two aspects serve as a significant motivation for our approach:

min
E∈M

N∑
i=1

M∑
j=1

Eij∗||WE(pi)−qj ||2 ≤ min
W∈SE(3)/R3N/R2N

N∑
i=1

M∑
j=1

ÊW
ij ∗||W (pi)−qj ||2

where WE is a warping generated by E and ÊW is a matching matrix computed
by the warping W.
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Fig. 1: Overview of our diffusion matching model in the 3D registration task. The top
half is the single-pass prediction head with the feature backbone, while the bottom
is our denoising module.

Algorithm 1 Training Diff-Reg in 3D Registration Task

Require: Point clouds P̂, Q̂ ∈ R3 and associated point features FP̂,FQ̂.
1: while not converged do
2: Sample E0 ∼ q(E0)
3: N ×M ← E0.shape
4: Sample t ∼ Uniform(1, ..., T )
5: ϵ ∼ N (0, 1)N×M

6: if Rigid then
7: Et ←

√
ᾱtE

0 +
√
1− ᾱtfϵ(ϵ), Ẽt = Et −Min(Et)

8: else
9: Et =

√
ᾱtE

0 +
√
1− ᾱtϵ0, Ẽt = Sigmoid(Et)

10: end if
11: Ê0 ← gθ(Ẽ

t, P̂, Q̂,FP̂,FQ̂)
12: Optimize Lt = Focal_loss(Ê0,E

0)
13: end while
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2 3D Registration Task

2.1 Implemantation Details

The framework is trained and tested with PyTorch on one NVIDIA RTX
3090 GPU.

The overview of our network architecture is shown in Fig. 1. We utilize the
joint training strategy for the single-pass prediction head and our denoising
module. As shown in Fig. 1, the denoising matching loss is for supervising our
denoising module, while the matching loss and warping loss are for supervising
the single-pass head. During inference, we use the feature backbone to generate
the superpoint features FP̂ and FQ̂ and treat them as fixed inputs in the reverse
denoising sampling process. The training and inference of denoising module gθ
are in Algorithm. 1 and Algorithm. 2.

Algorithm 2 Sampling by Diff-Reg in 3D Registration Task

Require: Initial matching matrix ET from backbone or white noise; Point clouds
P̂, Q̂ ∈ R3 and associated point features FP̂,FQ̂.

Ensure: Target matching matrix Ẽ0.
1: N ×M ← ET .shape
2: for t = T, ..., 1 do
3: zt ∼ N(0, 1)N×M if t > 1 else zt ← 0N×M

4: if Rigid then
5: Ẽt = Et −Min(Et)
6: end if
7: Ê0 ← gθ(Ê

t, P̂, Q̂,FP̂,FQ̂)

8: ϵt ← Ê0√
1−ᾱt

−
√
ᾱt√

1−ᾱt
Êt

9: σt ←
√

(1−αt−1)

1−αt

√
1− αt

αt−1

10: Êt−1 ← √αt−1Ê0 +
√

1− αt−1 − σ2
t ϵt + σtzt

11: end for
12: if Rigid then
13: Ẽ0 = Ẽ0 −Min(Ẽ0), Ẽ0 = fsinkhorn(Ẽ

0)
14: else
15: Ẽ0 = Sigmoid(Ẽ0)
16: end if

2.2 3DMatch/3DLoMatch Benchmark

Datasets. 3DMatch [26] is an indoor benchmark for 3D matching and registra-
tion. Following [8,13,16], we split it to 46/8/8 scenes for training/validation/testing.
The overlap ratio between scan pairs in 3DMatch/3DLoMatch is about > 30%/10%−
30%.
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Metrics. Following [8, 10, 16], we utilize three evaluation metrics to evaluate
our method and other baselines: (1) Inlier Ratio (IR): The proportion of accu-
rate correspondences in which the distance falls below a threshold (i.e., 0.1m)
based on the ground truth transformation. (2) Feature Matching Recall (FMR):
The percentage of matched pairs that have an inlier ratio exceeding a specified
threshold (i.e., 5%). (3) Registration Recall (RR): The fraction of successfully
registered point cloud pairs with a predicted transformation error below a certain
threshold (e.g., RMSE < 0.2).

Results. We compared our method with some state-of-the-art feature match-
ing based methods: FCGF [4], D3Feat [1], Predator [8], Lepard [13], GeoTr [16],
and RoITr [24]. The notations Diff-Reg(steps=1) and Diff-Reg(steps=20)
represent our denoising module with one or twenty reverse sampling steps, re-
spectively. As demonstrated in Table 1, our method Diff-Reg(steps=20) achieves
the highest registration recall on the 3DMatch benchmark. On the 3DLoMatch
benchmark, our method increases by 3% compared to our referenced baseline
Lepard [13].

Table 1: Quantitative results on the 3DMatch and 3DLoMatch benchmarks. The best
results are highlighted in bold, and the second-best results are underlined.

Method Reference 3DMatch 3DLoMatch
FMR(%) IR(%) RR(%) FMR(%) IR(%) RR(%)

FCGF ICCV2019 [4] 95.20 56.90 88.20 60.90 21.40 45.80
D3Feat CVPR2020 [1] 95.80 39.00 85.80 69.30 13.20 40.20

Predator CVPR2021 [8] 96.70 58.00 91.80 78.60 26.70 62.40
Lepard CVPR2022 [13] 97.95 57.61 93.90 84.22 27.83 70.63
GeoTR CVPR2022 [16] 98.1 72.7 92.3 88.7 44.7 75.4
RoITr CVPR2023 [24] 98.0 82.6 91.9 89.6 54.3 74.8

PEAL-3D CVPR2023 [25] 98.5 73.3 94.2 87.6 49.0 79.0
Diff-Reg(steps=1) 96.28 30.92 94.8 69.6 9.6 73.3
Diff-Reg(steps=20) 96.28 30.92 95.0 69.6 9.6 73.8

2.3 4DMatch/4DLoMatch Benchmark

Metrics. In this section, we give a detailed definition of the two metrics we
utilize to evaluate the quality of predicted matches. (1) Inlier ratio (IR): This
measure denotes the correct fraction in the correspondences prediction Kpred:

IR =
1

|Kpred|
Σ(p̂,q̂)∈Kpred

[||Wgt(p̂)− q̂||2 < σ] (1)

where || · ||2 is the Euclidean norm, Wgt(·) is the ground truth warping func-
tion, [·] is the Inverse bracket, and σ = 0.04m. (2) Non-rigid Feature Match-
ing Recall (NFMR): This measure is to compute the fraction of the ground
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truth correspondences (u, v) ∈ Kgt that can be successfully recovered from
the predicted correspondences Kpred. First, we construct the predicted corre-
spondences A = {p̂|(p̂, q̂) ∈ Kpred} and the associated sparse 3D flow fields
F = {q̂− p̂|(p̂, q̂) ∈ Kpred}. Then, for any source point u in Kgt, we can recover
the flow field for u by inverse distance interpolation:

Γ (u,A,F) = ΣAi∈N (u,A)
Fi||u−Ai||−1

2

ΣAi∈N (u,A)||u−Ai||−1
2

(2)

where N (·, ·) is k-nearest neighbors search with k = 3. After that, we define the
NFMR to measure the fraction of ground truth matches that we discovered
from Kpred:

NFMR =
1

|Kgt|
[||Γ (u,A,F)− (v − u)||2 < σ] (3)

Results. The definition of NFMR indicates that a higher NFMR value reflects
a higher quality of Kpred. We provide additional visualizations of the blended
motion based on the predicted correspondences in Fig. 2. The top three lines are
from 4DMatch, while the bottom three lines are from the 4DLoMatch dataset.
The results in the bottom three lines demonstrate that our denoising module can
effectively handle scenes with "large deformations + low overlapping," whereas
the top three lines show that our method excels in registering asymmetric ob-
jects.

2.4 Ablation Study and Discussion of 3D Registration Task.

Capability of Escaping from Local Minima. The DDPM framework is
specifically designed to remove noise from perturbed samples. Typically, we be-
gin with a baseline method that provides an initial solution, which can then
be further refined to achieve better performance. To demonstrate that our de-
noising network has indeed learned the posterior distribution for the denoising
module, we conducted an ablative experiment. In this experiment, we initiated
reverse sampling from the solution obtained by the single-pass prediction head
or from Gaussian white noise. In Table 2, the ET

Backbone results demonstrate that
our denoising network can overcome local minima produced by the single-pass
prediction head.

Reverse Sampling Steps. Our approach considers the denoising module as
an optimizer that searches for the optimal matching matrix. We argue that in-
creasing the number of search iterations may lead to better solutions. To validate
this hypothesis, we experimented to investigate the impact of iterative search-
ing steps on the performance. We ran the reverse sampling step from 1 to 20
iterations. As shown in Table. 3, the registration recall of our diffusion match-
ing model increases as the number of sampling steps grows. The results prove
that the reverse sampling process can reach a better solution by increasing the
number of search steps.
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(a) GeoTR [16] (b) RoITr [24] (c) Diff-Reg(steps=20)

Fig. 2: More qualitative results of non-rigid registration in the 4DMatch/4DLoMatch
benchmark. The blue and yellow colors denote the source and target point cloud, re-
spectively. The green and red lines indicate whether the threshold accepts the predicted
deformable flow from the source points. The deformable registration is built by Graph-
SCNet [17]. Zoom in for details.

Table 2: ET
Backbone denote the starting point where ET is generated by the single-pass

prediction head. ET
Gaussian denote the starting point where ET is sampling from the

Gaussian white noise N(0, 1)N×M . zt = 0 denotes deterministic sampling, while zt ̸= 0
denotes the random sampling.

zt ̸= 0 zt = 0

3DMatch 3DLoMatch 3DMatch 3DLoMatch
FMR IR RR FMR IR RR FMR IR RR FMR IR RR

ET
Backbone 96.12 31.07 94.8 69.79 9.71 73.8 96.30 30.92 94.9 69.71 9.51 73.4

ET
Gaussian 96.14 31.07 94.6 69.73 9.72 73.8 96.28 30.93 94.8 69.62 9.56 73.3

zt ̸= 0 zt = 0

4DMatch 4DLoMatch 4DMatch 4DLoMatch
NFMR IR NFMR IR NFMR IR NFMR IR

ET
Backbone 88.38 86.38 75.94 67.64 88.34 86.36 76.22 67.82

ET
Gaussian 88.40 86.40 76.09 67.73 88.72 86.72 76.48 68.16
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Table 3: The ablation study of the iterative steps of reverse sampling.

Sampling Steps RR NFMR/IR
3DMatch 3DLoMatch 4DMatch 4DLoMatch

1 94.8 73.3 85.34/83.93 73.11/65.26
10 94.8 73.4 87.99/86.07 75.46/67.15
20 95.0 73.8 88.39/86.64 76.16/67.82

Table 4: Comparison of time cost in the reverse sampling step. The best results are
highlighted in bold.

Method 3DMatch 3DLoMatch
RR Time(sec.) RR Time(sec.)

GeoTR [16] 92.0 0.296 74.0 0.284

GeoTR. + PEAL [25] 1-step 93.7 0.663 77.8 0.642
KPConv. + Diff-Reg 1-step 94.8 0.048 73.2 0.052

GeoTR. + PEAL [25] 5-step 94.0 2.131 78.5 2.074
KPConv. + Diff-Reg 5-step 94.8 0.182 73.7 0.194

The Lightweight Design of Denoising Module. Due to the lightweight
design, our denoising network showcases a notable speed enhancement compared
to other concurrent diffusion-based methods for rigid point cloud registration.
This efficiency improvement allows our approach to conduct more denoising
iterations. We have included a detailed list displaying the time costs (refer to
Table 4) associated with the reverse denoising steps and comparisons to recent
studies. Our method achieves competitive results on the 3DMatch benchmark
while maintaining fast processing speeds.

Robustness to Noise and Outliers. To assess the robustness of our method,
we conducted noise resilience experiments on the 4DLoMatch dataset by intro-
ducing various levels of Gaussian noise [0.002, 0.005, 0.05, 0.1]. The correspond-
ing IR/NFMR results [67.8%/76.2%, 67.7%/76.1%, 66.9%/75.4%, 63.4%/70.4%]
demonstrate the resilience of our approach to noise. Additionally, we analyzed the
performance of our method across different overlap ratios. Points situated in the
non-overlapping region can be considered as outliers. The evaluation results il-
lustrated in Fig.3 reveal that our methods display consistent inlier ratio (IR) and
registration precision (NFMR) on both the 4DMatch and 4DLoMatch datasets
across varying outlier ratios. By leveraging our diffusion-enhanced matching ma-
trix, many salient super points can be effectively identified for robust registration.
This is further supported by the high NFMR scores achieved on the 4DLoMatch
dataset, even with high outlier ratios (i.e., low overlapping ratio).
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Fig. 3: Stability in the presence of outliers. Left: 4DMatch. Right: 4DLoMatch. Zoom
in for details.

Trade-off between Quality and Efficiency. In indoor and outdoor scenes,
the number of sensor scan points can reach several tens of thousands. To handle
this large amount of data, we employ a down-sampling strategy to obtain coarse-
level super points and exploit the point-to-node grouping [23] to maintain dense-
to-coarse mapping relations. For the 3D registration task, we select the second
to last layer of the KPConv backbone [18] as our super points. The number of
coarse points in this layer can be as high as more than 1k, which is close to the
GPU memory limit of the RTX3090 during the training stage. In the 2D-3D
registration task, we take the coarsest points/pixels in the last down-sampling
layer of KPConv and ResNet [7], where the coarsest super points or superpixels
numbers are up to several hundred. We choose these two different coarse levels
for a trade-off between quality and efficiency.

Algorithm 3 Training Diff-Reg in 2D-3D Registration Task

Require: Coarse level image and points X̂ ∈ RĤ×Ŵ×3, Q̂ ∈ R3 and associated fea-
tures FX̂,FX̂

dino,F
Q̂.

1: while not converged do
2: Sample E0 ∼ q(E0)
3: N ×M ← E0.shape
4: Sample t ∼ Uniform(1, ..., T )
5: ϵ ∼ N (0, 1)N×M

6: Et ←
√
ᾱtE

0 +
√
1− ᾱtfϵ(ϵ), Ẽt = Et −Min(Et)

7: Ê0 ← gθ(Ẽ
t, X̂, Q̂,FX̂,FX̂

dino,F
Q̂)

8: Optimize Lt = Focal_loss(Ê0,E
0)

9: end while
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Fig. 4: Overview of Our diffusion matching model framework for 2D-3D Registration
Task: The top half is the single-pass prediction head with the backbones, while
the bottom is our denoising module. The transformer in our denoising module utilizes
the FX̂

dino, F
X̂, FQ̂, X̂, Q̂, and DX̂ as inputs, while "patch matching" module in the

single-pass head takes FX̂
dino, F

X̂, FQ̂, X̂, and Q̂ as inputs. Please zoom in for details.

Algorithm 4 Sampling by Diff-Reg in 2D-3D Registration Task

Require: Initial matching matrix ET from backbone or white noise; Coarse level image
and points X̂ ∈ RĤ×Ŵ×3, Q̂ ∈ R3 and associated features FX̂,FX̂

dino,F
Q̂.

Ensure: Target matching matrix Ẽ0).
1: N ×M ← ET .shape
2: for t = T, ..., 1 do
3: zt ∼ N (0, 1)N×M if t > 1 else zt ← 0N×M

4: Ê0 ← gθ(Ẽ
t, X̂, Q̂,FX̂,FX̂

dino,F
Q̂)

5: ϵt ← Ê0√
1−ᾱt

−
√
ᾱt√

1−ᾱt
Êt

6: σt ←
√

(1−αt−1)

1−αt

√
1− αt

αt−1

7: Êt−1 ← √αt−1Ê0 +
√

1− αt−1 − σ2
t ϵt + σtzt

8: end for
9: Ẽ0 = fsinkhorn(Ẽ

0)



10 Wu et al.

3 2D-3D Registration Task

3.1 Implemantation Details

The overview of our framework for the 2D-3D registration task is illustrated
in Fig.4. We use Diff-Reg(dino) to denote the single-pass prediction head
trained solely. Diff-Reg(dino/backbone) refers to the single-pass prediction
head that is jointly trained with our denoising module gθ. Diff-Reg(dino/steps=*)
denotes that the "Patch Matching" module in the framework is replaced with
our denoising module (with * steps of reverse sampling). The superpixel features
FX̂, FX̂

dino, and superpoint features FQ̂ are treated as fixed inputs of denoising
module gθ in each reverse sampling step. For all variants of Diff-Reg(*), we ex-
clude the three scales "6 × 8, 12 × 16, 24 × 32" (refer to section 4.1 in [11])
after the coarsest level of ResNet and preserve only "24 × 32" resolution. Then
the visual features from DINOv2 [15] are combined with the coarsest level fea-
tures that are upsampled to the finest level in ResNet. The training and reverse
sampling process are listed in Algorithm.3 and Algorithm.4

3.2 Metrics

In this section, following [11], we give a detailed definition of three evalu-
ation protocols: (1) Inlier Ratio (IR), the ratio of pixel-point matches whose
3D distance is under a certain threshold (i.e., 5cm). (2) Feature Matching Re-
call (FMR), the ratio of image-to-point-cloud pairs whose inlier ratio is above a
certain threshold (i.e., 10%). (3) Registration Recall (RR), the ratio of image-
to-point-cloud pairs whose RMSE is under a certain threshold (i.e., 10cm).

3.3 Results

Following [11], we compare our diffusion matching model with FCGF [4],
P2-Net [20], Predator [8], 2D3D-MATR [11], and FreeReg [21]. As demonstrated
in Table 5, our method outperforms 2D3D-MATR [11] and FreeReg [21] signif-
icantly. The feature matching recall of Diff-Reg(dino/backbone) achieving the
best performance proves that our denoising module’s training brings implicit
data augmentation. The best recall performance of our Diff-Reg(dino/steps=1)
indicates that our denoising module seeks salient combinational correspondences
crucial for successful registration. We provide more visualizations in Fig. 5 to
illustrate our method’s effectiveness.
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(a) Diff-Reg(dino) (b) Diff-Reg(dino/steps=10)

Fig. 5: More qualitative results on the RGB-D Scenes V2 benchmark [9]. The green/red
color indicates whether the matching score is accepted based on a threshold value. Zoom
in for details.

Table 5: Evaluation results on RGB-D Scenes V2 [11]. The best results are highlighted
in bold, and the second-best results are underlined.

Model Scene-11 Scene-12 Scene-13 Scene-14 Mean

Mean depth (m) 1.74 1.66 1.18 1.39 1.49

Inlier Ratio↑

FCGF-2D-3D [4] 6.8 8.5 11.8 5.4 8.1
P2-Net [4] 9.7 12.8 17.0 9.3 12.2

Predator-2D-3D [8] 17.7 19.4 17.2 8.4 15.7
2D3D-MATR [11] 32.8 34.4 39.2 23.3 32.4

FreeReg [21] 36.6 34.5 34.2 18.2 30.9

Diff-Reg(dino) 38.6 37.4 45.4 31.6 38.3
Diff-Reg(dino/backbone) 44.9 49.5 38.3 33.1 41.4
Diff-Reg(dino/steps=1) 47.5 48.9 32.8 22.4 37.9
Diff-Reg(dino/steps=10) 47.2 48.7 32.9 22.4 37.8

Feature Matching Recall↑

FCGF-2D-3D [4] 11.10 30.40 51.50 15.50 27.10
P2-Net [4] 48.60 65.70 82.50 41.6 59.60

Predator-2D-3D [8] 86.10 89.20 63.90 24.30 65.90
2D3D-MATR [11] 98.60 98.00 88.70 77.90 90.80

FreeReg [21] 91.90 93.40 93.10 49.60 82.00

Diff-Reg(dino) 100. 100. 89.70 81.9 92.9
Diff-Reg(dino/backbone) 100. 100. 92.8 91.2 96.0
Diff-Reg(dino/steps=1) 100. 100. 88.7 76.5 91.3
Diff-Reg(dino/steps=10) 100. 100. 88.7 77.0 91.4

Registration Recall↑

FCGF-2D-3D [4] 26.4 41.2 37.1 16.8 30.4
P2-Net [4] 40.3 40.2 41.2 31.9 38.4

Predator-2D-3D [8] 44.4 41.2 21.6 13.7 30.2
2D3D-MATR [11] 63.9 53.9 58.8 49.1 56.4

FreeReg+Kabsch [21] 38.7 51.6 30.7 15.5 34.1
FreeReg+PnP [21] 74.2 72.5 54.5 27.9 57.3

Diff-Reg(dino) 87.5 86.3 63.9 60.6 74.6
Diff-Reg(dino/backbone) 79.2 86.3 75.3 71.2 78.0
Diff-Reg(dino/steps=1) 98.6 100. 87.6 66.8 88.3
Diff-Reg(dino/steps=10) 98.6 96.1 83.5 63.7 85.5

Diff-Reg(dino/backboneepnp) 95.8 96.1 88.7 69.0 87.4
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3.4 Denoising Module gθ

In this section, we elucidate the functionality of our denoising module. By
leveraging the recent state-of-the-art depth estimation model DepthAnything [22],
we consider this non-metric depth as a constant input for each image. Diff-
Reg(dino/backboneepnp) (in Table.5) utilizes the EPnP solver [12] to deter-
mine the transformation. Its high recall provides evidence that the implicit data
augmentation from training our denoising module indeed enhances the image
backbone and the point cloud backbone. However, the EPnP solver’s vulnera-
bility to outliers during inference hinders its direct application in the reverse
sampling process. Integrating the more robust PnP solver [3] into our denoising
module could potentially remove the need for the depth estimation model. This
enhancement is an aspect we aim to explore in future research.

During inference, each reverse sampling step takes Et−1 from the previous
step to provide initial correspondences. We then use either weighted SVD or the
EPnP solver to calculate the transformation Γt−1 that maps the point cloud Q̂
into the image plane space. Subsequently, we apply Γt−1 to Q̂ to get warped
Q̂Γt−1

. Next, we use Q̂Γt−1

, X̂, FX̂
dino, F

X̂, and FQ̂ as inputs of the transformer
in gθ to compute the updated image features and point features.

4 Derivation of Lsimple

For latent variable E1:T , the Evidence Lower Bound (ELBO) for E0 with
distribution q formulates as:

log(pθ(E
0)) ≥ Eq(E1:T |E0)

[
log

(
pθ(E

0:T )

q(E1:T |E0)

)]
= Lvb(E

0)

= Eq(E1|E0)

[
log(pθ(E

0|E1))
]
+ Eq(ET |E0)

[
log(

pθ(E
T )

q(ET |E0)
)

]
+

T∑
t=2

Eq(Et,Et−1|E0)

[
pθ(E

t−1|Et)

q(Et−1|Et,E0)

]

= Cθ(E
T ,E1,E0)−

T∑
t=2

Eq(Et|E0)

[
DKL

(
q(Et−1|Et,E0)||pθ(Et−1|Et)

)]︸ ︷︷ ︸
denoising matching term

.

The posterior distribution for q(Et−1|Et,E0) is defined as:

q(Et−1|Et,E0) =
q(Et|Et−1,E0)q(Et−1|E0)

q(Et|E0)

∝ N(Et−1;

√
αt(1− ᾱt−1)E

t +
√
ᾱt−1(1− αt)E

0

1− ᾱt︸ ︷︷ ︸
µq(Et,E0)

,
(1− αt)(1− ᾱt−1)

1− ᾱt
I︸ ︷︷ ︸

Σq(t)

).
(4)
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We propose a lightweight denoising network gθ(E
t) seek to predict E0 from any

noisy one Et, the optimization object is simplified to:

argmin
θ

DKL

(
q(Et−1|Et,E0)||pθ(Et−1|Et)

)
= argmin

θ
DKL

(
N (Et−1, µq, Σq(t))||N (Et−1, µθ, Σq(t))

)
= argmin

θ

1

2σ2
q (t)

ᾱ(1− αt)
2

(1− ᾱ)2

[∣∣∣∣gθ(Et)−E0
∣∣∣∣2
2

]
≡ − argmin

θ
Eq(E0)

[
Eq(Et|E0)logpθ(E

0|Et)
]

(5)

5 Challenges and Limitations

As illustrated in Fig. 6, deformable registration encounters various challenges,
including large motion, low overlap, sparse overlapping regions, and local non-
rigid motion (i.e., drastic non-isometric deformation, such as the dress worn by
the dancer in the last line of Fig. 6). Although our diffusion matching model is
intended to address both rigid and deformable registration tasks, it may have in-
herent limitations. The transformer in our denoising module and the associated
KPConv and ResNet backbone follow a relatively generic design. To overcome
these challenges, we acknowledge the importance of integrating more robust fea-
ture embedding techniques [16,24] into our feature backbone for enhancements.
Furthermore, incorporating physics priors into our denoising module could prove
beneficial in addressing specific issues such as non-isometrical deformation. More
failed cases on the 4DMatch and 4DLoMatch can be seen in Fig.7 and Fig.8.
These failed cases reveal that the non-rigid registration task is a very tough
problem that deserves our further effort to improve.

This paper did not explore the difficult case of large variabilities in shapes
(e.g., the human case). However, we conducted an experiment in which we di-
rectly generalized our method to non-isometric human cases (point cloud pair
borrowed from [14]). As shown in Fig. 9, our method can potentially achieve re-
liable correspondence estimation on human cases with substantial non-isometric
deformations, thanks to our effective correspondence denoising mechanism. We
plan to extend our method to the human case in our future research.

The other challenging scenario involves an extremely low overlapping region,
relying on discriminative local point features. The suboptimal performance of our
method on the 3DLoMatch benchmark (10% to 30% overlap ratio) may be due
to the absence of integrated geometric embeddings, as discussed in [6,16,19,24],
within the feature backbone or transformer of our denoising module. We plan to
complete this improvement in our future work.

Although we achieved successful 2D-3D registration on the indoor dataset
RGB-D Scenes V2 [11], 3D registration heavily relies on the geometric features
of point clouds. The DepthAnything model [22] may encounter challenges in
accurately estimating depth at greater distances. Furthermore, the model’s re-
liance on multiple outdoor datasets for pre-training limits its direct applicability
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in outdoor registration tasks due to potential leaks in ground truth depth labels.
Our upcoming research will address the issue by replacing the weighted SVD
with the EPnP solver. This allows us to conduct registration without relying on
the DepthAnything model [22], using only point cloud and image pairs. Please
pay attention to our subsequent related research work.

(a) GeoTR [16] (b) RoITr [24] (c) Diff-Reg(steps=20)

Fig. 6: Failure cases of our diffusion matching model on 4DMatch/4DLoMatch bench-
mark. The blue and yellow colors denote the source and target point cloud, respectively.
The green and red lines indicate whether the threshold accepts the predicted deformable
flow from the source points. The deformable registration is built by GraphSCNet [17].
Zoom in for details.
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Fig. 7: More failure cases on the 4DMatch benchmark. The blue and yellow colors
denote the source and target point cloud, respectively. The green and red lines indicate
whether the threshold accepts the predicted deformable flow from the source points.
The deformable registration is built by GraphSCNet [17]. Zoom in for details.
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Fig. 8: More failure cases on the 4DLoMatch benchmark. The blue and yellow colors
denote the source and target point cloud, respectively. The green and red lines indicate
whether the threshold accepts the predicted deformable flow from the source points.
The deformable registration is built by GraphSCNet [17]. Zoom in for details.

Fig. 9: The correspondences estimated by our model trained on the 4DMatch dataset.
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