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Abstract. Establishing reliable correspondences is essential for 3D and
2D-3D registration tasks. Existing methods commonly leverage geomet-
ric or semantic point features to generate potential correspondences.
However, these features may face challenges such as large deformation,
scale inconsistency, and ambiguous matching problems (e.g., symmetry).
Additionally, many previous methods, which rely on single-pass predic-
tion, may struggle with local minima in complex scenarios. To miti-
gate these challenges, we introduce a diffusion matching model for ro-
bust correspondence construction. Our approach treats correspondence
estimation as a denoising diffusion process within the doubly stochas-
tic matrix space, which gradually denoises (refines) a doubly stochas-
tic matching matrix to the ground-truth one for high-quality correspon-
dence estimation. It involves a forward diffusion process that gradually
introduces Gaussian noise into the ground truth matching matrix and a
reverse denoising process that iteratively refines the noisy one. In par-
ticular, we deploy a lightweight denoising strategy during the inference
phase. Specifically, once points/image features are extracted and fixed,
we utilize them to conduct multiple-pass denoising predictions in the
reverse sampling process. Evaluation of our method on both 3D and 2D-
3D registration tasks confirms its effectiveness. The code is available at
https://github.com/wuqianliang/Diff-Reg.

1 Introduction

The 3D registration problem, encompassing point cloud registration and
image-to-point cloud registration, is critical in various computer vision and com-
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puter graphics applications, including 3D reconstructions, localization, AR, and
robotics. These applications usually necessitate precise correspondences (match-
ings) between point cloud pairs or image-to-point cloud pairs for reliable rigid
transformation or non-rigid deformation estimations.

The goal of achieving accurate matchings is to identify the most significant
correspondences [4, 66, 70] with local or global semantic or geometric consis-
tency [25, 40, 49, 53]. However, this objective would be challenging, especially in
situations with globally ambiguous matching patches, large deformation, scale
inconsistency, and low overlapping problems.

Recently, deep learning-based feature matching methods [19,25,28,34,40,62,
63, 65, 66] have achieved significant progress in point cloud registration by em-
ploying UNet-like [17,45] backbones to extract superpoints (subsampled patches)
and their associated features. These methods typically compute an initial match-
ing matrix between superpoints in the feature space. Additionally, outlier rejec-
tion techniques [3, 10, 20, 60, 69] propose specialized methodologies to identify
improved inlier correspondences based on certain semantic or geometric pri-
ors [14, 39, 53, 56–59, 70]. However, these methods usually rely on a single-pass
prediction of correspondences, which may not always yield optimal results.

In this paper, drawing inspiration from the diffusion model [2, 18,43,48], we
introduce a diffusion matching model in the doubly stochastic matrix space [7].
By training a diffusion model with the doubly stochastic matrix space as a fea-
sible solution domain, we effectively learn a generalized optimization algorithm
specifically designed for the doubly stochastic matrix space, adapted to the char-
acteristics of the dataset or scene. Our diffusion matching model consists of two
main components: a forward diffusion process and a reverse denoising process,
which operates within the matrix space. The forward diffusion process gradually
introduces Gaussian noise into the ground truth matching matrix, while the re-
verse denoising process iteratively refines the noisy matrix to the optimal one.
For efficiency, we propose a novel and generalized lightweight denoising module
that can be adapted to 2D-3D and 3D registration tasks. Finally, we establish
a specific variational lower bound associated with our diffusion matching model
in the doubly stochastic matrix space and a simplified version of the objective
function to train our framework effectively.

Why diffused in the doubly stochastic matrix space? Tasks like image
or point cloud registration face challenges like scale inconsistency, large defor-
mation, ambiguous matching, and low overlapping. Several state-of-the-art stud-
ies [3, 33, 40, 53, 54, 62, 69] have attempted to encode high-order combinational
geometric consistency. However, these manually crafted designs may not encom-
pass all potential effective strategies for various challenging scenarios (e.g., large
deformation). The diffusion process in the matrix space is a practical data aug-
mentation technique that can generate additional training samples incorporating
any-order combinational geometric consistency, offering a promising approach to
address these challenges. A doubly stochastic matching matrix is, in fact, a dual-
directional mapping. It offers a one-to-one mapping relation constraint for any
kind of two-view (and any two-modality) matching/registration problem. The
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diffusion process within the matching matrix space naturally provides a broader
range of training samples. Furthermore, the many-to-one relationship between
the matching matrix space and the warping operation space can facilitate our
method in learning a more optimal sampling path used in the reverse sampling
process, in contrast to methods that conduct diffusion in SE(3) space.

Our approach presents several advantages compared to previous registration
methods. The forward diffusion process generates diverse training samples, act-
ing as data augmentation for the feature backbone and single-pass prediction
head. The drawback of single-pass prediction methods is that if correspondences
are predicted in a local minimum, subsequent outlier rejection or post-processing
steps may face significant challenges. In contrast, our reverse denoising process,
guided by the posterior distribution, allows for escaping from local minima, en-
abling the process to initiate from either white noise or any initial solution.
Another enhancement is eliminating the feature backbone during the reverse de-
noising process at inference time. This streamlined design enables the denoising
sampling process to explore a broader solution space (e.g., the matrix space),
increasing diversity and facilitating more iterative steps. The findings from our
empirical experiments support these claims.

Our contributions are summarized as follows:

– To our knowledge, we are the first to deploy the diffusion model in the doubly
stochastic matrix space for iteratively exploring the optimal matching matrix
through the reverse denoising sampling process.

– The lightweight design of our reverse denoising module results in faster con-
vergence in the reverse sampling process. Moreover, our framework can effec-
tively utilize reverse denoising sampling in a noise-to-target fashion or start
from a highly reliable initial solution.

– We conducted comprehensive experiments on the real-world 4DMatch [29],
3DMatch [68], and RGB-D Scenes V2 [25, 68] datasets to validate the ef-
fectiveness of our diffusion matching model on 3D registration and 2D-3D
registration task.

2 Related work

2.1 3D and 2D-3D Registration

The registration problem estimates the transformation between the point
cloud or image-to-point-cloud pair. Recently, there have been significant ad-
vancements in feature learning-based methods for point cloud registration. Many
of these state-of-the-art approaches, such as [4,19,40,64,65,67], leverage a back-
bone architecture similar to KPConv [45] to downsample points and generate
features with larger receptive fields. To further enhance the performance of these
methods, they integrate prior knowledge and incorporate learnable outlier re-
jection modules. For instance, GeoTR [40] introduces angle-wise and edge-wise
embeddings into the transformer encoder, while RoITr [66] integrates local Point
Pair Features (PPF) [13] to improve rotation invariance.
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In addition to feature learning-based methods, another category of regis-
tration methods focuses on outlier rejection of candidate correspondences. For
instance, PointDSC [3] utilizes a maximum clique algorithm in the local patch
to cluster inlier correspondences. SC2-PCR [10] constructs a second-order con-
sistency graph for candidate correspondences and theoretically demonstrates its
robustness. Building on the second-order consistency graph proposed by SC2-
PCR [10], MAC [69] introduces a variant of maximum clique algorithms to gen-
erate more reliable candidate inlier correspondences. Moreover, methods such
as PEAL [67] and DiffusionPCR [9] employ an iterative refinement strategy to
enhance the overlap prior information obtained from a pre-trained GeoTr [40].

Recently, significant advancements have been made in 2D-3D registration
methods [24, 25, 50, 51]. These methods face similar challenges to 3D registra-
tion tasks, with the additional complexity of scale inconsistency caused by the
perspective projection of images. To address the issue of scale inconsistency,
we propose the incorporation of a pre-trained feature backbone, DINO v2 [36],
which offers superior multiscale features. Additionally, implementing diffused
data augmentation in our diffusion matching model can enhance the ability to
identify prominent combinational and consistent correspondences.

2.2 Diffusion Models for 3D Registration

Recently, the diffusion model [18,43,44] has made great development in many
fields, including human pose estimation [15,42], camera pose estimation [52], ob-
ject detection [8], segmentation [5, 16]. These developments have been achieved
through a generative Markov Chain process based on the Langevin MCMC [37]
or a reversed diffusion process [43]. Recognizing the power of the diffusion model
to iteratively approximate target data distributions from white noise using hier-
archical variational decoders, researchers have started applying it to point cloud
registration and 6D pose estimation problems.

The pioneer work [46] that applied the diffusion model in the SE(3) space was
accomplished by utilizing NCSN [44] to learn a denoising score matching func-
tion. This function was then used for reverse sampling with Langevin MCMC in
SE(3) space to evaluate 6DoF grasp pose generation. Additionally, [21] imple-
mented DDPM [18] in the SE(3) space for 6D pose estimation by employing a
surrogate point cloud registration baseline model. Similarly, GeoTR [40] served
as a denoising module in [9], gradually denoising the overlap prior given by the
pre-trained model, following a similar approach to PEAL [67].

3 The proposed Approach

3.1 Problem Formulation

Given source point clouds P ∈ RN×3 and target point clouds Q ∈ RM×3, the
3D registration task is to find top-k correspondences C from matching matrix
E and to conduct warping transformation (Γ ∈ SE(3) for rigid transformations,
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and 3D flow fields for non-rigid transformations) to align the overlap region of P
and Q. In the context of 2D-3D registration, with a source image X ∈ RH×W×2

and target point cloud Y ∈ RM×3, the standard pipeline involves determining
the top-k correspondences C = {(xi,yj)|xi ∈ R2,yj ∈ R3}, and then estimating
the rigid transformation Γ ∈ SE(3) by minimizing the 2D projection error:

min
Γ∈SE(3)

∑
xi,yj∈C

||Proj(Γ(yj),K)− xi||2

where K represents the camera intrinsic matrix, and Proj(·, ·) denotes the pro-
jection function from 3D space to the image plane.
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Fig. 1: Overview of our diffusion matching model. The forward diffusion process is
driven by the Gaussian transition kernel q(Et|Et−1), which has a closed form q(Et|E0).
The denoising model gθ(Et) learns a reverse denoising gradient that points to the target
solution E0. During inference, in the reverse sampling process, we utilize the predicted
Ê0 and DDIM [43] to sampling Et−1.

3.2 Overview

Our framework comprises a feature backbone (e.g., KPConv [45]/ResNet [17])
and a diffusion matching model [18]. In the 3D registration task, the KPConv
backbone takes source point clouds P and target Q as input and performs down-
samplings to obtain the superpoints P̂ and Q̂, along with their associated fea-
tures FP̂ ∈ RN×d and FQ̂ ∈ RM×d. In the 2D-3D registration task, a ResNet [17]
with FPN [32] downsamples the image X ∈ RH×W×2 (in image-point-coud pair
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(X,Q)) to the superpixels X̂ ∈ RĤ×Ŵ×2 and give the associated image feature
FX̂ ∈ RĤ×Ŵ×d, while the target point cloud Q is processed by a KPConv back-
bone, similar to the 3D registration task. Additionally, a depth map DX̂ and new
superpixel feature FX̂

dino for superpixels X̂ are given by the pre-trained depth
estimation model [61] and visual feature backbone DINO v2 [36], respectively.

Our diffusion module gθ (refer to Section 3.4) takes these superpoints (or su-
perpixels) and associated features as inputs. We employ one loss for our denoising
module and another for the single-pass prediction head during the training stage.
During inference, we utilize gθ in the reverse sampling process to predict the tar-
get matching matrix E0 from any noisy one and exploit DDIM [43] to sample a
more accurate matching matrix. The denoising module gθ primarily consists of
four components: (1) Sinkhorn Projection [12], (2) Weighted SVD [6], (3) Warp-
ing Function (4) Denoising Transformer Network [47] and (5) Matching function.
More details of our framework can be found in section 3.4 and the appendix.

3.3 Diffusion Model in Doubly Stochastic Matrix Space

In this section, we introduce the construction of our diffusion matching model
for generating the matching matrix between two scans. We denote the matching
matrix as E ∈ {0, 1}N×M , and we assume E is defined in a nonsquare “doubly
stochastic” matrix space M (refer to Appendix).
Forward Diffusion Process. As mentioned in DDPM [18], the forward diffu-
sion process is fixed to a Markovian chain, denoted as q(E1:T |E0), which gen-
erates a sequence of latent variables Et by gradually injecting Gaussian noise
into the ground truth matching matrix E0. The diffused matching matrix Et at
arbitrary timestamp t has a closed form:

Et ∼ q(Et|E0) = N (Et;
√
ᾱE0, (1− ᾱ)I)). (1)

where the added noise over each element of the matrix is sampled indepen-
dently and identically distributed (i.i.d.). However, this diffused Et ∼ q(Et|E0)
is a continuous matrix in RN×M , which is outside the feasible solution space
of matching matrices (i.e., doubly stochastic matrix manifolds). To address this
issue, we apply the following projection to confine the matrix Et to the feasible
solution space M:

(Rigid) Et =
√
ᾱtE

0 +
√
1− ᾱtfϵ(ϵ0), Ẽt = Et −Min(Et),

(Deformable) Et =
√
ᾱtE

0 +
√
1− ᾱtϵ0, Ẽt = Sigmoid(Et),

Ẽt = fsinkhorn(Ẽ
t)

(2)

where the fsinkhorn operation is from the Sinkhorn algorithm [12] and fϵ =
(ϵ%1)(abs(ϵ)/ϵ)η. We empirically set η = 1.5 and ϵ0 ∼ N (ϵ; 0, I).
Reverse Denoising Sampling Process. Given a diffusion Markovian chain
E0 → E1 → ... → ET , we need to learn a reverse transition kernel with the
posterior distribution q(Et−1|Et,E0) to sample the reverse Markovian chain
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ET → ET−1 → ... → E0 from a white noise ET to achieve the target matching
matrix. The posterior distribution q(Et−1|Et,E0) conditioned on E0 and Et is
defined as:

q(Et−1|Et,E0) =
q(Et|Et−1,E0)q(Et−1|E0)

q(Et|E0)

∝ N (Et−1;

√
αt(1− ᾱt−1)E

t +
√
ᾱt−1(1− αt)E

0

1− ᾱt︸ ︷︷ ︸
µq(Et,E0)

,
(1− αt)(1− ᾱt−1)

1− ᾱt
I︸ ︷︷ ︸

Σq(t)

).
(3)

To effectively train our denoising network, we derive the variational lower
bound of the log-likelihood of the training samples E0:

logp(E0) ≥ EE1:T∼q(E1:T |E0)

[
log

(
pθ(E

0:T )

q(E1:T |E0)

)]
∝ Eq

[
T∑

t=2

log(pθ(E
0|Et))

]
.(4)

Based on the derivation of Eqn. (4), we can further simplify the variational lower
bound above to train pθ(E

0|Et):

Lsimple = −Eq(E0)

[
T∑

t−1

Eq(Et|E0)logpθ(E
0|Et)

]
. (5)

3.4 The Lightweight Denoising Module gθ

This section outlines the architecture of the lightweight denoising module gθ.
In 3D registration tasks, gθ take the superpoints P̂, Q̂ with associated points
features FP̂, FQ̂ as the inputs in the reverse sampling process. Similarly, in 2D-
3D registration tasks, the inputs of gθ are superpixels X̂ and superpoints Q̂ with
associated features {FX̂,DX̂,FX̂

dino,F
Q̂}. At inference time, gθ inputs a noised

matching matrix Et and outputs a predicted target matching matrix Ê0.
We define the denoising module gθ by sequentially stacking five components

as a differentiable layer:
Sinkhorn Projection: fsinkhorn(·). To constrain the matching matrix Et within
the doubly stochastic matrices manifolds, we utilize the SinkHorn [12] iterations
to project Et. We treat this operation as a key role in our framework rather than
a post-processing in other methods.
Weighted SVD: soft_procrustes(·, ·, ·). Given top-k confident correspon-
dences κ, we utilize the weighted SVD algorithm [1] (differentiable) to compute
the transformation R, t in a closed form:

H =
∑

(i,j)∈C

Ẽ(i, j)p̂iq̂
⊤
j , H = UΛV⊤,

R = Udiag(1, 1,det(UV⊤))V,

t =
1

|κ|

 ∑
(i,·)∈κ

p̂i −R
∑

(·,j)∈κ

q̂j


(6)
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where (p̂i, q̂j) is a superpoint correspondences. In the 2D-3D registration task,
we first project a superpixel depth map DX̂ to a point cloud PX̂

D using camera
intrinsic. Then we utilize this SVD decomposition to compute R, t with PX̂

D and
Q̂ as inputs.

The Weighted SVD operation can be viewed as a differentiable projection
that arises from the matching matrix Ẽ obtained from the first Sinkhorn Projec-
tion. Alternatively, in the 2D-3D registration task, this Weighted SVD operation
can be substituted with a differentiable PnP (Perspective-n-Point) [26].
Warping Function: warping(·, ·, ·). After obtaining transformation R, t, the
rigid warping of source point clouds is computed by W(p̂i) = Rp̂i + t. In this
paper, we use rigid warping for rigid and deformable registration cases to demon-
strate our design. As for deformable registration, with the denoised correspon-
dences, we can compute the flow fields for all points in P̂ by performing nearest
neighbor interpolation with the predicted inlier correspondences as anchors.
Denoising Transformer: fθ(·, ·, ·, ·, ·, ·). We observed empirically that a simple
noise model does not hurt performance. Thus, we exploit a lightweight Trans-
former [47] as our denoising network. Specifically, we utilize a 6-layer inter-leaved
attention layers transformer fθ for denoising feature embedding. Worth noting
that, in each denoising step, only coarse level source point cloud P̂t and its
position encoding Θ(P̂t) (or target point cloud Q̂ in 2D-3D registration task)
have their values changed according to the warping operation, while other input
parameters remain fixed. This is the key to our fast sampling speed.
Attention Layer in fθ: In the 3D registration task, following [28], the vectors
q,k,v in the self-attention, are computed as:

qi = Θ(pi)Wqf
p̂i , kj = Θ(pj)Wkf

p̂j , vj = Wvf
p̂j ,

f p̂i = f p̂i +MLP(cat[qi,Σjαijvj]),
(7)

where Wq,Wk,Wv ∈ Rd×d are the attention weights, αij = softmax(qik
⊤
j /

√
d),

and Θ(·) is the relative rotationary position encoding [28]. MLP(·) is a 3-layer
fully connected network, and cat[·, ·] is the concatenating operator. The cross
attention layer is the standard form that q and k,v are computed by source and
target point clouds, respectively.

In the 2D-3D registration task, we take image inputs {X̂,FX̂,FX̂
dino} and

point cloud input {Q̂,FQ̂} to compute q,k,v by utilizing standard attention
layers [47]. We also take Fourier embedding function [35] to embed superpixels
X̂ and superpoints Q̂ for positional encoding.
Matching Function: matching_logits(·, ·, ·, ·). We compute matching “log-
its” between P̂ and Q̂ by features FP̂ (or FX̂) and FQ̂: Ẽ(i, j) = 1√

d

〈
f p̂i , f q̂j

〉
.

For the sake of clarity, we provide pseudo-code in Algorithm.1 to describe the
logic of our entire denoising module gθ for the 3D Registration task. A similar
definition of gθ for the 2D-3D registration task can be found in the appendix.
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Algorithm 1 Denoising Module gθ for 3D Registration Task.

Require: Sampled matching matrix Et ∈ RN×M ; Point clouds P̂, Q̂ ∈ R3 and associ-
ated point features FP̂,FQ̂.

Ensure: Target matching matrix Ê0.
1: function gθ(Et, P̂, Q̂,FP̂,FQ̂)
2: Ẽt ← fsinkhorn(E

t)
3: R̂t, t̂t ← soft_procrustes(Ẽt, P̂, Q̂), P̂t ← warping(P̂, R̂t, t̂t)

4: F̃P̂t , F̃Q̂t ← fθ(P̂t, Q̂,FP̂,FQ̂, Θ(P̂t), Θ(Q̂))

5: Ẽ0 ←matching_logits(F̃P̂t , F̃Q̂t , Θ(P̂t), Θ(Q̂))
6: Ê0 ← fsinkhorn(Ẽ0)
7: return Ê0

8: end function

4 Experiments

4.1 3D Non-Rigid Registration Task

Datasets. 4DMatch/4DLoMatch [28] is an 3D non-rigid benchmark generated
by the animation sequences from DeformingThings4D [30]. We follow the dataset
split provided in [28], which has a wide range of overlap ratio, that 45%-92% in
4DMatch and 15%-45% in 4DLoMatch.

Implementation Details. Our framework utilize a KPConv [45] backbone to
produce the superpoints P̂ and Q̂ and the asccociated features FP̂ and FQ̂. The
dimension d of superpoint features FP̂ and FQ̂ is set as d = 432. Subsequently,
we employ a repositioning transformer [28] to provide a single-pass prediction of
the matching matrix and the resulting transformation [R, t], both of which are
supervised by the matching loss LM and warping loss LW introduced in [28].
We utilize a focal loss Lsimple (modified from Eqn.5) to guide the training of the
denoising module gθ. The total loss function is defined as L = LM+LW+Lsimple.

We train the model for 30 epochs on the 4DMatch dataset with a batch size
of 2. We adopt the training/validation/test split strategy from Predator [19] and
Lepard [28]. At inference time, we conduct 20 iterations in the reverse sampling
process while the total diffusion steps during training are set to 1000.
Metrics. Following Lepard [28], we utilize two evaluation metrics to assess the
quality of predicted matches. (1) Inlier Ratio (IR): The correct fraction in the cor-
respondences prediction Kpred. (2) Non-rigid Feature Matching Recall (NFMR):
The fraction of ground truth correspondences (u, v) ∈ Kgt that can be success-
fully recovered by using the predicted correspondences Kpred as anchors. The
NFMR metric provides a better characterization of the global rationality of over-
all body deformation, directly indicating whether the anchor Kpred effectively
captures the body movements.
Quantitative Results. We compare our method with two categories of state-
of-the-art methods. The first category includes Scene Flow Methods such as
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Table 1: Quantitative results on the 4DMatch and 4DLoMatch benchmarks. The best
results are highlighted in bold, and the second-best results are underlined.

Category Method 4DMatch 4DLoMatch
NFMR(%) IR(%) NFMR(%) IR (%)

Scene Flow
PointPWC [55] 21.60 20.0 10.0 7.20

FLOT [38] 27.10 24.90 15.20 10.70

Feature Matching

D3Feat [4] 55.50 54.70 27.40 21.50
Predator [19] 56.40 60.40 32.10 27.50
Lepard [28] 83.60 82.64 66.63 55.55
GeoTR [40] 83.20 82.20 65.40 63.60
RoITr [66] 83.00 84.40 69.40 67.60

Diff-Reg(Backbone) 85.47 81.15 72.37 59.50
Diff-Reg(steps=1) 85.23 83.85 73.19 65.26
Diff-Reg(steps=20) 88.40 86.41 76.23 67.80

PWC [55], FLOT [38], and NSFP [27]. The second category encapsulates Fea-
ture Matching-Based Methods, namely D3Feat [4], Predator [19], Lepard [28],
GeoTR [40], and RoITr [66].

As illustrated in Table 1, our method demonstrates significant improvements
compared to the single-pass baselines. “Diff-Reg(Backbone)” refers to the single-
pass prediction head (i.e., reposition transformer in Lepard [28]), while “Diff-
Reg(steps=1)” and “Diff-Reg(steps=20)” denotes our denoising module gθ with
one single step and 20 steps of reverse sampling. For both NFMR and IR met-
rics, “Diff-Reg(steps=20)” achieves the best performance. The improvement in
NFMR of “Diff-Reg(Backbone)” compared to the baselines indicates that our dif-
fused training samples in the matching matrix space enhance the feature back-
bone’s representation, enabling the capture of crucial salient correspondences
that are helpful for consistent global deformation. The significant enhancement
of “Diff-Reg(steps=20)” over “Diff-Reg(steps=1)” demonstrates that the reverse
denoising sampling process indeed searches for a better solution guided by the
learned posterior distribution.

To validate that the predicted correspondences indeed improve deformable
registration, we conducted experiments using the state-of-the-art registration
method GraphSCNet [41]. As indicated in Table 2, our predicted correspon-
dences are beneficial for deformable registration, particularly in the more chal-
lenging 4DLoMatch benchmark.
Qualitative Results. We provide a visualization to demonstrate our method’s
effectiveness in Fig.2. For a fair comparison, we exploit the source point cloud’s
“metric index” (i.e., the test point set in the 4DMatch/4DLoMatch dataset) for
all methods. Taking the predicted correspondences from RoITr [66], GeoTr [66],
and “Our (steps=20)” as anchor correspondences, we calculate the deformation
flow for the source test points by applying neighborhood k-nearest neighbors
(KNN) interpolation based on the anchors. The deformable registration of the
bear’s two front paws in the first row and second/fourth column reveals that
dealing with ambiguous matching patches of asymmetric objects can be highly
challenging. However, our denoising process can handle this scenario perfectly.
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Table 2: Non-rigid registration results of 4DMatch/4DLoMatch. Given predicted cor-
respondences, we utilize the non-rigid registration method GraphSCNet [41] to conduct
the deformable registration. We retrain RoITr∗ using the authors’ code. The modified
4DMatch-F and 4DLoMatch-F datasets [29] exclude data involving near-rigid move-
ments. The metrics (following [29, 41]) are 3D End Point Error (EPE), 3D Accuracy
Strict (AccS) (<2.5cm or 5%), 3D Accuracy Relaxed (AccR)(<5cm or 5%), and Outlier
Ratio (OR) ( >30%).

Method 4DMatch-F 4DLoMatch-F
EPE↓ AccS↑ AccR↑ OR↓ EPE↓ AccS↑ AccR↑ OR ↓

PointPWC [55] 0.182 6.25 21.49 52.07 0.279 1.69 8.15 55.70
FLOT [38] 0.133 7.66 27.15 40.49 0.210 2.73 13.08 42.51

GeomFmaps [9] 0.152 12.34 32.56 37.90 0.148 1.85 6.51 64.63
Synorim-pw [19] 0.099 22.91 49.86 26.01 0.170 10.55 30.17 31.12

Lepard [28]+GraphSCNet [41] 0.042 70.10 83.80 9.20 0.102 40.00 59.10 17.50
GeoTR [40]+GraphSCNet [41] 0.043 72.10 84.30 9.50 0.119 41.00 58.40 20.60
RoITr∗ [66] +GraphSCNet [41] 0.056 59.60 80.50 12.50 0.118 32.30 56.70 20.50

Diff-Reg+GraphSCNet [41] 0.041 73.20 85.80 8.30 0.095 43.80 62.90 15.50

(a) GeoTR [40] (b) RoITr [66] (c) Diff-Reg(steps=20)

Fig. 2: The qualitative results of non-rigid registration in the 4DMatch/4DLoMatch
benchmark. The top two lines are from 4DMatch, while the bottom three are from
4DLoMatch. The blue and yellow colors denote the source and target point cloud,
respectively. The green and red lines indicate whether the predicted deformable flow
from the source points is accepted by the threshold. The deformable registration is
built by GraphSCNet [25]. Zoom in for details.
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The deformable registration results from the top three rows (from the 4DMatch
benchmark) indicate that the baseline methods struggle to compute reliable and
consistent correspondences between scans with large deformations. The bottom
two rows (from the 4DLoMatch benchmark) also demonstrate that low over-
lapping combined with deformation results in a disaster. These visualizations
demonstrate that our denoising module in the matching matrix space provides
a more effective approach for tackling deformable registration tasks.

4.2 2D-3D Registration Task: RGB-D SCENES V2

The 2D-3D registration task is non-trivial because the 2D image data is a
perspective projection of the 3D scene, which creates the scale ambiguity prob-
lem [25]. Since there is no good robust differentiable PnP [23] solver that can
be integrated into our denoising module, we deploy the SOTA depth estimation
model DepthAnything [61] to generate “affine-invariant depth” for the image.
Subsequently, we utilize the camera’s intrinsic matrix to project the estimated
depth map onto a new non-metric point cloud paired with the corresponding
real point cloud in the dataset, creating a challenge scale ambiguous registra-
tion problem. To alleviate the image data’s scale ambiguity, we use the SOTA
self-supposed pre-trained visual feature backbone DINOv2 [36] to enhance the
image features.
Datasets. RGB-D Scenes V2 [22] are generated from 14 indoor scenes com-
prising 11,427 RGB-D frames. Following [25], we split the 14 sequences into
image-to-point-cloud pairs data, where scenes 0-8/11-14/9-10 are used for train-
ing/validation/testing. The resulting dataset contains 1,748 training pairs, 236
validation pairs, and 497 testing pairs of image-to-point-clouds.

Implementation Details. For the single-pass backbone design, we follow 2D3D-
MATR [25]. Specifically, for images in data pair, we utilize a ResNet [17] with
FPN [31] to generate down-sampled superpixel and associated features. For the
real point cloud in the data pair, we exploit KPConv [45] to extract the down-
sampled superpoints with associated features. A transformer [47] is deployed
with inputs of superpixel and associated image features (including ResNet fea-
tures and DINO features) from the image and superpoint and associated fea-
tures from real point cloud to predict the cross-modality features. The denoising
transformer in gθ design has a similar definition. The new non-metric point cloud
generated from the image depth map output by the DepthAnything model [61]
is used as inputs of the weighted SVD function in gθ to compute R, t.

We utilize the coarse level circle loss [25] and fine level matching loss [25] for
the singe-pass backbone [25], while a focal loss for our denoising module gθ. More
details about network design are in the appendix. We train our model about 30
epochs with batch size 1.
Metrics. We evaluate our method using the Registration Recall (RR) metric:
the ratio of image-to-point-cloud pairs’ RMSE is under 10cm.
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Table 3: Evaluation results on RGB-D Scenes V2 [25]. The best results are highlighted
in bold, and the second-best results are underlined.

Method Scene-11 Scene-12 Scene-13 Scene-14 Mean

Mean depth (m) 1.74 1.66 1.18 1.39 1.49

Registration Recall(%)↑

FCGF-2D3D [11] 26.4 41.2 37.1 16.8 30.4
P2-Net [50] 40.3 40.2 41.2 31.9 38.4

Predator-2D3D [19] 44.4 41.2 21.6 13.7 30.2
2D3D-MATR [25] 63.9 53.9 58.8 49.1 56.4

FreeReg+Kabsch [51] 38.7 51.6 30.7 15.5 34.1
FreeReg+PnP [51] 74.2 72.5 54.5 27.9 57.3

Diff-Reg(dino) 87.5 86.3 63.9 60.6 74.6
Diff-Reg(dino/backbone) 79.2 86.3 75.3 71.2 78.0
Diff-Reg(dino/steps=1) 94.4 98.0 85.6 63.7 85.4
Diff-Reg(dino/steps=10) 98.6 99.0 86.6 63.7 87.0

Diff-Reg(dino/backboneepnp) 95.8 96.1 88.7 69.0 87.4

Quantitative Results. We introduce a single-pass baseline “Diff-Reg(dino)”,
in which we integrate the visual foundation model DINOv2 [36] into the single-
pass model 2D3D-MATR’s [25] ResNet. “Diff-Reg(dino/backbone)” represents
the single-pass prediction head derived from “Diff-Reg(dino)” after joint train-
ing with our denoising module gθ. “Diff-Reg(steps=1)” and “Diff-Reg(steps=10)”
refer to our diffusion matching model with one step and ten steps of reverse de-
noising sampling.

As demonstrated in Table 3, the results for “Diff-Reg(dino/backbone)” indi-
cate that the diffused training samples in the matrix space serve as data augmen-
tation to enhance the representation of the ResNet feature backbone and single-
pass prediction head. Additionally, the outcome for “Diff-Reg(dino/steps=10)”
reveals that our denoising module gθ effectively tackles the scale ambiguous issue
in the 2D-3D registration. Furthermore, the result for “Diff-Reg(dino/steps=1)”
reveals that the diffused training samples within the matrix space indeed enhance
the single-pass prediction head in “Diff-Reg(dino).”

We also carried out an additional experiment to show that the performance
improvement of “Diff-Reg(dino/backbone)” compared to “Diff-Reg(dino)” is at-
tributed to our diffusion matching model. In this experiment, we did not use the
depth map (from DepthAnything model [61]), opting instead to employ a dif-
ferentiable weighted EPnP [23] solver in the denoising module gθ to replace the
weighted SVD layer. We take only superpixels and superpoints as inputs of the
EPnP solver, with correspondence weights computed by associated superpixel
and superpoint features. This setting denoted by “Diff-Reg(dino/backboneepnp)”
(in Table 3) achieved a high recall rate of 87.4%, indicating that our diffused
samples in matching matrix space indeed enhance the feature backbone.
Qualitative Results. The prediction examples of "Diff-Reg(dino/steps=10)"
in Fig. 3 reveal that our diffusion matching model excels at capturing salient cor-
respondences crucial for combinatorial consistency, regardless of their distance
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(a) Diff-Reg(dino) (b) Diff-Reg(dino/steps=10)

Fig. 3: The qualitative results of top-200 predicted correspondences on the RGB-D
Scenes V2 benchmark [22]. The green/red color indicates whether the matching score
is accepted based on a threshold value. Zoom in for details.

from the camera. On the other hand, the matches generated by “Diff-Reg(dino)”
tend to be more focused at specific distances. For instance, in the third row,
the correspondences produced by “Diff-Reg(dino)” are located very close to the
camera, while the correspondences from “Diff-Reg(dino/steps=10)” encompass
objects such as hats on the black table that are situated at a greater distance.
In the first row, “Diff-Reg(dino)” fails to capture the correspondences on the
sofa, and in the second row, the correspondences of the white hat on the table
are lost. An extreme case in the fourth row demonstrates that “Diff-Reg(dino)”
misses the farthest correspondence on the column bookshelf or wall.

5 Conclusion

This paper presents a novel diffusion module that leverages a diffusion match-
ing model in the doubly stochastic matrix space to learn a posterior distribu-
tion for guiding the reverse denoising sampling process within the matrix space.
Moreover, we have integrated a lightweight design into the denoising module to
decrease the time cost associated with iterative reverse sampling. Experimen-
tal results on both 3D registration and 2D-3D registration tasks confirm the
effectiveness and efficiency of our proposed denoising module.
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