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Abstract. Real-world image super-resolution deals with complex and
unknown degradations, making it challenging to produce plausible re-
sults in a single step. In this work, we propose a transformer model
with an iterative generation process that iteratively refines the results
based on predicted confidences. It allows the model to focus on regions
with low confidences and generate more confident and accurate results.
Specifically, our model learns to predict the visual tokens of the high-
resolution image and their corresponding confidence scores, conditioned
on the low-resolution image. By keeping only the most confident tokens
at each iteration and re-predicting the other tokens in the next iteration,
our model generates all high-resolution tokens within a few steps. To en-
sure consistency with the low-resolution input image, we further propose
a conditional controlling module that utilizes the low-resolution image to
control the decoding process from high-resolution tokens to image pix-
els. Experiments demonstrate that our model achieves state-of-the-art
performance on real-world datasets while requiring fewer iteration steps
compared to recent diffusion models.

1 Introduction

Image super-resolution (SR) aims at generating a high-resolution (HR) image
that is consistent with an input low-resolution (LR) image. SR has been an
active research topic for decades [2, 4, 47, 53, 54, 64] because of its high practical
values in enhancing image details and visual quality. With the advance of deep
neural networks, numerous deep learning-based methods [13, 17, 23, 25, 34, 52,
68] have been proposed for SR. Most methods [11, 12, 61, 73] assume a naive
bicubic degradation process from HR to LR images. However, the performance of
these methods will deteriorate a lot in real applications because of the mismatch
between bicubic and real-world degradations.

The real-world degradations are complex since real LR images are usually
corrupted by multiple types of degradations (e.g ., blur, noise, down-sampling,
and JPEG compression). These degradations are unknown due to the varying
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Fig. 1: Visualizations of our confidence-based iterative generation process for real-
world SR. The iterative process leads to better perceptual quality and improved con-
fidence scores across multiple steps. (Top) The LR input image and the generated HR
images. (Bottom) The predicted confidence scores for HR tokens (darker denotes higher
confidence scores).

image degradation processes, different imaging devices, and diverse image sig-
nal processing methods [36, 63]. Therefore, real-world SR is a challenging task
which demands robust SR methods to generate high-resolution and high-quality
images while removing the complex unknown degradations. Most of the existing
methods [8,22,32,59,63,65] adopt Generative Adversarial Networks (GANs) [20]
for real-world SR. However, these GANs suffer from the well-known problem of
training instability. Much efforts have been made to carefully design the network
architectures and optimization tricks of GANs in order to obtain plausible re-
sults [59]. Still, these GAN-based methods often produce visual artifacts when
dealing with different degradations. This can be attributed to the one-step gen-
eration process of GANs, which performs an intractable task to simultaneously
generate all image pixels regardless of whether the regions are simple or complex.

In this paper, we aim to improve the visual quality of SR results by generating
HR images in an iterative manner. We propose RealSRT, a Real-world SR Trans-
former model with a confidence-based iterative generation process. The iterative
process revisits the HR output and the LR input multiple times, predicting
confidence scores for both simple and complex regions at each iteration. These
confidence scores provide a measure of certainty about the generated content,
allowing the model to focus on uncertain regions with low confidence and gen-
erate more confident and accurate results. Consequently, our confidence-based
iterative generation process enhances the model’s adaptability and performance
in handling complex and unknown degradations, resulting in better perceptual
quality and improved confidence scores (as shown in Fig. 1).

The key design of our RealSRT is a masked transformer [6, 7, 28] in the
discrete token space of a pre-trained VQGAN [18]. Inspired by Token-Critic [27],
our masked transformer consists of a generator network that predicts tokens
and a critic network that predicts confidence scores. The generator is trained
on a masked modeling task that predicts randomly masked HR tokens given the



Confidence-Based Iterative Generation for Real-World Super-Resolution 3

unmasked HR tokens and all LR tokens. The critic is trained to distinguish which
HR tokens are incompatible by considering self-attention between HR tokens
and cross-attention from LR tokens to HR tokens. During inference, our masked
transformer iteratively generates HR tokens starting from a blank canvas with
all HR tokens masked out. At each iteration, the generator predicts the masked
HR tokens in parallel and the critic predicts confidence scores for HR tokens.
By keeping only high-confidence HR tokens and masking out low-confidence HR
tokens for the next iteration, our masked transformer generates all HR tokens
within a few iteration steps.

It is important for the HR output image to be consistent with the LR in-
put image. To ensure consistency with the LR image, we propose a conditional
controlling module (CCM) that utilizes the LR image as a condition to control
the decoding process. The CCM employs a trainable copy of the pre-trained
VQGAN encoder and an attention block. The trainable encoder extracts LR
features from the LR image, while the attention block fuses these LR features
with the generated HR tokens to learn a residual for enhancing the decoding
process of HR tokens. The proposed CCM improves the consistency with the
LR input in terms of image color and details.

We conduct comprehensive experiments on real-world datasets and the exper-
imental results demonstrate that RealSRT achieves state-of-the-art performance
in real-world SR. Compared to GAN-based methods [8, 22, 32, 59, 65], RealSRT
exhibits strong performance due to its confidence-based iterative generation pro-
cess. Compared to the recent diffusion models [35, 57], RealSRT is significantly
more efficient since it requires fewer iteration steps at inference time. The con-
tributions of this work can be summarized as follows:
– We present RealSRT, a novel transformer model for real-world image super-

resolution. This model uses a confidence-based iterative generation process
that iteratively refines the HR results based on predicted confidences.

– We design a masked transformer, where a generator predicts HR tokens and
a critic predicts confidence scores. The masked transformer generates all HR
tokens by keeping only high-confidence tokens at each iteration and masking
out low-confidence ones for the next iteration.

– To ensure the consistency of the HR output image with the LR input image,
we propose a conditional controlling module that utilizes the LR image as a
condition to control the decoding process of HR tokens.

2 Related Work
Image Super-Resolution. Classical single image super-resolution methods
[9,13,16,17,26,42,45,68,72] are mainly designed for simple and uniform degrada-
tions (e.g ., bicubic degradations). Although significant improvements in terms
of PSNR [11, 29, 30] and perceptual quality [31, 61] have been achieved, such
methods usually fail in real-world SR tasks where the degradations are complex
and unknown.

To address the above-mentioned problem, recent works have proposed sev-
eral degradation models for real-world SR. Existing degradation models can be
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categorized into implicit modeling and explicit modeling. Implicit degradation
modeling [19, 41, 58, 63] aims to learn the degradation process from real-world
images, which requires large external datasets for training [36]. In contrast, ex-
plicit degradation modeling aims to simulate real-world degradations by design-
ing a random shuffle order [65] or a high-order degradation process [59]. These
explicit degradation processes synthesize realistic LR images from HR images
to collect large-scale training pairs, enabling the recent real-world SR meth-
ods [8, 32,33,35,57,59,65] to achieve state-of-the-art results.

Most of the existing methods [22, 32, 33, 44, 59, 65, 70] for real-world SR
are based on Generative Adversarial Networks (GANs) [20]. These GAN-based
methods suffer from unstable training due to their min-max optimization. In
addition, these GAN-based methods are prone to unpleasant artifacts because
their one-step generation process often fails to adequately address the complex
degradations in real-world scenarios. Recently, diffusion models [35, 50, 51, 57]
perform super-resolution through a stochastic iterative denoising process. How-
ever, these diffusion models have low efficiency since they require a large number
of iteration steps at inference time. In this work, we propose a novel transformer
model with a confidence-based iterative generation process that iteratively gen-
erates high-resolution and high-quality images while requiring fewer iteration
steps compared to diffusion models.
Generative Image Transformers. Inspired by the success of Transformer [55]
and GPT [3] in the NLP field, generative transformers have been applied to
various image synthesis tasks [6, 10, 48]. These generative image transformers
consist of two stages. In the first stage, a vector-quantized (VQ) autoencoder
[18, 46, 49] learns a discrete codebook to tokenize images into visual tokens. In
the second stage, a transformer iteratively generates visual tokens based on the
previously generated ones. Finally, the generated visual tokens are mapped into
image pixels using the decoder from the first stage.

Early works applied autoregressive transformers [10, 18, 48] to generate one
token at each iteration step. Recently, non-autoregressive transformers [7, 69]
utilize iterative parallel decoding that significantly accelerates the inference time.
In particular, Masked Generative Image Transformer (MaskGIT) [7] uses the
mask prediction inspired by BERT [14] to generate all tokens in a few iteration
steps. At each iteration, the model predicts all tokens in parallel but only keeps
the most confident ones. The remaining tokens are masked out and will be re-
predicted in the next iteration. MaskGIT has demonstrated highly-competitive
image generation performance and orders of magnitude faster inference than its
autoregressive counterpart [18].

A major challenge of non-autoregressive transformers is to decide which to-
kens to keep and which to mask. MaskGIT relies on the generator’s predicted
confidences that are independent for each token, which hinders capturing rich
correlations between tokens. Token-Critic [27] improves MaskGIT by introduc-
ing a second transformer to distinguish which tokens are unlikely under the true
distribution, obtaining much more reliable confidence scores. We extend this
method to super-resolution with cross-attention from LR tokens to HR tokens.
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Fig. 2: Overview of RealSRT. (Top) RealSRT consists of an image tokenizer, a masked
transformer, and a conditional controlling module. The image tokenizer is a pre-trained
VQGAN with an encoder E and a decoder D. The masked transformer iteratively gen-
erates HR tokens within T iteration steps. The conditional controlling module employs
a trainable encoder E ′ and an attention block to utilize the LR image as a condition
to control the decoding process. (Bottom) The masked transformer consists of a gen-
erator network and a critic network. Both networks are conditioned on LR tokens with
self-attention and cross-attention. At each iteration, the generator predicts masked HR
tokens, while the critic predicts confidence scores to mask out low-confidence HR tokens
for the next iteration.

3 Method

Our main goal is to develop a new transformer model that iteratively generates
high-resolution images for real-world super-resolution tasks. The overview of
our proposed model (RealSRT) is illustrated in Fig. 2. RealSRT consists of an
image tokenizer, a masked transformer, and a conditional controlling module.
We first pre-train a VQGAN [18] to tokenize images into visual tokens. Then
a masked transformer iteratively generates HR tokens based on the predicted
confidences. In addition, a conditional controlling module utilizes the LR image
as a condition to control the decoding process for ensuring consistency with the
LR input. Finally, we propose an image patch aggregation algorithm to handle
images of arbitrary resolutions.

3.1 Image Tokenizer

We pre-train a VQGAN [18] model as the image tokenizer that tokenizes an input
image into a sequence of visual tokens. This model consists of an encoder and a
decoder, with a vector quantized (VQ) layer that learns a discrete codebook to
quantize image features into visual tokens. More precisely, given an input image
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I ∈ RH×W×3, the encoder E encodes I into a feature map E(I) ∈ Rh×w×c,
where (h,w) = (H/f,W/f) and f is the downsampling factor. The codebook
e(k) ∈ Rc, k ∈ 1, 2, · · · ,K serves for a nearest neighbor look up to quantize
the feature map E(I) into a sequence of visual tokens Y = [yi]

N
i=1, where K

is the number of codebook embeddings and N is the sequence length. Each
yi ∈ 1, 2, · · · ,K is an index of the codebook, representing the corresponding
codebook embedding. Finally, the decoder D decodes Y into the reconstructed
image Î = D(Y ). We follow [18] to train VQGAN with pixel, perceptual and
adversarial losses. The image tokenizer lowers the computational demands of
training transformers by moving the bulk of the computation from pixel space
to latent space [6]. Furthermore, the discrete nature of tokens enables effective
cross-entropy loss at the output of transformers to predict masked tokens [6,7,28].

3.2 Masked Transformer

We propose a masked transformer for super-resolution that iteratively generates
HR tokens in a constant number of iteration steps. As shown in Fig. 2, the
masked transformer consists of a generator network and a critic network. Both
networks are conditioned on LR tokens with self-attention and cross-attention.
At each iteration, the generator predicts masked HR tokens given the unmasked
HR tokens, while the critic predicts confidences for the predicted HR tokens
and unmasked HR tokens. The critic keeps only high-confidence HR tokens and
masks out low-confidence HR tokens for the next iteration. Finally, the masked
transformer iteratively generates all HR tokens starting from a blank canvas
filled with mask tokens.
Predicting Tokens with Generator. The generator predicts masked HR to-
kens based on the unmasked HR tokens and all LR tokens. Let IHR and ILR
denote the high-resolution image and the low-resolution counterpart, respec-
tively. We input IHR to the VQGAN encoder E to obtain the high-resolution
tokens YHR. We upsample ILR using a bicubic interpolation and input it to E to
obtain the low-resolution tokens YLR with the same size as YHR. Let M = [mi]

N
i=1

denote a binary mask determining which HR tokens are to be masked. The HR
tokens will be replaced with a learnable mask token [M] when mi = 1, while
they remain unchanged when mi = 0. Let ỸHR denote the HR tokens with
masking. During training, we randomly mask out HR tokens using a masking
ratio sampled from the mask scheduling function γ(r) ∈ [0, 1], where r ∈ [0, 1]
is an uniform random number. The number of masked HR tokens is ⌈γ(r) ·N⌉,
where N is the sequence length.

The generator follows a bidirectional transformer architecture [14]. For both
YLR and ỸHR, we utilize the learned codebook embeddings of VQGAN as the
embedding layer to leverage the low-level knowledge in pre-trained VQGAN.
Moreover, we add 2D sine and cosine positional embeddings [55] to the input
embeddings. The generator consists of several transformer layers including self-
attention, cross-attention, and MLP. These layers extract features from YLR and
ỸHR with self-attention among tokens and cross-attention from LR tokens to
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HR tokens. At the output layer, we use a linear layer to output logits in K
classes. These generator logits can be converted to probabilities using a softmax
function.

During training, the generator is trained to minimize the negative log-likelihood
of the masked HR tokens. We use a cross-entropy loss between the ground-truth
HR tokens and the output probabilities of generator:

Lg = EY,M

[
CE

(
YHR, pθ

(
YHR | ỸHR, YLR

))]
, (1)

where pθ is the probability predicted by the generator, and CE denotes the cross-
entropy loss. Note that we only optimize this loss on masked HR tokens. During
inference time, the generator predicts the class that has the highest predicted
probability pθ(YHR | ỸHR, YLR) for each masked HR token, and the unmasked
HR tokens are copied into the output to form the generation results ŶHR.
Predicting Confidences with Critic. The critic predicts confidence scores
for the generation results ŶHR based on all LR tokens. The generation results
include the predicted HR tokens and unmasked HR tokens. The critic has a
similar architecture to the generator, and uses the same embedding layer and
positional embeddings as the generator. The transformer layers of critic extract
features from YLR and ŶHR with self-attention and cross-attention. At the output
layer, we use a linear layer to output logits in one single class. These critic logits
can be converted to probabilities using a sigmoid function.

During training, the generator is held fixed, and the critic is trained to distin-
guish which of the HR tokens in the generation results were originally masked.
We use a binary cross-entropy loss between the original mask and the output
probabilities of critic:

Lc = EY,M

[
BCE

(
M, pϕ

(
M | ŶHR, YLR

))]
, (2)

where pϕ is the probability predicted by the critic, and BCE denotes the binary
cross-entropy loss. We optimize this loss on both predicted and unmasked HR
tokens. During inference time, the critic predicts the confidence score 1−pϕ(M |
ŶHR, YLR) for each HR token, which forms the confidence results ŜHR.
Iterative Generation. The masked transformer iteratively generates all HR
tokens in T iteration steps. We start from a blank canvas filled with masked
tokens, i.e. Ỹ (0)

HR . At iteration t ∈ 0, 1, · · · , (T−1), we input Ỹ (t)
HR to the generator

to predict masked HR tokens and obtain the generation results Ŷ
(t)
HR. Then the

critic predicts confidences for Ŷ
(t)
HR and obtains the confidence results Ŝ

(t)
HR. We

mask out n = ⌈γ( t+1
T ) · N⌉ HR tokens in Ŷ

(t)
HR with the lowest confidences to

generate Ỹ
(t+1)
HR for the next iteration. Note that γ(1) = 0, thus no masking

will be performed at the last iteration and we obtain the final generation results
Ỹ

(T )
HR .

MaskGIT [7] uses the generator’s predicted probabilities as confidences to
select which tokens to mask out. These generator confidences are independent
for each token, which hinders capturing rich correlations between tokens. In
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addition, the generator confidences are greedy and cannot correct previously
generated tokens. Compared to generator confidences, critic confidences measure
the likelihood of tokens under the true joint distribution by taking into account
the correlations among tokens [27]. Moreover, the critic confidences allow to
correct previously generated tokens that are no longer as likely based on the
most recent generation results, addressing the greedy generation issue.

3.3 Conditional Controlling Module

It is important for the HR output image to be consistent with the LR input
image [51]. We propose a conditional controlling module (CCM) to ensure con-
sistency with the LR image. The CCM utilizes the LR image as a condition to
control the decoding from Ỹ

(T )
HR to the HR output image ÎHR. More precisely,

CCM employs a trainable copy of VQGAN encoder and an attention block. The
trainable encoder E ′ encodes the upsampled LR image into a feature map and
concatenates it to Ỹ

(T )
HR . The attention block, which has a self-attention layer

between two residual layers, processes the concatenated features and then adds
them to Ỹ

(T )
HR with a zero convolution layer [66]. The weight and bias parameters

of the zero convolution layer are initialized to zero, which ensures that no harmful
noise is added to the generated tokens at the beginning of CCM training.

We train CCM while keeping the pre-trained VQGAN and the masked trans-
former frozen. The training losses of CCM include pixel, perceptual and adver-
sarial losses, which are the same as that of VQGAN. We calculate these losses
between the HR output image ÎHR and the ground-truth HR image IHR. We
also use the same weighting factors for each loss as the pre-training of VQGAN.

3.4 Image Patch Aggregation

The attention mechanism of the transformer puts limits on the sequence length
N . To generate high-resolution images of arbitrary resolutions at inference time,
we propose an image patch aggregation algorithm to process image patches in-
dependently and aggregate them using a Gaussian kernel. Specifically, we first
split the LR input image into overlapping LR patches, where each patch can
be upsampled and tokenized into a sequence of tokens with a length of N . The
overlapping width is half of the patch size. Then the masked transformer and the
conditional controlling module process each LR patch individually and generate
the HR patches. To improve the color consistency, we employ adaptive instance
normalization for color correction [57] on each HR patch, aligning its mean and
variance with those of the corresponding LR patch.

Unlike StableSR [57] aggregates features in latent space at each step, we
aggregate image patches in pixel space. We aggregate all the processed HR
patches into full resolution using a centered Gaussian kernel. Overlapping pix-
els are weighted in accordance with their respective Gaussian weight maps. Let
{IΩj

}Pj=1 denote the overlapping HR image patches, where P is the number of
image patches and Ωj is the coordinate set of the jth image patch in the full
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resolution image. WΩj
denotes a Gaussian weight map of the same size as the

full resolution image, whose entries follow up a centered Gaussian kernel in Ωj

and 0 elsewhere. The aggregation of HR image patches is formulated as follows:

Iagg =

P∑
j=1

WΩj

Wsum
⊙ IΩj

, (3)

where Wsum =
∑

j WΩj
and Iagg is the final aggregated HR output image.

Our image patch aggregation algorithm eliminates the boundary artifacts in
overlapped regions, resulting in coherent HR outputs.

4 Experiments

4.1 Experimental Details

Implementation. We pre-train a VQGAN on 256×256 cropped images with
codebook size K= 512 and downsampling factor f= 8, resulting in tokens with
spatial size 32×32 and sequence length N= 1024. We follow [18] to train VQGAN
with a pixel loss, a perceptual loss, and an adversarial loss. The weighting factor
for the perceptual loss is 0.1 and we use an adaptive weighting factor [18] for the
adversarial loss. We use Adam optimizer [24] to train VQGAN for 200 epochs
with the batch size 64 and the learning rate 4×10−5.

Masked transformer consists of a generator network and a critic network. The
generator has 16 transformer layers with cross-attention and 4 transformer layers
without cross-attention. The critic has 12 transformer layers with cross-attention
and 4 transformer layers without cross-attention. Both networks use 512 hidden
dimensions, 8 attention heads, and 2D positional embeddings [55]. The sequence
length is 1024. The output dimensions of generator and critic are 512 and 1,
respectively. We use a square root mask scheduling function γ(r) = 1−

√
r. Both

generator and critic are trained for 800K iterations using AdamW optimizer [38],
the batch size 64, and the initial learning rate 1×10−4 gradually decreased to
1×10−7 with the cosine annealing [37]. We perform exponential moving averaging
(EMA) on both networks with a decay factor of 0.999. During inference time,
we use T = 4 to achieve a good balance between performance and efficiency.

The CCM consists of a trainable copy of VQGAN encoder and an attention
block. We freeze the pre-trained VQGAN and the masked transformer when
training CCM. The training losses and weighting factors of CCM are the same
as that of VQGAN. We use Adam optimizer to train CCM for 80K iterations
with the batch size 8 and the learning rate 4×10−5. We also perform exponential
moving averaging (EMA) on CCM with a decay factor of 0.999.

The entire training process of RealSRT is conducted on 256×256 resolution
with 8 NVIDIA 32G-V100 GPUs. We first train the generator. Then we freeze
the generator and train the critic. Finally, we train the CCM while keeping the
masked transformer frozen. For inference, we adopt the proposed image patch
aggregation algorithm to handle arbitrary resolutions. The overlapping width is
128, and the variance of the centered Gaussian kernel is set to 0.05.
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Datasets. Similar to Real-ESRGAN [59] and DASR [32], we adopt DIV2K [1],
Flickr2K [53] and OST [60] datasets for training. The datasets contain 13774
high-quality and high-resolution images, including 800 images in DIV2K, 2650
images in Flickr2K and 10324 images in OST. We randomly crop 256×256 image
patches from these HR images to train our RealSRT. To synthesize LR images,
we use the high-order degradation modeling of Real-ESRGAN [59] to process the
HR patches. Following previous works [35, 57], all experiments are performed
with a scaling factor of ×4 between LR and HR images. Thus we synthesize
64×64 LR patches during training.

For evaluation, we mainly test our RealSRT on three real-world SR bench-
mark datasets, including RealSR [5], DRealSR [62], and DPED [21]. RealSR and
DRealSR contain 100 and 93 LR-HR image pairs, respectively. DPED contains
100 LR images without ground-truth HR images. We also test RealSRT on some
images from AIM19 [40] and NTIRE20 [39] datasets. The LR images in these
two datasets are synthesized using artificial image degradations.
Metrics. We evaluate four full-reference metrics (i.e., PSNR, MS-SSIM, LPIPS
[67], and DISTS [15]) and two no-reference metrics (i.e., NIQE [43] and CLIP-
IQA [56]) on RealSR and DRealSR datasets since they have ground-truth HR
images. We also evaluate NIQE and CLIP-IQA on DPED due to the absence
of ground-truth. Please refer to the supplementary material for the quantitative
results on DPED.

4.2 Comparisons with Existing Methods

We compare our RealSRT with existing GAN-based and diffusion-based meth-
ods. GAN-based methods include RealSR [22], BSRGAN [65], DASR [32], Fe-
MaSR [8], Real-ESRGAN+ [59], and SwinIR-GAN [33]. Diffusion-based meth-
ods include DiffBIR [35] and StableSR [57]. We use the official code and models
for these methods. Unlike StableSR [57] which resizes and crops image patches
for evaluation, we directly evaluate the original testing images of benchmark
datasets to make a fair comparison.
Quantitative Comparisons. The main quantitative comparisons are presented
in Tab. 1 and Tab. 2. It can be seen that our RealSRT achieves state-of-the-art
results in perceptual metrics LPIPS and DISTS on both RealSR [5] and DRealSR
[62] datasets. It indicates that our RealSRT is more perceptually faithful to the
ground-truth than other methods. Besides, our RealSRT obtains good PSNR and
MS-SSIM scores. Even though DASR [32] also performs good in PSNR and MS-
SSIM, it has an inferior performance in perceptual metrics LPIPS and DISTS.
Note that DiffBIR [35] performs well in no-reference metrics NIQE and CLIP-
IQA. However, DiffBIR often produces unexpected artifacts that are inconsistent
with the input images, leading to bad results in full-reference metrics.

As shown in Tab. 1 and Tab. 2, our RealSRT requires the fewest steps among
all non-GAN-based methods. Compared to diffusion-based methods DiffBIR [35]
and StableSR [57], our RealSRT is more efficient at inference time, requiring
significantly fewer iteration steps.
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Table 1: Quantitative comparisons on RealSR [5]. Best and second best scores are
bolded and underlined, respectively.

Method Steps PSNR↑ MS-SSIM↑ LPIPS↓ DISTS↓ NIQE↓ CLIP-IQA↑

RealSR [22] 1 22.45 0.8508 0.3092 0.1970 3.587 0.5115
BSRGAN [65] 1 24.88 0.8913 0.2685 0.1761 4.652 0.5438
DASR [32] 1 25.58 0.8939 0.3113 0.1838 5.969 0.3629
FeMaSR [8] 1 23.87 0.8819 0.2927 0.1940 4.758 0.5598
Real-ESRGAN+ [59] 1 24.31 0.8861 0.2728 0.1685 4.677 0.4899
SwinIR-GAN [33] 1 24.44 0.8911 0.2593 0.1609 4.636 0.4744
DiffBIR [35] 50 23.45 0.8476 0.3625 0.1860 3.708 0.6731
StableSR [57] 200 24.62 0.8864 0.2587 0.1582 5.127 0.5211
RealSRT 4 25.60 0.8928 0.2527 0.1525 5.084 0.4832

Table 2: Quantitative comparisons on DRealSR [62].

Method Steps PSNR↑ MS-SSIM↑ LPIPS↓ DISTS↓ NIQE↓ CLIP-IQA↑

RealSR [22] 1 25.31 0.8634 0.3578 0.1969 3.664 0.5024
BSRGAN [65] 1 26.18 0.8920 0.2930 0.1636 4.681 0.5705
DASR [32] 1 27.39 0.9077 0.2962 0.1689 6.347 0.3844
FeMaSR [8] 1 24.56 0.8624 0.3374 0.1766 4.218 0.6126
Real-ESRGAN+ [59] 1 25.82 0.8934 0.2818 0.1464 4.716 0.5179
SwinIR-GAN [33] 1 25.73 0.8909 0.2838 0.1462 4.566 0.5043
DiffBIR [35] 50 25.18 0.8461 0.4632 0.2105 2.964 0.7045
StableSR [57] 200 27.16 0.9060 0.2648 0.1390 5.575 0.4753
RealSRT 4 27.37 0.9061 0.2640 0.1368 5.323 0.5288

Qualitative Comparisons. Fig. 3 shows the qualitative comparisons on real-
world datasets including RealSR [5], DRealSR [62], and DPED [21]. It can be
observed that our RealSRT generates high-quality results while ensuring con-
sistency with LR input images. Compared to GAN-based methods (i.e., Re-
alSR [22], BSRGAN [65], DASR [32], FeMaSR [8], Real-ESRGAN+ [59], and
SwinIR-GAN [33]), our RealSRT performs better in recovering image details
due to the iterative generation process. As for the diffusion-based methods, Diff-
BIR [35] tends to introduce unexpected artifacts that are inconsistent with in-
put images, while StableSR [57] sometimes produces results that appear slightly
blurry. In contrast, our RealSRT generates sharp and realistic results with fewer
artifacts. Please refer to the supplementary material for more qualitative com-
parisons on real-world images with diverse resolutions.

4.3 Ablation Studies

We conduct ablation experiments on the RealSR [5] dataset to analyze our Re-
alSRT. We first build a baseline model (Exp. (a)) that employs the generator’s
predicted probabilities as confidences for token selection and uses the VQGAN
decoder for decoding. Then we build a modified model (Exp. (b)) without CCM,
which uses the critic confidences for token selection and still uses the VQGAN
decoder for decoding. Our full model (Exp. (c)), equipped with CCM, uses critic
confidences for token selection and incorporates the CCM into the decoding pro-
cess. All these models utilize our proposed image patch aggregation algorithm
with color correction to generate images of arbitrary resolutions. Next, we com-
pare these models to validate the effectiveness of our critic and CCM.
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Fig. 3: Qualitative comparisons for ×4 SR on real-world datasets (please zoom in for
best view). Compared to existing methods, our RealSRT generates high-quality and
perceptually faithful results that are more consistent with input images.
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Iterations 𝑇 Iterations 𝑇 Iterations 𝑇

Generator Confidence Critic Confidence

Iterations 𝑇 Iterations 𝑇 Iterations 𝑇

Fig. 4: Effects of confidences and the number of iterations on RealSR [5]. Higher is
better for PSNR, MS-SSIM and CLIP-IQA (↑), while lower is better for LPIPS, DISTS
and NIQE (↓). Critic confidences are more reliable than generator confidences, leading
to better performance in LPIPS, DISTS, NIQE, and CLIP-IQA. In our experiments,
we use critic confidences and T = 4 to achieve a good balance between performance
and efficiency.

Effects of Confidences and Iteration Steps. We compare Exp. (a) and
Exp. (b) to investigate the significance of critic confidences. Exp. (a) uses gen-
erator confidences while Exp. (b) uses critic confidences. Fig. 4 shows the effects
of different confidences and the number of iterations. Increasing the number of
iterations tends to improve PSNR and MS-SSIM results for both confidences.
However, when using generator confidences, using more iterations deteriorates
LPIPS, DISTS, NIQE, and CLIP-IQA results. It is due to that using more iter-
ations tends to produce blurry results when using generator confidences (please
refer to the supplementary material for visual samples). In contrast, when using
critic confidences, using more iterations tends to enhance LPIPS, DISTS, and
NIQE results. Moreover, using T = 3 or T = 4 achieves the best CLIP-IQA
results. Beyond T = 4, more iterations lead to worse CLIP-IQA results. Fig. 4
suggests that critic confidences are more reliable than generator confidences, en-
abling iterative generation for real-world SR tasks. We use critic confidences and
T = 4 to achieve a good balance between performance and efficiency. As shown
in Tab. 3, Exp. (b) performs better than Exp. (a) in LPIPS, DISTS, NIQE,
and CLIP-IQA when T = 4. Fig. 5 presents the visual comparisons. The critic
improves the baseline model by generating more image details, thus enhancing
the perceptual quality of visual results.
Importance of CCM. We compare Exp. (b) and Exp. (c) to verify the im-
portance of CCM. Exp. (b) directly uses the VQGAN decoder to decode the
HR tokens into image pixels. Exp. (c) incorporates the CCM into the decoding
process. The CCM utilizes the LR input as a condition to control the decoding
of HR tokens, which ensures the consistency of the HR output with the LR in-



14 J. Peng et al.

LR Baseline Critic Critic + CCM

Fig. 5: Visual comparisons of critic and CCM. The baseline model only uses the gen-
erator without using the critic and CCM, leading to slight blur. The critic improves
the perceptual quality due to its reliable confidences. The CCM further improves the
consistency with the LR input in image color and details.

Table 3: Ablation studies of critic and CCM on RealSR [5]. We set T = 4.

Exp. Critic CCM PSNR↑ MS-SSIM↑ LPIPS↓ DISTS↓ NIQE↓ CLIP-IQA↑

(a) 24.87 0.8870 0.2923 0.2065 5.942 0.4624
(b) ✓ 24.85 0.8868 0.2850 0.1974 5.473 0.4840
(c) ✓ ✓ 25.60 0.8928 0.2527 0.1525 5.084 0.4832

put. As shown in Tab. 3, CCM significantly improves PSNR, MS-SSIM, LPIPS,
DISTS, and NIQE results. The reason is that CCM mitigates the color inconsis-
tency issue which is typical for generative models in latent space [35,57,71]. As
shown in Fig. 5, CCM improves the consistency with the LR input in terms of
image color and details.

5 Conclusion

In this paper, we present RealSRT, a real-world super-resolution transformer
with a confidence-based iterative generation process. Trained on a mask mod-
eling task in discrete token space, our masked transformer iteratively generates
high-resolution tokens based on predicted confidences. At each iteration, high-
confidence tokens are kept and low-confidence tokens are masked out for the
next iteration, resulting in better perceptual quality and improved confidence
scores across multiple iteration steps. To improve the consistency with the low-
resolution input image, we also propose a conditional controlling module that uti-
lizes the low-resolution image to control the decoding process of high-resolution
tokens. Experimental results demonstrate that RealSRT is efficient and achieves
state-of-the-art performance on real-world datasets.
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Ethics statement

RealSRT is purely a research project. Currently, we have no plans to incorporate
RealSRT into a product or expand access to the public. We will also put Mi-
crosoft AI principles into practice when further developing the models. All the
datasets used in this paper are public and have been reviewed to ensure they do
not contain any personally identifiable information or offensive content.
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