
Gaussian Frosting: Editable Complex Radiance
Fields with Real-Time Rendering

Antoine Guédon and Vincent Lepetit

firstname.lastname@enpc.fr
LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France

https://anttwo.github.io/frosting/

(a) Rendering three different scenes with Frosting: Bicycle, Buzz, and Kitten.

(b) Composition: Buzz is riding a giant kitten jumping over a bench.

(c) Fuzzy details rendered with Frosting - occlu-
sions are correctly rendered

(d) Rendering with SuGaR [11] - the fur does not
occlude the legs correctly

Fig. 1: We propose to represent surfaces by a mesh covered with a “Frosting” layer
of varying thickness and made of 3D Gaussians. This representation captures both
complex volumetric effects created by fuzzy materials such as the cat’s hair or grass
as well as flat surfaces. Built from RGB images only, it can be rendered in real-time
and animated using traditional animation tools. In the example above, we were able
to animate both Buzz and the kitten, changing their original pose (a) while preserving
high-quality rendering (b): Contrary to SuGaR, very fine and fuzzy details such as the
kitten’s hair can be seen covering Buzz’s legs in a realistic way (c).

Abstract. We propose Gaussian Frosting, a novel mesh-based repre-
sentation for high-quality rendering and editing of complex 3D effects
in real-time. Our approach builds on the recent 3D Gaussian Splatting
framework, which optimizes a set of 3D Gaussians to approximate a ra-
diance field from images. We propose first extracting a base mesh from
Gaussians during optimization, then building and refining an adaptive
layer of Gaussians with a variable thickness around the mesh to better

https://orcid.org/0009-0001-3107-4454
https://orcid.org/0000-0001-9985-4433
https://anttwo.github.io/frosting/


2 A. Guédon and V. Lepetit

capture the fine details and volumetric effects near the surface, such as
hair or grass. We call this layer Gaussian Frosting, as it resembles a coat-
ing of frosting on a cake. The fuzzier the material, the thicker the frost-
ing. We also introduce a parameterization of the Gaussians to enforce
them to stay inside the frosting layer and automatically adjust their pa-
rameters when deforming, rescaling, editing or animating the mesh. Our
representation allows for efficient rendering using Gaussian splatting, as
well as editing and animation by modifying the base mesh. Additionally,
the mesh can be used for occlusion culling on Gaussians, accelerating
rendering during both optimization and inference. We demonstrate the
effectiveness of our method on various synthetic and real scenes, and
show that it outperforms existing surface-based approaches. We will re-
lease our code and a web-based viewer as additional contributions.

Keywords: Gaussian Splatting · Mesh · Differentiable rendering

1 Introduction

3D Gaussian Splatting (3DGS) [16] has recently conquered the field of 3D re-
construction and image-based rendering. By representing a scene with a large
set of tiny Gaussians, 3DGS allows for fast reconstruction and rendering, while
nicely capturing fine details and complex light effects. Compared to earlier neu-
ral rendering methods such as NeRFs [23], 3DGS is much more efficient for both
the reconstruction and rendering stages by a large margin.

However, like NeRFs, Vanilla 3DGS does not allow easy edition of the recon-
structed scene. The Gaussians are unstructured, disconnected from each other,
and it is not clear how a designer can manipulate them, for example to animate
the scene. Very recently, SuGaR [11] showed how to extract a mesh from the
output of 3DGS. Then, by constraining Gaussians to stay on the mesh, it is
possible to edit the scene with traditional Computer Graphics tools for manipu-
lating meshes. But by flattening the Gaussians onto the mesh, SuGaR loses the
rendering quality possible with 3DGS for fuzzy materials and volumetric effects.

In this paper, we introduce Gaussian Frosting–or Frosting, for short–a hybrid
representation of 3D scenes that is editable as a mesh while providing a rendering
quality at least equal, sometimes superior to 3DGS. The key idea of Frosting is
to augment a mesh with a layer containing Gaussians. The thickness of the
Frosting layer adapts locally to the material of the scene: The layer should be
thin for flat surfaces to avoid undesirable volumetric effects, and thicker around
fuzzy materials for realistic rendering. As shown in Figure 1, using the Frosting
representation, we can not only retrieve a highly accurate editable mesh but also
render complex volumetric effects in real-time.

Frosting is reminiscent of the Adaptive Shells representation [41], which relies
on two explicit triangle meshes extracted from a Signed Distance Function to



Gaussian Frosting 3

control volumetric effects. Still, Frosting allies a rendering quality superior to
the quality of Adaptive Shells to the speed efficiency of 3DGS for reconstruction
and rendering, while being easily editable as it depends on a single mesh.

While the Frosting representation is simple, it is challenging to define the local
thickness of its layer. To extract the mesh, we essentially rely on SuGaR, which
we improved with a technique (described in the supplementary material) to
automatically tune a critical hyperparameter. To estimate the Frosting thickness,
we introduce a method to define an inner and outer bound for the Frosting
layer at each vertex of this mesh based on the Gaussians initially retrieved by
3DGS around the mesh. Finally, we populate the Frosting layer with randomly
sampled Gaussians and optimize these Gaussians constrained to stay within the
layer. Our representation offers complete control over the number of Gaussians,
allowing users to efficiently distribute them throughout the layer for optimal
rendering. We also propose (a) a simple method to automatically adjust the
parameters of the Gaussians in real-time when animating the mesh, and (b)
a method to accelerate rendering and decrease optimization time by using the
mesh to perform occlusion culling on the Gaussians.

In summary, we propose a simple yet powerful surface representation that
captures complex volumetric effects, can be edited with traditional tools, and
can be rendered in real-time. We also propose a method to build this representa-
tion from images, based on recent developments on Gaussian Splatting. We will
release our code including a viewer usable in browser.

(a) Rendering (b) Thickness of the Frosting layer

Fig. 2: Visualization of the thickness of the Frosting layer on an example.
A thicker layer is shown with a brighter value. Our method automatically builds a
thick Frosting layer for fuzzy areas such as the fur of the red panda plush, and a thin
Frosting layer for flat surfaces such as the table or the floor. Adapting the thickness of
the Frosting layer allows for allocating more Gaussians in areas where more volumetric
rendering is necessary near the surface, resulting in an efficient distribution of Gaussians
in the scene. As we demonstrate in the paper, using an adaptive thickness results in
higher performance than using a predefined constant thickness, and reduces artifacts
when animating the mesh.



4 A. Guédon and V. Lepetit

(a) Scenes (b) Posing foreground meshes (c) Rendering composition

Fig. 3: Scene composition and animation. Using mesh editing tools in Blender, we
were able to combine and animate various elements from multiple scenes (a) to build
a whole new scene (c). We changed the pose of the characters by using the rigging
tool in Blender (b). Similarly to surface-based methods like SuGaR [11], Frosting can
be used for editing and compositing scenes, but allows for better rendering of complex
volumetric effects and fuzzy materials, such as hair or grass.

2 Related Work

The goal of image-based rendering (IBR) is to create a representation of a scene
from a given set of images in order to generate new images of the scene. Different
types of scene representations have been proposed, ranging from explicit and
editable ones like triangle meshes or point clouds, to implicit or non-editable
ones like voxel grids, multiplane images, or neural implicit functions.
Volumetric IBR methods. A recent breakthrough in IBR is Neural Radi-
ance Fields (NeRF) [23], which uses a multilayer perceptron (MLP) to model
a continuous volumetric function of density and color. NeRF can render novel
views with high quality and view-dependent effects, by using volumetric ray
tracing. However, NeRF is slow and memory hungry. Several works have tried
to improve NeRF’s efficiency and training speed by using discretized volumetric
representations like voxel grids and hash tables to store learnable features that
act as inputs for a much smaller MLP [5,15, 24, 38, 46], or to improve rendering
performance by using hierarchical sampling strategies [2,13,30,47]. Other works
have also proposed to modify NeRF’s representation of radiance and include an
explicit lighting model to increase the rendering quality for scenes with specular
materials [3, 20, 37, 39, 48]. However, most volumetric methods rely on implicit
representations that are not suited to editing compared to triangle meshes, for
which most standard graphics hardware and software are tailored.
Surface-based IBR methods. Triangle meshes have been a popular 3D rep-
resentation for generating novel views of scenes [4, 12, 42] after Structure-from-
motion (SfM) [36] and multi-view stereo (MVS) [10] have enabled 3D reconstruc-



Gaussian Frosting 5

tion of surfaces. Deep-learning-based mesh representations [31,32] have also been
used for improving view synthesis using explicit surface meshes; However, even
though mesh-based methods allow for very efficient rendering, they have trouble
capturing complex and very fine geometry as well as fuzzy materials.
Hybrid IBR methods. Some methods use a hybrid volumetric representation
to recover surface meshes that are suitable for downstream graphics applications
while efficiently modeling view-dependent appearance. Specifically, some works
optimize a Neural Radiance Field in which the density is replaced by an implicit
signed distance function (SDF), which provides a stronger regularization on the
underlying geometry [8,9,22,25,40,43]. However, most of these methods are not
aimed at real-time rendering. To mitigate this issue, other approaches greatly
accelerate rendering by “baking” the rendering computation into the extracted
mesh after optimization with a dedicated view-dependent appearance model [7,
29, 44]. Even though these surface-based methods encode the surface using a
volumetric function represented by an MLP during optimization, they struggle
in capturing fine details or fuzzy materials compared to volumetric methods.

Adaptive Shells [41] is a recent method that achieves a significant improve-
ment in rendering quality by using a true hybrid surface-volumetric approach
that restricts the volumetric rendering of NeRFs to a thin layer around the
object. This layer is bounded by two explicit meshes, which are extracted af-
ter optimizing an SDF-based radiance field. The layer’s variable thickness also
improves the rendering quality compared to a single flat mesh. This method
combines the high-quality rendering of a full volumetric approach with the ed-
itability of a surface-based approach by manipulating the two meshes that define
the layer. However, Adaptive Shells depends on a neural SDF [40], which has
some limitations in its ability to reconstruct precise surfaces, and requires more
than 8 hours to optimize a single synthetic scene, which is much longer than
the recent Gaussian Splatting methods. Moreover, similar to CageNeRF [27],
Adaptive Shells relies on cage-based deformations to manipulate or animate the
scene. Unlike coarse cages, our meshes can have high resolution, allowing for
very precise and fine-grained sculpting or animation.
Gaussian Splatting. Gaussian Splatting [16] is a new volumetric representa-
tion inspired by point cloud-based radiance fields [19, 33] which is very fast to
optimize and allows for real-time rendering with very good quality. One of its
greatest strengths is its explicit 3D representation, which enables editing tasks as
each Gaussian exists individually and can be easily adjusted in real-time. Some
appearance editing and segmentation methods have been proposed [6,14,17,45],
but the lack of structure in the point cloud makes it almost impossible for a 3D
artist or an animator to easily modify, sculpt or animate the raw representation.
The triangle mesh remains the standard 3D structure for these applications. A
recent work, SuGaR [11], extends this framework by aligning the Gaussians with
the surface and extracting a mesh from them. Gaussians are finally flattened and
pinned on the surface of the mesh, which provides a hybrid representation com-
bining the editability of a mesh with the high-quality rendering of Gaussian
Splatting. However, SuGaR remains a surface-based representation with limited



6 A. Guédon and V. Lepetit

capacity in reconstructing and rendering fuzzy materials and volumetric effects,
resulting in a decrease in performance compared to vanilla Gaussian Splatting.

3 3D Gaussian Splatting and Surface Reconstruction

Our method relies on the original 3D Gaussian Splatting (3DGS) method [16] for
initialization and on SuGaR [11] to align Gaussians with the surface of the scene
and facilitate the extraction of a mesh. We briefly describe 3DGS and SuGaR
in this section before describing our method in the next section.

3.1 3D Gaussian Splatting

3DGS represents the scene as a large set of Gaussians. Each Gaussian g is
equipped with a mean µg ∈ R3 and a positive-definite covariance matrix Σg ∈
R3×3. The covariance matrix is parameterized by a scaling vector sg ∈ R3 and
a quaternion qg ∈ R4 encoding the rotation of the Gaussian.

In addition, each Gaussian has a view-dependent radiance represented by
an opacity αg ∈ [0, 1] and a set of spherical harmonics coordinates defining the
colors emitted for all directions. To render an image, a rasterizer “splats” the 3D
Gaussians into 2D Gaussians parallel to the image plane and blends the splats
depending on their opacity and depth. This rendering is extremely fast, which is
one of the advantages of 3DGS over volumetric rendering as in NeRFs [2,23,24].

Gaussian Splatting can be seen as an approximation of the traditional vol-
umetric rendering of radiance fields with the following density function d, com-
puted as the sum of the Gaussian values weighted by their alpha-blending coef-
ficients at any 3D point p ∈ R3:

d(p) =
∑
g

αg exp

(
−1

2
(p− µg)

TΣ−1
g (p− µg)

)
. (1)

We initialize our Gaussian Frosting method using a vanilla 3DGS optimiza-
tion: Gaussians are initialized using the point cloud produced by an SfM [36]
algorithm like COLMAP [34,35], required to compute camera poses. The Gaus-
sians’ parameters (3D means, scaling vectors, quaternions, opacities, and spher-
ical harmonics coordinates) are then optimized to make the renderings match
the ground truth images of the scene, using a rendering loss that only consists in
a combination of a pixel-wise L1 distance and a more structural D-SSIM term.

3.2 SuGaR Mesh Extraction

Vanilla 3DGS does not have regularization explicitly encouraging Gaussians to
align with the true surface of the scene. Our Gaussian Frosting representation
relies on a mesh that approximates this surface, in order to be editable by tradi-
tional tools. To obtain this mesh, we rely on the method proposed in SuGaR [11],
which we improve by automatically selecting a critical hyperparameter.



Gaussian Frosting 7

Fig. 4: Creating a Layer of Gaussian Frosting. To build our proposed Frosting
representation, we start by optimizing a Gaussian Splatting representation using a
rendering loss without any additional constraint, to let Gaussians position themselves.
We refer to these Gaussians as unconstrained. We then regularize these Gaussians to
enforce their alignement with the surface, and extract a mesh that will serve as a basis
for the Frosting. Next, we use the misalignment of surface-aligned Gaussians to identify
areas where more volumetric rendering is needed, and we build search intervals Ji

around the mesh’s vertices vi. Finally, we use the density function of the unconstrained
Gaussians to refine the intervals, resulting in a Frosting layer. We finally sample a novel,
densified set of Gaussians inside the layer.

SuGaR proposes a regularization term encouraging the alignment of the 3D
Gaussians with the true surface of the scene during the optimization of Gaus-
sian Splatting, as well as a mesh extraction method. After enforcing the regu-
larization, the optimization provides Gaussians that are mostly aligned with the
surface albeit not perfectly: We noticed that in practice, a large discrepancy be-
tween the regularized Gaussians and the extracted mesh indicates the presence
of fuzzy materials or surfaces that require volumetric rendering. We thus exploit
this discrepancy as a cue to evaluate where the Frosting should be thicker.

4 Creating a Frosting Layer from Images

In this section, we describe our Gaussian Frosting creation method: First, we
extract an editable surface with optimal resolution using SuGaR. We then detail
how we use this surface-based model to go back to a volumetric but editable rep-
resentation built around the mesh. This representation adapts to the complexity
of the scene and its need for more volumetric effects. Finally, we describe how we
parameterize and refine this representation. An overview is provided Figure 4.

4.1 Forward Process: From Volume to Surface

We start by optimizing an unconstrained Gaussian Splatting representation for
a short period of time to let Gaussians position themselves. We will refer to
such Gaussians as unconstrained. We save these Gaussians aside, and apply the
regularization term from SuGaR to enforce the alignment of the Gaussians with
the real surface. We will refer to these Gaussians as regularized.

Once we obtain the regularized Gaussians, we extract a surface mesh from
the Gaussian Splatting representation. This surface mesh serves as a basis for



8 A. Guédon and V. Lepetit

(a) Predefined, large D as in SuGaR [11] (b) Adaptable D fitting the complexity

Fig. 5: Comparison of meshes extracted by SuGaR from Shelly [41] without
and with our improvement that automatically tunes the octree depth D in
Poisson reconstruction depending on the complexity of the scene. Our tech-
nique (bottom) drastically reduces surface artifacts for many scenes, such as the holes
and the ellipsoidal bumps on the surface when using the default values from [11] (top).

our representation. Like SuGaR [11], we then sample points on the visible level
set of the Gaussian splatting density function, and apply Poisson reconstruction.

In the supplementary material, we describe our technique to automatically
estimate a good value for a critical hyperparameter used by Poisson reconstruc-
tion, namely the octree depth D, and show that selecting the right value for D
can drastically improve both the quality of the mesh and the rendering perfor-
mance of our model. Figure 5 illustrates this point.

4.2 Backward Process: From Surface to Volume

After extracting a base mesh, we build a Frosting layer with a variable thickness
and containing Gaussians around this mesh. We want this layer to be thicker
in areas where more volumetric rendering is necessary near the surface, such as
fuzzy material like hair or grass for example. On the contrary, this layer should
be very thin near the parts of the scene that corresponds to well-defined flat
surfaces, such as wood or plastic for example.

As illustrated in Figure 6, to define this layer, we introduce two values δin
i and

δout
i for each vertex vi of the extracted base mesh M. This gives two surfaces

with vertices (vi + δin
i ni)i and (vi + δout

i ni)i respectively, where ni is the mesh
normal at vertex vi. These two surfaces define the inner and outer bounds of
the Frosting layer. Note that we do not have to build them explicitly as they
directly depend on the base mesh and the δin

i ’s and δout
i ’s.

To find good values for the δin
i ’s and δout

i ’s, we initially tried using directly
the unconstrained Gaussians, i.e., the Gaussians obtained before applying the
regularization term from SuGaR. Unfortunately, without regularization, Gaus-
sian Splatting tends to retrieve a thick layer of Gaussians even for “non-fuzzy”
surfaces, which would result in excessively large values for δin

i and δout
i . More-

over, the unconstrained Gaussians generally contain many transparent floaters
and other outlier Gaussians. Such Gaussians could also bias the shifts toward
unnecessarily large values. On the other hand, using only the regularized Gaus-
sians to setup the δin

i ’s and δout
i ’s could miss fuzzy areas since these Gaussians

are made flatter by the regularization.
Our solution is thus to consider both the unconstrained and the regularized

Gaussians. More exactly, we estimate the Frosting thickness from the thickness
of the unconstrained Gaussians by looking for their isosurfaces, BUT, to make
sure we consider the isosurfaces close to the scene surface, we search for the



Gaussian Frosting 9

Fig. 6: How we define the inner and outer bounds of the Frosting layer. See
text in Section 4.2.

isosurfaces close to the regularized Gaussians: Even under the influence of the
regularization term from SuGaR, Gaussians do not align well with the geometry
around surfaces with fuzzy details. As a consequence, the local thickness of the
regularized Gaussians is a cue on how fuzzy the material is.

Figure 6 illustrates what we do to fix the δin
i ’s and δout

i ’s. To restrict the
search, we define a first interval Ii = [−3σi, 3σi] for each vertex vi, where σi

is the standard deviation in the direction of ni of the regularized Gaussian
the closest to vi. Ii is the confidence interval for the 99.7 confidence level of
the 1D Gaussian function of t along the normal. Fuzzy parts result in general
in large Ii. We could use the Ii’s to restrict the search for the isosurfaces of
the unconstrained Gaussians. A more reliable search interval Ji is obtained by
looking for the isosurfaces of the regularized Gaussians along ni within Ii:

ϵini = inf(T ) , ϵout
i = sup(T ) , with T = {t ∈ Ii | dr(vi + tni) ≥ λ} , (2)

where dr is the density function as defined in Eq. (1) for the regularized Gaus-
sians. In practice, we use an isosurface level λ = 0.01, i.e., close to zero. We
use ϵini and ϵout

i to define interval Ji: Ji =
[
ϵmid
i − kϵhalf

i , ϵmid
i + kϵhalf

i

]
, with

ϵmid
i = (ϵin+ ϵout)/2 and ϵhalf

i = (ϵout− ϵin)/2. We take k = 3 as it gives an inter-
val large enough to include most of the unconstrained Gaussians while rejecting
the outlier ones. Finally, we compute the inner and outer shifts δin

i and δout
i as:

δin
i = inf(V ) , δout

i = sup(V ) , with V = {t ∈ Ji | du(vi + tni) ≥ λ} . (3)

where du is the density function for the unconstrained Gaussians.

4.3 Frosting Optimization

Once we constructed the outer and inner bounds of the Frosting layer, we initial-
ize a densified set of Gaussians inside this layer and optimize them using 3DGS
rendering loss as the unconstrained Gaussians. To make sure the Gaussians stay
inside the frosting layer during optimization, we introduce a new parameteri-
zation of the Gaussians. Moreover, this parameterization will make possible to
easily adjust the Gaussians’ parameters when editing the scene.
Parameterization. Let us consider a triangular face of the base mesh M,
with vertices denoted by v0,v1, and v2 and their corresponding normals n0,n1,
and n2. After extracting inner and outer shifts from unconstrained Gaussians,



10 A. Guédon and V. Lepetit

we obtain six new vertices (vi+δin
i ni)i=0,1,2 and (vi+δout

i ni)i=0,1,2 that respec-
tively belong to the inner and outer bounds of the frosting. Specifically, these six
vertices delimit an irregular triangular prism. We will refer to such polyhedrons
as “prismatic cells”. We parameterize the 3D mean µg ∈ R3 of a Gaussian g ∈ G
located inside a prismatic cell with a set of six barycentric coordinates split into
two subsets (b

(i)
g )i=0,1,2 and (β

(i)
g )i=0,1,2, such that

µg =

2∑
i=0

(
b(i)g

(
vi + δout

i ni

)
+ β(i)

g

(
vi + δin

i ni

))
, (4)

with barycentric coordinates verifying
∑2

i=0(b
(i)
g + β

(i)
g ) = 1. Using barycentric

coordinates enforces Gaussians to stay inside their corresponding prismatic cell,
and guarantees the stability of our representation during optimization. In prac-
tice, we apply a softmax activation on the parameters to optimize to obtain
barycentric coordinates that sum up to 1.
Initialization. For a given budget N of Gaussians provided by the user, we
initialize N Gaussians in the scene by sampling N 3D centers µg in the frosting
layer. Specifically, for sampling a single Gaussian, we first randomly select a
prismatic cell with a probability proportional to its volume. Then, we sample
random coordinates that sum up to 1. This sampling allows for allocating more
Gaussians in areas with fuzzy and complex geometry, where more volumetric
rendering is needed. However, flat parts in the layer may also need a large number
of Gaussians to recover texture details. Therefore, in practice, we instantiate N/2
Gaussians with uniform probabilities in the prismatic cells, and N/2 Gaussians
with probabilities proportional to the volume of the cell.

We initialize the colors of the Gaussians with the color of the closest Gaussian
in the unconstrained representation. However, we do not use the unconstrained
Gaussians to initialize opacity, rotation, and scaling factors, as in practice, fol-
lowing the strategy from 3DGS [16] for these parameters provides better perfor-
mance: We suppose the positions and configuration of the Gaussians inside the
Frosting layer are already a good initialization, and resetting opacities, scaling
factors and rotations helps Gaussians to take a fresh start, avoiding a potential
local minimum encountered by previous unconstrained Gaussians.

Our representation allows for a much better control over the number of Gaus-
sians than the original Gaussian Splatting densification process, as it is up to
the user to decide on a number of Gaussians to instantiate in the frosting layer.
These Gaussians will be spread in the entire frosting in a very efficient way,
adapting to the need for volumetric rendering in the entire scene.
Optimizing the Gaussian Frosting. We optimize the representation using the
photometric loss from Vanilla 3DGS [16] while keeping the number of Gaussians
constant. Note that compared to Vanilla 3DGS, this allows to control precisely
the number of Gaussians.
Faster Training and Rendering with Occlusion Culling. Frosting’s mesh
can also be used for occlusion culling, i.e., not rendering the Gaussians not visible
from the viewpoint for an image. We implemented an optional, naive occlusion



Gaussian Frosting 11

(a) Ground Truth Image (b) 3DGS [16] Frosting (Ours)

Fig. 7: Close-up views of fuzzy materials from the Shelly dataset [41] recon-
structed with vanilla Gaussian Splatting [16] (center) and Frosting (right).

culling strategy in PyTorch, consisting in first rasterizing the base mesh to iden-
tify which triangles are visible from the current point of view, then splatting only
the Gaussians belonging to the corresponding Frosting cells. Occlusion culling
accelerates rendering as it reduces the number of Gaussians to splat. During
training, we precompute the mesh rasterization results for all viewpoints.
Editing, Deforming, and Animating the Frosting. When deforming the
base mesh, the positions of Gaussians automatically adjust in the frosting layer
thanks to the use of the barycentric coordinates. To automatically adjust the
rotation and scaling factors of the Gaussians, we propose a strategy different
from the surface-based adjustment from SuGaR: In a given prismatic cell with
center c and vertices vi for 0 ≤ i < 5, we first estimate the local transformation
at each vertex vi by computing the rotation and rescaling of the vector (c−vi).
Then, we use the barycentric coordinates of a Gaussian g to compute an average
transformation at point µg from the transformation of all 6 vertices, and we
adjust the rotation, scaling factors and spherical harmonics of g by applying this
average transformation. We provide more details in the supplementary material.

5 Experiments

5.1 Implementation Details

We implemented our method with PyTorch [26] and optimized the representa-
tions on a single GPU Nvidia Tesla V100 SXM2 32 Go. Optimizing a full, editable
Frosting model takes between 45 and 90 minutes depending on the complexity
of the scene. This optimization is much faster than the most similar approach
in the literature, namely Adaptive Shells [41], that requires 8 hours on a single
GPU for a synthetic scene, and 1.7 times more iterations for a real scene.
Extracting the surface mesh. When reconstructing real scenes, we follow
the approach from vanilla 3DGS [16] and first use COLMAP to estimate the
camera poses and extract a point cloud for initialization. For synthetic scenes
with known camera poses, we just use a random point cloud for initialization.
Then, we optimize an unconstrained Gaussian Splatting representation for 7,000
iterations. We save these Gaussians aside and apply the regularization term from
SuGaR until iteration 15,000. We finally compute an optimal depth parameter



12 A. Guédon and V. Lepetit

D̄ with γ = 100 and extract a mesh from the regularized Gaussians by applying
Poisson surface reconstruction as described in [11].
Optimizing the Gaussian Frosting. Given a budget of N Gaussians, we ini-
tialize N Gaussians in the Frosting layer and optimize them for 15,000 additional
iterations, which gives a total of 30,000 iterations, similarly to 3DGS [16]. Vanilla
3DGS optimization generally produces between 1 and 5 million Gaussians. In
practice, we use N=5 million for real scenes and N=2 million for synthetic
scenes. When using occlusion culling, we rely on Nvdiffrast [21] to rasterize the
mesh and identify which Gaussians are visible from the current viewpoint.

5.2 Real-Time Rendering in Complex Scenes

To evaluate the quality of Frosting’s rendering, we compute the standard metrics
PSNR, SSIM and LPIPS [49] and compare to several baselines, some of them
focusing only on Novel View Synthesis [1, 2, 16, 23, 24, 40, 46] and others relying
on an editable representation [7,11,28,29,41,44], just like Frosting. We compute
metrics on several challenging datasets containing synthetic and real scenes.

Table 1: Quantitative evaluation of rendering quality on the synthetic
datasets Shelly [41] and NeRFSynthetic [23]. Frosting is the best among all
methods, outperforming even non-editable models that only focus on rendering. Con-
trary to an unconstrained 3D Gaussian Splatting [16], our representation allows for
densifying Gaussians more efficiently by targeting challenging and fuzzy areas.

Shelly NeRFSynthetic

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [23] 31.27 0.893 0.157 31.01 0.947 0.081
NeuS [40] 29.98 0.893 0.158 – – –
Mip-NeRF [1] 32.59 0.899 0.148 33.09 0.961 0.043
I-NGP [24] 33.22 0.922 0.125 33.18 – –
3DGS [16] 37.66 0.958 0.066 33.32 0.970 0.030

MobileNeRF [7] 31.62 0.911 0.129 30.90 0.947 0.062
Adaptive Shells [41] 36.02 0.954 0.079 31.84 0.957 0.056
SuGaR [11] 36.33 0.954 0.059 32.40 0.964 0.033
Frosting (Ours) 39.84 0.977 0.033 33.03 0.967 0.029

Shelly. We first compare Frosting to state-of-the-art methods on the dataset
Shelly introduced in Adaptive Shells [41]. Shelly includes six synthetic scenes
with challenging fuzzy materials that surface-based approaches struggle to re-
construct accurately. As we show in Table 1 and Figure 7, Frosting outperforms
every other methods for all metrics. Frosting even outperforms with a wide mar-
gin vanilla 3DGS [16], which is free from any surface constraints and only focuses
on optimizing the rendering quality. Indeed, the sampling of Gaussians inside the
Frosting layer provides a much more efficient densification of Gaussians than the
strategy proposed in 3DGS, targeting the challenging fuzzy areas close to the
surface and allocating more Gaussians where volumetric rendering is needed.
NeRFSynthetic. Table 1 provides a comparison on the NeRFSynthetic data-
set [23], which consists in eight synthetic scenes. Frosting performs the best
among the editable methods, surpassing SuGaR [11], and achieves results on
par with vanilla 3DGS and other radiance field methods.



Gaussian Frosting 13

Table 2: Quantitative evaluation of rendering quality on the Mip-NeRF 360
dataset [2]. Frosting is best among the methods that recover an editable Radiance
Field with explicit meshes, and achieves performance comparable to NeRF methods
and vanilla 3D Gaussian Splatting.

Indoor scenes Outdoor scenes Average on all scenes

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

No mesh (except Frosting)

Plenoxels [46] 24.83 0.766 0.426 22.02 0.542 0.465 23.62 0.670 0.443
INGP-Base [24] 28.65 0.840 0.281 23.47 0.571 0.416 26.43 0.725 0.339
INGP-Big [24] 29.14 0.863 0.242 23.57 0.602 0.375 26.75 0.751 0.299
Mip-NeRF 360 [2] 31.58 0.914 0.182 25.79 0.746 0.247 29.09 0.842 0.210
3DGS [16] 30.41 0.920 0.189 26.40 0.805 0.173 28.69 0.870 0.182
Frosting (Ours) 30.49 0.925 0.190 25.57 0.765 0.225 28.38 0.856 0.205

With mesh

MobileNeRF [7] 25.74 0.757 0.453 22.90 0.524 0.463 24.52 0.657 0.457
NeRFMeshing [28] 23.83 – – 22.23 – – 23.15 – –
BakedSDF [44] 27.20 0.845 0.300 23.40 0.577 0.351 25.57 0.730 0.321
B.O. Grids [29] 27.71 0.873 0.227 – – – – – –
Adaptive Shells [41] 29.19 0.872 0.285 23.17 0.606 0.389 26.61 0.758 0.330
SuGaR [11] 29.43 0.910 0.216 24.40 0.699 0.301 27.27 0.820 0.253
Frosting (Ours) 30.49 0.925 0.190 25.57 0.765 0.225 28.38 0.856 0.205

Mip-NeRF 360. We also compare Frosting to state-of-the-art approaches on
the real scenes from the Mip-NeRF 360 dataset [2]. This dataset contains images
from seven challenging real scenes, but was captured with ideal lighting condition
and provides really good camera calibration data and initial SfM points. Results
are available in Table 2. Frosting reaches the best performance among all ed-
itable methods, and obtains worse but competitive results compared to vanilla
Gaussian Splatting. When Gaussian Splatting is given a very good initialization
with a large amount of SfM points, the benefits from the Gaussian Frosting
densification are not as effective, and optimizing Gaussians without additional
constraints as in 3DGS slightly improves performance.

Table 3: Quantitative evaluation of rendering quality on real scenes from
Tanks&Temples [18], Deep Blending [12] and our custom dataset. Our rep-
resentation performs the best among the surface-based methods, and achieves similar
or better performance than unconstrained 3DGS and other non-editable methods.

Tanks&Temples [18] Deep Blending [12] Custom dataset

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Plenoxels [46] 21.07 0.719 0.379 23.06 0.794 0.510 – – –
INGP-Base [24] 21.72 0.723 0.330 23.62 0.796 0.423 – – –
INGP-Big [24] 21.92 0.744 0.304 24.96 0.817 0.390 – – –
Mip-NeRF 360 [2] 22.22 0.758 0.257 29.40 0.901 0.244 – – –
3DGS [16] 23.14 0.841 0.183 29.41 0.903 0.243 34.17 0.944 0.165

SuGaR [11] 21.58 0.795 0.219 29.41 0.893 0.267 32.05 0.930 0.180
Frosting (Ours) 23.13 0.836 0.174 29.62 0.900 0.236 33.82 0.945 0.149

Additional real scenes. We finally compare Frosting to the baselines with
captures of real scenes that present variations in exposure or white balance.
To this end, we follow [16] and select the same two subsets of two scenes from
Tanks&Temples (Truck and Train) and Deep Blending (Playroom and Dr. John-
son). We also evaluate a few methods on a custom dataset that consists of four



14 A. Guédon and V. Lepetit

casual captures made with a smartphone (we call these scenes SleepyCat, Buzz,
RedPanda, and Knight). Results are available in Table 3. In these more realistic
scenarios, Frosting achieves once again similar or better performance than un-
constrained 3DGS even though it is an editable representation that relies on a
single, animatable mesh.

5.3 Accelerating Training and Rendering with Occlusion Culling
As shown in Figure 8, our simple occlusion culling strategy decreases only slightly
the rendering quality of Frosting on Shelly and results in a 100% increase in
training speed. The gain in inference speed depends on the resolution of the mesh,
which is a freely adjustable hyperparameter. When using low-resolution meshes,
we noticed a 30% increase in inference speed on average over all datasets, and
around 60% for some views. Even with high-resolution meshes, inference speed
increases at least by 10% on average. Note that the speedup depends heavily on
the scene: Scenes from current benchmarks are small and often object-centric
and thus not favorable for occlusion culling, the gain for larger scenes (think
a building with many rooms) would become significantly higher. Moreover, our
implementation is naive and consists in filtering Gaussians then applying the
original 3DGS rasterizer. Writing a dedicated CUDA kernel combining culling
and rasterization would lead to further increase in rendering speed.

PSNR↑ SSIM↑ LPIPS↓

Vanilla 3DGS 37.66 0.958 0.066
Adaptive Shells 36.02 0.954 0.079
Frosting without occlusion culling. 39.84 0.977 0.033
Frosting with occlusion culling. 38.86 0.973 0.038

Fig. 8: Occlusion culling with Frosting. Left: Rendering quality on Shelly. Right:
Scenes optimized and rendered with occlusion culling.

5.4 Editing, Compositing, and Animating Gaussian Frosting
As shown in Figure 1 and Figure 3, our Frosting representation automatically
adapts when editing, rescaling, deforming, combining or animating base meshes.
Frosting offers editing capabilities similar to SuGaR [11] and surface-based ap-
proaches, but achieves much better performance thanks to its layer with variable
thickness that adapts to the volumetric effects and fuzzy materials in the scene.

6 Conclusion
We proposed a simple yet powerful surface representation with many advantages
over current representations together with a method to extract it from images.
One limitation of our implementation is the simple deformation model as it is
piecewise linear. It should be however simple to replace it with a more sophisti-
cated, physics-based deformation model. Another limitation is that our models
are larger than vanilla 3DGS models since we have to include barycentric coor-
dinates and mesh vertices. Recent works about compressing 3DGS could help.
We believe that the Frosting representation can be useful beyond image-based
rendering. It could for example be used in more general Computer Graphics
applications to render complex materials in real-time.



Gaussian Frosting 15

Acknowledgements

This work was granted access to the HPC resources of IDRIS under the allocation
2024-AD011013387R2 made by GENCI, and was in part supported by the ERC
grant “explorer ” (No. 101097259).

References

1. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Ra-
diance Fields. In: International Conference on Computer Vision (2021)

2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF
360: Unbounded Anti-Aliased Neural Radiance Fields. In: Conference on Computer
Vision and Pattern Recognition (2022)

3. Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.P.A.: NeRD:
Neural Reflectance Decomposition from Image Collections. In: International Con-
ference on Computer Vision (2021)

4. Buehler, C., Bosse, M., Mcmillan, L., Gortler, S., Cohen, M.: Unstructured Lumi-
graph Rendering. In: ACM SIGGRAPH (2001)

5. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: Tensorial Radiance Fields.
In: European Conference on Computer Vision (2022)

6. Chen, Y., Chen, Z., Zhang, C., Wang, F., Yang, X., Wang, Y., Cai, Z., Yang, L.,
Liu, H., Lin, G.: GaussianEditor: Swift and Controllable 3D Editing with Gaussian
Splatting. In: arXiv Preprint (2023)

7. Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: MobileNeRF: Exploiting
the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile
Architectures. In: Conference on Computer Vision and Pattern Recognition (2023)

8. Chong Bao and Bangbang Yang, Junyi, Z., Hujun, B., Yinda, Z., Zhaopeng, C.,
Guofeng, Z.: NeuMesh: Learning Disentangled Neural Mesh-Based Implicit Field
for Geometry and Texture Editing. In: European Conference on Computer Vision
(2022)

9. Darmon, F., Bascle, B., Devaux, J.C., Monasse, P., Aubry, M.: Improving Neural
Implicit Surfaces Geometry with Patch Warping. In: Conference on Computer
Vision and Pattern Recognition (2022)

10. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.: Multi-View Stereo for
Community Photo Collections. In: International Conference on Computer Vision
(2007)

11. Guédon, A., Lepetit, V.: SuGaR: Surface-Aligned Gaussian Splatting for Efficient
3D Mesh Reconstruction and High-Quality Mesh Rendering. In: arXiv preprint
arXiv:2311.12775 (2023)

12. Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep
Blending for Free-Viewpoint Image-Based Rendering. In: ACM SIGGRAPH (2018)

13. Hedman, P., Srinivasan, P.P.: Baking Neural Radiance Fields for Real-Time View
Synthesis. In: International Conference on Computer Vision (2021)

14. Huang, J., Yu, H.: Point’n Move: Interactive Scene Object Manipulation on Gaus-
sian Splatting Radiance Fields. In: arXiv Preprint (2023)

15. Karnewar, A., Ritschel, T., Wang, O., Mitra, N.: ReLU Fields: The Little Non-
Linearity That Could. In: ACM SIGGRAPH (2022)



16 A. Guédon and V. Lepetit

16. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian Splatting for
Real-Time Radiance Field Rendering. In: ACM SIGGRAPH (2023)

17. Kim, C.M., Wu, M., Kerr, J., Tancik, M., Goldberg, K., Kanazawa, A.: GARField:
Group Anything with Radiance Fields. In: arXiv Preprint (2024)

18. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and Temples: Benchmarking
Large-Scale Scene Reconstruction. In: ACM SIGGRAPH (2017)

19. Kopanas, G., Philip, J., Leimkühler, T., Drettakis, G.: Point-Based Neural Ren-
dering with Per-View Optimization. In: Computer Graphics Forum (2021)

20. Kuang, Z., Olszewski, K., Chai, M., Huang, Z., Achlioptas, P., Tulyakov, S.:
NeROIC: Neural Rendering of Objects from Online Image Collections. In: ACM
SIGGRAPH (2022)

21. Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular Prim-
itives for High-Performance Differentiable Rendering. In: ACM SIGGRAPH Asia
(2020)

22. Li, Z., Müller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.:
Neuralangelo: High-Fidelity Neural Surface Reconstruction. In: Conference on
Computer Vision and Pattern Recognition (2023)

23. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In:
European Conference on Computer Vision (2020)

24. Müller, T., Evans, A., Schied, C., Keller, A.: Instant Neural Graphics Primitives
with a Multiresolution Hash Encoding. In: ACM SIGGRAPH (2022)

25. Oechsle, M., Peng, S., Geiger, A.: UNISURF: Unifying Neural Implicit Surfaces
and Radiance Fields for Multi-View Reconstruction. In: International Conference
on Computer Vision (2021)

26. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., Devito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala,
S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In:
Advances in Neural Information Processing Systems. Curran Associates Inc. (2019)

27. Peng, Y., Yan, Y., Liu, S., Cheng, Y., Guan, S., Pan, B., Zhai, G., Yang, X.:
CageNeRF: Cage-based Neural Radiance Fields for Generalized 3D Deformation
and Animation. In: Advances in Neural Information Processing Systems (2022)

28. Rakotosaona, M.J., Manhardt, F., Arroyo, D.M., Niemeyer, M., Kundu, A.,
Tombari, F.: NeRFMeshing: Distilling Neural Radiance Fields into Geometrically-
Accurate 3D Meshes. In: International Conference on 3D Vision (2023)

29. Reiser, C., Garbin, S., Srinivasan, P.P., Verbin, D., Szeliski, R., Mildenhall, B.,
Barron, J.T., Hedman, P., Geiger, A.: Binary Opacity Grids: Capturing Fine Ge-
ometric Detail for Mesh-Based View Synthesis (2024)

30. Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: Speeding Up Neural Radiance
Fields with Thousands of Tiny MLPs. In: International Conference on Computer
Vision (2021)

31. Riegler, G., Koltun, V.: Free View Synthesis. In: European Conference on Com-
puter Vision (2020)

32. Riegler, G., Koltun, V.: Stable View Synthesis. In: Conference on Computer Vision
and Pattern Recognition (2021)

33. Rückert, D., Franke, L., Stamminger, M.: ADOP: Approximate Differentiable One-
Pixel Point Rendering. In: ACM SIGGRAPH (2022)

34. Schönberger, J.L., Frahm, J.M.: Structure-from-Motion Revisited. In: Conference
on Computer Vision and Pattern Recognition (2016)



Gaussian Frosting 17

35. Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise View Selection
for Unstructured Multi-View Stereo. In: European Conference on Computer Vision
(2016)

36. Snavely, N., Seitz, S.M., Szeliski, R.: Photo Tourism: Exploring Photo Collections
in 3D. In: ACM SIGGRAPH (2006)

37. Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.:
NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis.
In: Conference on Computer Vision and Pattern Recognition (2021)

38. Sun, C., Sun, M., Chen, H.T.: Direct Voxel Grid Optimization: Super-Fast Con-
vergence for Radiance Fields Reconstruction. In: Conference on Computer Vision
and Pattern Recognition (2022)

39. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.:
Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields.
In: Conference on Computer Vision and Pattern Recognition (2022)

40. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: Learning
Neural Implicit Surfaces by Volume Rendering for Multi-View Reconstruction. In:
Advances in Neural Information Processing Systems (2021)

41. Wang, Z., Shen, T., Nimier-David, M., Sharp, N., Gao, J., Keller, A., Fidler, S.,
Müller, T., Gojcic, Z.: Adaptive Shells for Efficient Neural Radiance Field Render-
ing. In: ACM SIGGRAPH (2023)

42. Wood, D.N., Azuma, D.I., Aldinger, K., Curless, B., Duchamp, T., Salesin, D.H.,
Stuetzle, W.: Surface Light Fields for 3D Photography. In: ACM SIGGRAPH
(2000)

43. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume Rendering of Neural Implicit
Surfaces. In: Advances in Neural Information Processing Systems (2021)

44. Yariv, L., Hedman, P., Reiser, C., Verbin, D., Srinivasan, P.P., Szeliski, R., Barron,
J.T.: BakedSDF: Meshing Neural SDFs for Real-Time View Synthesis. In: ACM
SIGGRAPH (2023)

45. Ye, M., Danelljan, M., Yu, F., Ke, L.: Gaussian Grouping: Segment and Edit
Anything in 3D Scenes. In: arXiv Preprint (2023)

46. Yu, A., Fridovich-Keil, S., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenox-
els: Radiance Fields Without Neural Networks. In: Conference on Computer Vision
and Pattern Recognition (2022)

47. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees For Real-Time
Rendering of Neural Radiance Fields. In: International Conference on Computer
Vision (2021)

48. Zhang, K., Luan, F., Wang, Q., Bala, K., Snavely, N.: PhySG: Inverse Rendering
with Spherical Gaussians for Physics-Based Material Editing and Relighting. In:
Conference on Computer Vision and Pattern Recognition (2021)

49. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric. In: Conference on Computer
Vision and Pattern Recognition (2018)


	Gaussian Frosting: Editable Complex Radiance Fields with Real-Time Rendering

