
Frugal 3D Point Cloud Model Training via
Progressive Near Point Filtering and

Fused Aggregation

Donghyun Lee1 , Yejin Lee2, Jae W. Lee1 , and Hongil Yoon3

1 Seoul National University
2 Meta

3 Google
{eudh1206, yejinlee, jaewlee}@snu.ac.kr, hongilyoon@google.com

A Supplementary Materials for L-FPS

A.1 Farthest Point Sampling Algorithm

Algorithm 1 FPS Algorithm
Input P : input point set, n: number of output points, seed: index of the seed point
Output fps_idx: list of sampled points indices
1: /* Initialization */
2: fps_idx ← [seed]
3: min_dist[i] ← inf where i = 0, ..., N − 1
4: /* Sampling */
5: for i← 1 to n− 1 do // Cannot be parallelized
6: for j ← 0 to N − 1 do // Can be parallelized
7: D ← distance(P [fps_idx[i− 1]], P [j])
8: if min_dists[j] > D then
9: min_dists[j] ← D

10: fps_idx.append(argmax(min_dists))

We describe the Farthest Point Sampling (FPS) algorithm, which samples n =
N/stride (stride = downsampling rate) output points from given N input points
in a way that maximizes the distances of points in order to preserve the boundary
of the 3D point cloud. We explain this process in detail with Algorithm 1.

Given the input point set P of N input points and the index of the seed point
seed, the final goal of this algorithm is to generate the indices of n sampled points
(i.e., fps_idx). The initial length of fps_idx is 1 since FPS starts sampling with
the seed point (Line 2). As the process continues, it will append (n − 1) more
sampled points to the list. Also, we define min_dist of length N initialized with
inf values (Line 3). The usage of min_dist[i] is to keep track of the minimum
distance between an input point P [i] and a group of sampled output points so
far.

The outer loop iterates (n− 1) times and each iteration produces a sampled
output point (Line 5-10). To sample an output point, the inner loop iterates N

https://orcid.org/0009-0004-6925-8824
https://orcid.org/0000-0002-4266-4919

2 D. Lee et al.

input points and determines which point to sample as an output point (Line
6-9). An inner loop computes the distance between the current input point (i.e.,
P [j]) and the most recently sampled output points (i.e., P [fps_idx[i−1]]) (Line
7). If this distance is smaller than the min_dist[j], it updates min_dist[j] with
this distance (Line 8-9). In this way, min_dist[j] stores the minimum distance
among the distances between input point j and i sampled points so far. Once the
inner loop finishes iterating N input points, we retrieve the index from min_dist
that has the maximum value and append this index to fps_idx (Line 10). This
process maximizes the distance among the sampled points. As the outer loop
finishes iteration, fps_idx finally gets all the output points.

A.2 Time and Space Overhead of L-FPS

We analyze time and space overhead of L-FPS in Table 1. For the time overhead,
we report the extra time cost caused by L-FPS and its relative ratio compared
to the total baseline training time. The experimental results show that the time
overhead of our proposed approach is negligible, accounting for no more than
3.03% of the total training time. Moreover, it is noteworthy that L-FPS results
obtained using our approach can be reused across different models if the stride
of the first layer are identical. All three models employed in our experiments
use the same stride value of 4, enabling them to share the FPS results for the
same training dataset. For the space overhead, we report the file size of L-FPS
results. The disk space overhead is also relatively small, accounting for 1.3 and
12.4 gigabytes for S3DIS and ScanNet dataset, respectively.

To address space overhead issue that can arise with large datasets, we propose
two solutions, each with its corresponding trade-offs:

– On-the-fly filtering (space VS. time): Performs L-FPS filtering stage every
epoch instead of performing them in a batch before training. This reduces
storage overhead but increases the training time since batching benefits are
lost. This approach still yields a substantial speedup over FPS.

– Sample reuse (accuracy VS. space): Stores a certain amount of sampling
results (nepoch/N) and reuse each sample N times during training. This
reduces storage overhead by a factor of N , but may sacrifice the accuracy
due to the decreased sampling randomness.

Model (Dataset) Time Overhead
(Time, Portion)

Space Overhead
(File size)

PN++ (S3DIS) 357s (3.03%) 1.3GiB
MB-L (S3DIS) 357s (2.07%) 1.3GiB

MB-XL (S3DIS) 357s (1.09%) 1.3GiB
PN++ (ScanNet) 2732s (1.85%) 12.4GiB
MB-L (ScanNet) 2732s (1.63%) 12.4GiB

MB-XL (ScanNet) 2732s (1.26%) 12.4GiB

Table 1: Time and Space Overhead of L-FPS. PN++, MB stands for PointNet++,
PointMetaBase.

Frugal 3D Point Cloud Model Training 3

A.3 Necessity of randomness in Sampling

Training with fixed subsampled points can lead to the model performance degra-
dation and overfitting. We quantify this by using the metric doverfit(train mIoU
- val mIoU), which indicates the degree of overfitting. Table 2 shows that us-
ing fixed subsampled points in training results in overfitting and performance
degradation relative to the baseline, while L-FPS does not.

MB-L (ScanNet) MB-XL (ScanNet)
Fixed Base L-FPS Fixed Base L-FPS

mIoU (%) 70.06 70.52 70.54 71.56 71.78 71.74
doverfit 20.99 19.84 19.55 22.14 21.27 21.10

Table 2: Model performance and degree of overfitting (doverfit) measured on
PointMetaBase-L and XL model for ScanNet dataset.

B Supplementary Materials for Fused Aggregation

B.1 Algorithmic Extension to Support Explicit Positional
Embedding

Explicit positional embedding [3] is a technique used to encode the relative
position information between the output point and its neighbors, and positional
embeddings are obtained with a small sized MLP that takes point coordinates
as input. Adding positional embeddings to the neighbor features allows output
points to aggregate richer information, leading to higher model accuracy. Since
these embedding vectors are added to each of the grouped neighbor feature
vectors before max pooling, minor modifications are required to our kernel to
support them. Algorithm 2 and 3 demonstrate our fused aggregation process and
the highlighted lines indicate the changes required to support explicit positional
embedding.

In Algorithm 2 the original forward pass of fused aggregation includes load-
ing the target columns to SRAM (Line 5), performing max-reduction on the fly
in SRAM (Line 8), and saving source index for backwards (Line 10). To support
positional embedding, two major changes are made. First, element-wise addition
of positional embedding vector to input point feature vector is performed (Line
6-7). This operation is fused into our kernel, operating on the fly in SRAM so
that it does not incur unnecessary accesses to DRAM. Second, we need to save
an additional source index table source_pe to gradients of positional embedding
(Line 11) as we did for gradients of feature vectors (Line 10). These indices are
used later in backward pass to scatter gradients for the positional embedding.
The gradients of positional embedding are needed since they are used to up-
date the weights of the small-sized MLP, which is used for generating positional
embedding.

4 D. Lee et al.

Algorithm 2 Forward Pass of Fused Aggregation
Input Pin ∈ RN×d′ , pos_emb ∈ Rn×nneigh.×d′ , Ineigh. ∈ In×nneigh.

Output Pout ∈ Rn×d′

1: Define array source ∈ In× nneigh.

2: Define array source_pe ∈ In× nneigh.

3: for i← 0 to i← n do // Fully parallelized by GPU
4: for j ← 0 to j ← d′ do // Fully parallelized by GPU
5: Load Pin[Ineigh.[i]][j] from DRAM to SRAM // 1. Fused Group
6: Load pos_emb[i][:][j] from DRAM to SRAM
7: On SRAM, temp← Pin[Ineigh.[i]][j] + pos_emb[i][:][j]
8: // 2. Max Reduction
9: On SRAM, max,max_idx, max_idx_pe ← max_reduce(temp)

10: Write Pout[i][j]← max to DRAM
11: Write source[i][j]← max_idx to DRAM // Saved for backwards
12: Write source_pe[i][j]← max_idx_pe to DRAM // Saved for backwards

Algorithm 3 Backward Pass of Fused Aggregation
Input Gin ∈ Rn×d′ , source ∈ In× nneigh. , source_pe ∈ In× nneigh.

Output Gout ∈ RN×d′ , Gemb ∈ Rn×nneigh.×d′

1: Initialize Gout with zeros.
2: for i← 0 to i← n do // Fully parallelized by GPU
3: for j ← 0 to j ← d′ do // Fully parallelized by GPU
4: // 3. Fused Scatter & Sum Reduction
5: Load Gin[i][j] from DRAM to SRAM
6: Load Gout[source[i][j]][j] from DRAM to SRAM
7: On SRAM, temp← Gin[i][j] +Gout[source[i][j]][j] // Line 7 and 8 are
8: Write Gout[source[i][j]][j]← temp to DRAM // processed atomically.
9: for i← 0 to i← n do // Fully parallelized by GPU

10: for j ← 0 to j ← d′ do // Fully parallelized by GPU
11: Write Gemb[i][source_pe[i][j]][j]← Gin[i][j] to DRAM

In Algorithm 3 the original backward pass of fused aggregation was to scatter
and sum the gradients to the place where the corresponding features are orig-
inated (Line 5-8). To support positional embedding, the process of generating
gradients for positional embedding is added. Input gradients Gin are scattered
according to the indices in source_pe and generate the n × nneigh. × d′ sized
gradient matrix Gemb, which is the gradient of positional embedding (Line 11).
This process makes it inevitable to generate the n × nneigh. × d′ sized inter-
mediate values. This incurs extra DRAM accesses, leading to a decrease in the
amount of savings in memory accesses with the fused aggregation technique.
However, its impact on the speedup of fused aggregation is minimal since the
atomic sum-reduce operation used to generate gradient Gout accounts for most
of the backward latency. Our fused aggregation technique supporting positional
embedding still eliminates n× nneigh. × d′ sized sum-reduce operations and this

Frugal 3D Point Cloud Model Training 5

allows us to achieve significant speedups. The experiment result (Section 5.3) in
the main paper uses this extended fused aggregation technique.

B.2 Performance of PointNet++ with Delayed Aggregation and
Positional Embedding

We have used a strengthened baseline in our experiments by augmenting Point-
Net++ [4] with delayed aggregation [2] and positional embedding [3] techniques.
Delayed aggregation is a technique that changes the order of grouping and MLP
to reduce the computation required for MLP. Original PointNet++ first groups
the neighbors for each output point, applies MLP to the grouped neighbor vec-
tors and then max-reduce to aggregate features. However, applying MLP to all
the grouped neighbor vectors is inefficient since the grouped vector matrix is
quite large. Mesorasi [2] solves this problem with delayed aggregation technique
that first applies MLP to N input feature vectors and then groups the neighbor
vectors. In this way, the input size of MLP reduces from n×nneigh.×d to N×d,
where n is the number of output points, nneigh. is the number of neighbors, and d
is a feature dimension. Considering that stride is usually 2 or 4 and nneigh. is 32,
N << n×nneigh., and this results in a significant reduction in the computation
for MLP.

Despite its computational efficiency, delayed aggregation causes accuracy
loss, since it is hard to effectively encode the relative position information be-
tween output point and neighbors when delayed aggregation is applied. This is
because MLP is applied before neighbors are grouped, making it challenging for
the MLP to encode the positional relationship between output point and neigh-
bors. PointMetaBase [3] addresses this issue by proposing explicit positional
embedding. Combined with positional embedding, delayed aggregation substan-
tially improves the model performance, even surpassing the baseline for some
cases.

We apply delayed aggregation and positional embedding to the vanilla Point-
Net++ for our experiment to strengthen the efficiency and the accuracy of the
baseline model. We report mIOU of the original PointNet++ and our strength-
ened version of PointNet++ in Table 3 to support our claim.

Dataset Original Augmented
S3DIS (mIOU) 60.65 63.19

ScanNet (mIOU) 53.20 59.42

Table 3: Performance Comparison between Original PointNet++ and Augmented
PointNet++

6 D. Lee et al.

C Data Augmentations

C.1 Data Augmentations Used in Experiments

We report the data augmentation techniques used for our experiments. We have
followed the default setting of data augmentations used in PointMetaBase [3]
repository. Table 4 lists data augmentation techniques used in each model and
dataset. Random jittering adds independent noise to each point, while random
scaling and rotating randomly scales and rotates the whole object or scene.
Random dropping is a technique that randomly drops certain amount of points.
Random shuffling is a technique that is used to give randomness to the sampling
stage by randomly changing the seed point every epoch. Finally, random crop-
ping is a technique that randomly crops the input scene to adjust the size of the
scene to GPU memory capacity. We provide details about random cropping in
Section C.2. We only report data augmentations that affect the xyz coordinates
of the point cloud scene.

Model (Dataset) Jitter Scale Rotate Drop Shuffle Crop
PointNet++ (S3DIS) ✓ ✓ ✓ ✗ ✓ ✓

PointMetaBase-L (S3DIS) ✓ ✓ ✓ ✗ ✓ ✓

PointMetaBase-XL (S3DIS) ✓ ✓ ✓ ✗ ✓ ✓

PointNet++ (ScanNet) ✗ ✓ ✓ ✓ ✓ ✓

PointMetaBase-L (ScanNet) ✗ ✓ ✓ ✓ ✓ ✓

PointMetaBase-XL (ScanNet) ✗ ✓ ✓ ✓ ✓ ✓

Table 4: Data Augmentations used in Our Experiments

C.2 Random Cropping Support for L-FPS

Random cropping [5] is a method used to resize an input scene by randomly
cropping a particular portion, enabling the input scene to fit within the GPU
memory constraint. The uncertainty of the cropped region makes identifying
sampled points prior to training become a nontrivial task.

L-FPS technique can integrate with the random cropping technique by in-
corporating minor modifications into the dataloader. Algorithm 4 outlines the
extended L-FPS strategy for compatibility with the random cropping.

The key distinction in the offline phase lies in applying FPS to the entire point
cloud scene before being cropped, instead of applying FPS to the cropped point
set that is fed to the model. Given the entire point cloud scene P , we sample
|P |/stride points with L-FPS strategy and store the indices in the disk. For the
same stride value (i.e. downsampling rate), we anticipate retrieving the desired
number of points (Ncrop/stride) from the |P |/stride number of saved indices
with a high probability after the scene P is cropped into Ncrop points (note that

Frugal 3D Point Cloud Model Training 7

Algorithm 4 Random Cropping Support for L-FPS
Input random_crop: True if random crop otherwise False
Parameter stride: stride of the first layer, epoch: number of training epochs, Ncrop:
number of the cropped points
1: /* Offline Phase */
2: fps_list ← list()
3: for P in dataloader do
4: fps_idx ← L-FPS(P , |P |/stride)
5: fps_list.append(fps_idx) // epoch versions of sampling results
6: Save fps_list to DISK
7:
8: /* Online Phase */
9: Load fps_list from DISK to dataloader

10: for e in range(epoch) do
11: for P , fps_idx[e] in dataloader do
12: if random_crop is True then
13: crop_idx ← random_crop(P , Ncrop)
14: p_idx ← Append((fps_idx[e]&crop_idx), (crop_idx - fps_idx[e]))
15: else
16: p_idx ← range(|P |)
17: p_idx ← Append(fps_idx[e], (p_idx - fps_idx[e]))
18: model(P [p_idx])

Ncrop < |P |). For example, we assume that |P | is 48000, Ncrop is 24000, and
stride is 4. If we save |P |/stride = 12000 farthest points from P in the offline
stage, we can stochastically retrieve approximately 6000 (i.e., Ncrop/stride) valid
points from 12000 saved indices after cropping.

The online phase also requires some minor modifications. When random crop-
ping is not employed, we simply reorder the input scene P with p_idx, which
is an index list with fps_idx is placed at the beginning and the rest of indices
at the end (Line 17). By feeding the reordered input scene to the model, we can
simply fetch the first |P |/stride points to get the sampling results of the first
layer while training. However, if random cropping is applied, minor modifications
are required. Once the random crop function determines which points to crop
(i.e., crop_idx) (Line 13), p_idx list is generated through a different process.
We cannot directly use fps_idx as sampled indices since they might not exist in
the cropped scene. We must first find the valid farthest point sampled indices
from the crop_idx, which is done by applying an intersection operation between
fps_idx and crop_idx (Line 14). Then, the valid sampled indices (fps_idx &
crop_idx) are moved to the front and the rest of crop_idx is appended to the
end, creating p_idx. Finally, we reorder P with p_idx and feed it to the model.

Adapting L-FPS to accommodate the random cropping inevitably introduces
some minor approximations. We delve into this aspect in Section C.3.

8 D. Lee et al.

C.3 Accuracy Impact of Random Cropping

In this section, we discuss the accuracy impact of the random cropping in L-FPS
approach. There are two main reasons that random cropping might influence
the sampling quality of L-FPS. First, the number of indices obtained through
the intersection of fps_idx and crop_idx may be smaller than that of sampled
points required in the first layer (i.e., |fps_idx&crop_idx| < |P |/stride). This
may allow some points that are not sampled through L-FPS to be used as a
downsampled points. Second, the reused sampling results are from the entire
point set, not from the cropped set. Sampling from the entire point set and
subsequently cropping the result may not yield the equivalent sampling results
compared to directly sampling from the cropped point set.

Despite these potential impacts, the empirical results gathered through per-
formance evaluation in Section 5.2 confirms that these changes have a minimal
impact on both sampling quality and model performance. To visually illustrate
the (minor) impact on sampling quality, Section D.2 presents 3D visualizations
of samples obtained using the original (vanilla) FPS, L-FPS, and random point
sampling approaches, respectively.

D Additional Experiments

D.1 Sampling Algorithm Comparison

Alternative sampling algorithms In this section, we apply other represen-
tative sampling algorithms, i.e., random sampling and grid sampling, to the
training pipeline and compare the model performance with L-FPS. For a fair
comparison, we applied each sampling algorithm solely to the first layer, as we
did for L-FPS. Additionally, the evaluation methodology remained consistent
across all experiments. As shown in Table 5, L-FPS outperforms other sampling
algorithms in most cases. Visualization results in Section D.2 further substanti-
ate the superiority of L-FPS over other sampling algorithms.

Dataset Model Accuracy (diff.)
L-FPS GS RPS

S3DIS
PN++ 63.39 62.87 (▼ 0.52) 62.40 (▼ 0.99)
MB-L 69.76 69.25 (▼ 0.51) 68.75 (▼ 1.01)

MB-XL 70.74 70.19 (▼ 0.55) 70.22 (▼ 0.52)

ScanNet
PN++ 59.54 59.19 (▼ 0.35) 58.00 (▼ 1.54)
MB-L 70.54 70.37 (▼ 0.17) 70.09 (▼ 0.45)

MB-XL 71.74 71.93 (▲ 0.19) 71.66 (▼ 0.08)

Table 5: Model Performance of baseline and ours. GS, RPS stands for Grid Sampling
and Random Point Sampling.

Frugal 3D Point Cloud Model Training 9

Faster algorithm for exact farthest point sampling QuickFPS is a co-
designed software and hardware solution, proposing an accelerator equipped
with a k-d tree based fast and exact farthest point sampling algorithm. Since
QuickFPS is an accelerator, we use software version of QuickFPS [1] open sourced
by the authors for fair comparison with L-FPS. QuickFPS does not incur any
accuracy loss since no approximation is applied in their algorithm. However, they
suffer from limited end-to-end speedup compared to L-FPS as demonstrated in
Figure 1.

PN++ MB-L MB-XL PN++ MB-L MB-XL0

1

2

3

Sp
ee

du
p

S3DIS ScanNet

Baseline QuickFPS L-FPS

Fig. 1: Normalized training throughput.

D.2 Sampling Quality Analysis via Visualization

We visualize the sampling quality of various methods: our proposed L-FPS, the
original FPS, random sampling, and grid sampling. Figure 2 and 4 illustrate
the results on ScanNet and S3DIS datasets, respectively. The sampling results
demonstrate that both FPS and L-FPS approaches achieve high sampling qual-
ity, preserving the structure of objects and scenes across layers. However, grid
and random sampling exhibit clustering and fail to preserve even spacing be-
tween each point.

Figure 3 and 5 show the distribution of minimum point spacing among the
sampled points, which substantiates our observations. As explained in Section
5.2, L-FPS maintains near-identical point spacing compared to FPS and con-
sistently exceeds the threshold for both the ScanNet and S3DIS dataset, while
other representative sampling methods fall short.

10 D. Lee et al.

(a) Farthest Point Sampling (FPS) (b) Lightweight FPS (L-FPS)

(c) Grid Sampling (d) Random Point Sampling (RPS)

Fig. 2: FPS, L-FPS , and Random Point Sampling Results for ScanNet Dataset.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Minimum Point Spacing

0

20

40

60

80

100

120

140

Pr
ob

ab
ilit

y

Farthest Point Sampling(FPS)
Lightweight FPS(L-FPS)
Random Point Sampling(RPS)
Grid Subsampling(GS)

Fig. 3: Distribution of minimum point spacing for ScanNet Dataset.

Frugal 3D Point Cloud Model Training 11

(a) Farthest Point Sampling (FPS) (b) Lightweight FPS (L-FPS)

(c) Grid Sampling (d) Random Point Sampling (RPS)

Fig. 4: FPS, L-FPS , and Random Point Sampling Results for S3DIS Dataset.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Minimum Point Spacing

0

20

40

60

80

Pr
ob

ab
ilit

y

Farthest Point Sampling(FPS)
Lightweight FPS(L-FPS)
Random Point Sampling(RPS)
Grid Subsampling(GS)

Fig. 5: Distribution of minimum point spacing for S3DIS Dataset.

12 D. Lee et al.

D.3 Raw Training Time Numbers

We report the raw training time numbers, which we used to calculate the nor-
malized end-to-end training throughput in the main paper.

Dataset Model Training Time (hours)
Baseline Ours

S3DIS
PN++ 3.27h 2.17h
MB-L 4.78h 2.82h

MB-XL 9.10h 4.79h

ScanNet
PN++ 40.97h 12.70h
MB-L 46.58h 15.25h

MB-XL 60.16h 22.23h

Table 6: Raw training time of baseline and ours.

D.4 Speedup of Aggregation Only

In this section, we report the aggregation-only speedup. We achieve 4.36× ge-
omean speedup on the aggregation operation with the fused aggregation tech-
nique. We also report forward and backward aggregation-only speedup. The
speedup of backward aggregation is slightly higher (4.47×) than that of for-
ward pass (4.28×), since the amount of memory reduction achieved through
fused aggregation is larger in the backward aggregation. The speedup numbers
are consistent across models and datasets. This is because all models use the
same strides (stride = 4) and the same number of neighbors (nneigh. = 32),
which makes the amount of memory reduction comparable across all models
and datasets.

PN++ MB-L MB-XL PN++ MB-L MB-XL Geo
mean

0

1

2

3

4

5

Sp
ee

du
p

S3DIS ScanNet

Forward Aggregation Backward Aggregation Aggregation All

Fig. 6: Speedup of aggregation stage.

Frugal 3D Point Cloud Model Training 13

D.5 Applicability to other models

While fused aggregation is tailored to PointNet, L-FPS can be used for any
point cloud model that utilizes FPS. To demonstrate this, we have applied L-
FPS to Point Transformer (P-Trans) [6] to achieve a 1.47× training throughput
improvement (using 4 GPUs) without sacrificing accuracy (refer to Table 7).

D.6 Applicability to other datasets

To demonstrate wide applicability of our proposal, we apply L-FPS and fused
aggregation to two additional datasets: SemanticKITTI (outdoor semantic seg-
mentation) and ModelNet40 (classification). Table 7 shows that our techniques
achieve substantial training throughput improvements of 2.22× on SemanticKITTI
(SK) and 1.05× on ModelNet40 (MN), all while maintaining accuracy. The rel-
atively modest speedup on ModelNet40 results from the limited effectiveness of
L-FPS on smaller point clouds (Section 6.5).

MB-XL (SK) PN++ (MN) P-Trans (S3DIS)
Base Ours Base Ours Base Ours

mIoU (%) 51.52 51.57 92.59 92.52 70.24 70.11
Ttrain(hours) 85.83 38.75 0.43 0.41 14.7 10.0

Table 7: Model performance and training time results across various models and
datasets. OA is used for classification.

References

1. Quickfps. http : / / github . com / hanm2019 / bucket - based _ farthest - point -
sampling_GPU

2. Feng, Y., Tian, B., Xu, T., Whatmough, P., Zhu, Y.: Mesorasi: Architecture sup-
port for point cloud analytics via delayed-aggregation. In: Proceedings of the 53th
International Symposium on Microarchitecture (MICRO) (2020)

3. Lin, H., Zheng, X., Li, L., Chao, F., Wang, S., Wang, Y., Tian, Y., Ji, R.: Meta
architecture for point cloud analysis. In: CVPR (2023)

4. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

5. Qian, G., Li, Y., Peng, H., Mai, J., Hammoud, H., Elhoseiny, M., Ghanem, B.:
Pointnext: Revisiting pointnet++ with improved training and scaling strategies.
In: NeurIPS (2022)

6. Zhao, H., et al.: Point transformer. In: ICCV (2021)

http://github.com/hanm2019/bucket-based_farthest-point-sampling_GPU
http://github.com/hanm2019/bucket-based_farthest-point-sampling_GPU

	Frugal 3D Point Cloud Model Training via Progressive Near Point Filtering and Fused Aggregation

