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Abstract. Scene Graph Generation (SGG) offers a structured represen-
tation critical in many computer vision applications. Traditional SGG
approaches, however, are limited by a closed-set assumption, restricting
their ability to recognize only predefined object and relation categories.
To overcome this, we categorize SGG scenarios into four distinct set-
tings based on the node and edge: Closed-set SGG, Open Vocabulary
(object) Detection-based SGG (OvD-SGG), Open Vocabulary Relation-
based SGG (OvR-SGG), and Open Vocabulary Detection + Relation-
based SGG (OvD+R-SGG). While object-centric open vocabulary SGG
has been studied recently, the more challenging problem of relation-
involved open-vocabulary SGG remains relatively unexplored. To fill this
gap, we propose a unified framework named OvSGTR towards fully open
vocabulary SGG from a holistic view. The proposed framework is an
end-to-end transformer architecture, which learns a visual-concept align-
ment for both nodes and edges, enabling the model to recognize unseen
categories. For the more challenging settings of relation-involved open
vocabulary SGG, the proposed approach integrates relation-aware pre-
training utilizing image-caption data and retains visual-concept align-
ment through knowledge distillation. Comprehensive experimental re-
sults on the Visual Genome benchmark demonstrate the effectiveness
and superiority of the proposed framework. Our code is available at
https://github.com/gpt4vision/OvSGTR/.

1 Introduction

Scene Graph Generation (SGG) aims to generate a descriptive graph that local-
ize objects in an image and simultaneously perceive visual relationships among
⋆ Corresponding author.
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Fig. 1: Illustration of SGG Scenarios (best view in color). Dashed nodes or edges in
(a) - (d) refer to unseen category instances, and stars refer to the difficulty of each
setting. Previous works [2, 5, 18, 34, 35, 41, 46, 47] mainly focus on Closed-set SGG and
few studies [10,48] cover OvD-SGG. In this work, we give a more comprehensive study
towards fully open vocabulary SGG.

object pairs. Such a structured representation has gained much attention, serv-
ing as a foundational component in many vision applications, including image
captioning [1, 9, 26, 37, 43], visual question answering [12, 14, 27, 36], and image
generation [11,42].

Despite significant advancements in SGG, prevailing approaches predomi-
nantly operate within a confined set-up, i.e., they constrain object and relation
categories to a predefined set. This setting hampers the broader applicability of
SGG models in diverse real-world applications. Influenced by the achievements
in open vocabulary object detection [7,15,40,45,50], recent works [10,48] attempt
to extend the SGG task from closed-set to open vocabulary domain. However,
they focus on an object-centric open vocabulary setting, which only considers
the scene graph nodes. A holistic approach to open vocabulary SGG requires
a comprehensive analysis of nodes and edges. This raises two crucial questions
that serve as the driving force behind our research: Can the model predict
unseen objects or relationships ? What if the model encounters both
unseen objects and unseen relationships?

Given these two questions, we recognize the need to re-evaluate the tradi-
tional settings of SGG and propose four distinct scenarios: Closed-set SGG, Open
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Vocabulary (object) Detection-based SGG (OvD-SGG), which expands to detect
objects beyond a closed set, Open Vocabulary Relation-based SGG (OvR-SGG),
focusing on identifying a broader range of object relationships, and Open Vo-
cabulary Detection+Relation-based SGG (OvD+R-SGG), which combines open
vocabulary detection and relation analysis, as shown in Fig. 1. 1) Closed-set
SGG, extensively studied in previous works [2,5,18,34,35,41,46,47], involves pre-
dicting nodes (i.e., objects) and edges (i.e., relationships) from a predefined set.
Generally, Closed-set SGG focuses on feature aggregation and unbiased learning
for long-tail problems. 2) OvD-SGG, which has recently gained attention [48],
extends Closed-set SGG from the node perspective, aiming to recognize unseen
object categories during inference. However, it still operates on a limited set of
relationships. 3) On the other hand, OvR-SGG introduces open vocabulary set-
tings from the edge perspective, requiring the model to predict unseen relation-
ships, a more challenging task due to the absence of pre-trained relation-aware
models and the dependence on less accurate scene graph annotations. Specifi-
cally, OvD-SGG omits all unseen object categories during training, resulting in
a graph with fewer nodes but correct edges. By contrast, OvR-SGG eliminates
all unseen relation categories during training, yielding a graph with fewer edges.
As a result, the model for OvR-SGG is required to distinguish unseen relation-
ships from “background”. 4) The most challenging scenario, OvD+R-SGG, in-
volves both unseen objects and unseen relationships, resulting in sparse and less
accurate graphs for learning. These distinct settings present different intrinsic
characteristics and unique challenges.

With a clear understanding of the challenges posed by these settings, we in-
troduce OvSGTR (Open-vocabulary Scene Graph Transformers), a novel frame-
work designed to address the complexities of open vocabulary SGG. Our ap-
proach not only predicts unseen objects or relationships but also handles the
challenging scenario where both object and relationship categories are unseen
during the training phase. OvSGTR employs a visual-concept alignment strat-
egy for nodes and edges, utilizing image-caption data for weakly-supervised
relation-aware pre-training. The framework comprises three main components:
a frozen image backbone for visual feature extraction, a frozen text encoder for
textual feature extraction, and a transformer for decoding scene graphs. During
the relation-aware pre-training, the captions are parsed into relation triplets,
i.e., (subject, relation, object), which provides a coarse and unlocalized scene
graph for supervision. For the fine-tuning phase, relation triplets with location
information (i.e., bounding boxes) are sampled from manual annotations. These
relation triplets are associated with visual features, and visual-concept similari-
ties are computed for nodes and edges, respectively. Predictions regarding object
and relation categories are subsequently derived from visual-concept similarities,
which promotes the model’s generalization ability on unseen object and relation
categories.

Upon evaluating the settings for relation-involved open vocabulary SGG (i.e.,
OvR-SGG and OvD+R-SGG), we empirically identified a significant issue of
catastrophic forgetting pertaining to relation categories. Catastrophic forgetting
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leads to a degradation in the model’s ability to recall previously learned informa-
tion from image-caption data when exposed to new SGG data with fine-grained
annotations. To preserve the semantic space while minimizing compromises on
the new dataset, we propose visual-concept retention with a knowledge distil-
lation strategy to mitigate this concern. The knowledge distillation component
utilizes a pre-trained model on image-caption data as a teacher to guide the
learning of our student model, ensuring the retention of a rich semantic space
of relations. Simultaneously, the visual-concept retention ensures that the model
maintains its proficiency in recognizing new relations.

In short, the contributions of this work can be summarized as follows,

– We give a comprehensive and in-depth study on open vocabulary SGG from
the perspective of nodes and edges, discerning four distinct settings includ-
ing Closed-set SGG, OvD-SGG, OvR-SGG, and OvD+R-SGG. Our analysis
delves into both quantitative and qualitative aspects, providing a holistic
understanding of the challenges associated with each setting;

– The proposed framework is fully open vocabulary as both nodes and edges
are extendable and flexible to unseen categories, which largely expand the
application of SGG models in the real world;

– The integration of a visual-concept alignment with image-caption data sig-
nificantly enriches relation-involved open vocabulary SGG, while our visual-
concept retention strategy effectively counters catastrophic forgetting;

– Extensive experimental results on the VG150 benchmark demonstrate the
effectiveness of the proposed framework, showcasing state-of-the-art perfor-
mances across all settings.

2 Related Work

Scene Graph Generation (SGG) aims to generate an informative graph that
localizes objects and describes the relationships between object pairs. Previous
methods mainly focus on contextual information aggregation [35, 41, 46] , and
unbias learning for long-tail problem [5, 18, 34]. Typically, a closed-set object
detector like Faster-RCNN is used and cannot handle unseen objects or unseen
relations, which limits the application of SGG models in the real world. Recent
works [10, 48] attempt to extend closed-set SGG to object-centric open vocab-
ulary SGG ; However, they still fail to generalize on unseen relations and the
combination of unseen objects and unseen relations.

An alternative approach to boosting the SGG task lies in the utilization of
weak supervision, particularly by harnessing image caption data, leading to the
emergence of language-supervised SGG [19,48,49]. This method of language su-
pervision provides a cheaper way for SGG learning than expensive and time-cost
manual annotation. Although previous research [19,48,49] has shown the poten-
tial of this technique, it remains confined predominantly to closed-set relation
recognition. By contrast, our framework is fully open vocabulary. It discards the
synsets matching as used in [48, 49], enabling our model to learn rich semantic
concepts for generalization on downstream tasks. Furthermore, we also build
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a connection between language-supervised SGG and open vocabulary SGG, in
which language-supervised SGG aims to reduce the alignment gap between vi-
sual and language semantic space.

In essence, our work can be perceived as a generalization of open vocabulary
SGG, harmoniously integrated with closed-set SGG. To our understanding, ours
is a pioneering effort in formulating a consolidated framework dedicated to real-
izing a fully open vocabulary SGG, encompassing both the nodes and edges of
scene graphs.
Vision-Language Pretraining (VLP) has gained increasing attention re-
cently for numerous vision-language tasks. Generally, the core problem of vision-
language pretraining is learning an alignment for visual and language semantic
space. For instance, CLIP [30] shows promising zero-shot image classification
capabilities by utilizing contrastive learning on large-scale image-text datasets.
Later, many methods [15, 23, 50] have been proposed for learning a fine-grained
alignment for image region and language data, enabling the object detector to
detect unseen objects by leveraging language information. The success of VLP
on downstream tasks provides an exemplar for learning an alignment between
visual features and relation concepts, which is fundamental to building a fully
open vocabulary SGG framework.
Open-vocabulary Object Detection (OvD) expects to detect unseen classes
in inference, which breaks the limitation of a fixed pre-defined object set (e.g ., 80
categories in COCO). To accomplish this goal, Ov-RCNN [45] transfers semantic
knowledge learned from captions to the downstream object detection task. It is
worth noting that supervision signals for unseen or novel classes are excluded
during training detectors, while unseen classes can be included in the large vo-
cabulary set of captions. Except for OvD, a series of methods and applications
have been developed such as open-vocabulary segmentation [8], open-vocabulary
video understanding [38], and open-vocabulary SGG [10,17,48]. A more in-depth
analysis of open-vocabulary learning can refer to the literature [39] and [51].

3 Methodology

Given an image I, the objective of the SGG task is to produce a descriptive graph
G = (V, E) , in which node vi ∈ V has location information (i.e., bounding box)
and object category information, and edge eij ∈ E measure the relationship
between node vi and node vj . For open-vocabulary settings, the label set C
(either for the node or the edge) is split into two disjoint sets : base classes CB
and novel classes CN (CB ∪ CN = C, CB ∩ CN = ∅).

3.1 Fully Open Vocabulary Architecture

As shown in Fig. 2, OvSGTR is a DETR-like architecture that comprises three
primary components: a visual encoder for image feature extraction, a text en-
coder for text feature extraction, and a transformer for the dual purposes of
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Fig. 2: Overview of our proposed OvSGTR . The proposed OvSGTR is equipped with
a frozen image backbone to extract visual features, a frozen text encoder to extract
text features, and a transformer for decoding scene graphs. Visual features for nodes
are the output hidden features of the transformer; Visual features for edges are ob-
tained via a light-weight relation head (i.e., with only two-layer MLP). Visual-concept
alignment associates visual features of nodes/edges with corresponding text features.
Visual-concept retention aims to transfer the teacher’s capability of recognizing unseen
categories to the student.

object detection and relationship recognition. When provided with paired image-
text data, OvSGTR is adept at generating corresponding scene graphs. To ease
the optimization burden, the weights of both the image backbone and the text
encoder are frozen during training.

Feature Extraction. Given an image-text pair, the model will extract
multi-scale visual features with an image backbone like Swin Transformer [24]
and extract text features via a text encoder like BERT [6]. Visual and text fea-
tures will be fused and enhanced via cross-attention in the deformable encoder
module of the transformer.

Prompt Construction. The text prompt is constructed by concatenat-
ing all possible (or sampled) noun phrases and relation categories, e.g ., [CLS]
girl. umbrella. table. bathing suit.· · · zebra. [SEP] on. in. wears. · · · walking.
[SEP][PAD][PAD], which is as similar as GLIP [15] or Grounding DINO [23]
concatenating all noun phrases. For a large vocabulary set during training, we
randomly sample negative words from the vocabulary set and constrain the num-
ber of positive and negative words to be M (e.g ., M=80).

Node Representation. Given K object queries, the model follows stan-
dard DETR to output K hidden features {vi}Ki=1, which follow a bbox. head
to decode the location information (i.e., 4-d vectors), and a cls. head responsi-
ble for category classification. The bbox. head is a three-layer fully connected
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layers. The cls. head is parameter-free, which computes the similarity between
hidden features and text features. These hidden features are served as the visual
representation for predicted nodes.

Edge Representation. Contrary to a complex and heavy message-passing
mechanism for obtaining relation features, we design a lightweight relation head
that concatenates node features for the subject and object, and relation query
features. To learn a relation-aware representation, we use a random initialized
embedding for querying relations. This relation-aware embedding will interact
with image and text features by cross-attention in the decoder stage. Building
on this design, given any possible subject-object pair (si, oj), its edge represen-
tation can be obtained with esi→oj = fθ([vsi ,voj , r]), where vsi ,voj are node
representation for the subject and object respectively, r refers to the relation
query features, [·] refers to concatenation operation, and fθ denotes a two-layer
multi-perceptrons.

Loss Function. Following previous DETR-like methods [23, 52] , we use
L1 loss and GIoU loss [32] for bounding box regression. For object or relation
classification, we use Focal Loss [20] as the contrastive loss between prediction
and language tokens.

To decode object and relation categories in a fully open vocabulary way,
the fixed classifier (one fully connected layer) is replaced with a visual-concept
alignment, which will be introduced in Sec. 3.2.

3.2 Learning Visual-Concept Alignment

Visual-concept alignment associates visual features for nodes or edges with cor-
responding text features. For node-level alignment, take an image as example,
the model will output K predicted nodes {ṽi}Ki=1. These predicted nodes must be
matched and aligned with N ground-truth nodes {vi}Ni=1. The matching is formu-
lated as a bipartite graph matching, similar to the approach in standard DETR.
This can be expressed as maxM

∑N
i=1

∑K
j=1 sim(vi, ṽj) ·Mij . Here, sim(·, ·) mea-

sures the similarity between the predicted node and the ground-truth, which
generally consider both the location (i.e., bounding box) and category infor-
mation. M ∈ RN×K is a binary mask where the element Mij = 1 indicates a
match between node vi and node ṽj . Conversely, a value of 0 indicates no match.
For any matched pair (vi, ṽj), we directly maximize its similarity, in which the
distance between bounding boxes is determined by the L1 and GIoU losses, and
category similarity is described as

simcat(vi, ṽj) = σ(< wvi ,vj >) (1)

where wvi is the word embedding for node vi, vj is the visual representation for
predicted node ṽj , < ·, · > refers to the dot product of two vectors, and σ refers
to the sigmoid function. This Eq. (1) seeks to align visual features for nodes with
their prototypes in text space.

To extend relation recognition from closed-set to open vocabulary, one intu-
itive idea is to learn a visual semantic space in which visual features and text fea-
tures for relations are aligned. Specifically, given a text input t and a text encoder
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Et, a relation feature e, the alignment score is defined as s(e) =< e, f(Et(t)) >,
where f is one fully connected layer, and < ·, · > refers to the dot product of
two vectors. Once the alignment score computed, we can calculate a binary cross
entropy loss with given ground truths. The loss can be formulated as

Lbce =
1

|P|+ |N |
∑

e∈P∪N
{−ye log σ(s(e))− (1− ye) log(1− σ(s(e)))} (2)

where σ refers to sigmoid function, ye is a one hot vector where “1” index positive
tokens, and P, N refer to positive and negative samples set for relations.

Learning such visual-concept alignment is non-trivial as there is a lack of
relation-aware pre-trained models on large-scale datasets. In contrast, object-
language alignment can be beneficial from pre-trained models such as CLIP
[30] and GLIP [15]. On the other hand, manual annotation of scene graphs is
time-consuming and expensive, which makes it hard to obtain large-scale SGG
datasets. To tackle this problem, we leverage image-caption data as a weak
supervision for relation-aware pre-training. Specifically, given an image-caption
pair without bounding boxes annotation, we utilize an off-the-shelf language
parser [25] to parse relation triplets from the caption. These relation triplets
are associated with predicted nodes by optimizing Sec. 3.2, and only triplets
with high confidence (e.g ., object score is greater than 0.25 for both subject
and object) are reserved in scene graphs as pseudo labels. Utilizing these pseudo
labels as a form of weak supervision, the model is enabled to learn rich concepts
for objects and relations with image-caption data.

3.3 Visual-Concept Retention with Knowledge Distillation

Through learning a visual-concept alignment as described in Sec. 3.2, the model
is expected to recognize rich objects and relations beyond a fixed small set.
However, we empirically find that directly optimizing the model by Eq. (2) on
a new dataset will meet catastrophic forgetting even if we have a relation-aware
pre-trained model. On the other hand, in OvR-SGG or OvD+R-SGG settings,
unseen (or novel) relationships are removed from the graph, which increases
the difficulty as the model is required to distinguish novel relations from “back-
ground”. To mitigate this problem, we adopt a knowledge distillation strategy to
maintain the consistency of learned semantic space. Specifically, we use the ini-
tialized model pre-trained on image caption data as the teacher. The teacher has
learned a rich semantic space for relations, e.g ., there exist ∼2.5k relation cat-
egories parsed from COCO caption [3] data. The student’s edge features should
be as close as the teacher’s for the same negative samples. Thus, the loss for
relationship recognition can be formulated as

Ldistill =
1

|N |
∑
e∈N

||es − et||1 (3)

where es and et refer to the student’s and teacher’s edge features, respectively.
The total loss is given as L = Lbce + λLdistill, where λ controls the ratio of
ground truths supervision and distillation part.
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Table 1: Experimental results of Closed-set SGG on VG150 test set. “40M/177M”
in Params. refers to 40M trainable parameters and 177M total parameters. Inference
time is benchmarked on an NVIDIA RTX 3090 GPU with batch size 1 and an input
resolution 1000×600. Time for SGNLS [49] is benchmarked on an NVIDIA A100 GPU
(80G) due to memory out of usage.

SGG model Backbone Detector Params. R@20/50/100 mR@20/50/100 Time (s)

IMP [41] RX-101 146M/308M 17.7 25.5 30.7 2.7 4.1 5.3 0.25
MOTIFS [46] RX-101 Faster 205M/367M 25.5 32.8 37.2 5.0 6.8 7.9 0.27
VCTREE [35] RX-101 R-CNN 197M/358M 24.7 31.5 36.2 - - - 0.38
SGNLS [49] RX-101 165M/327M 24.6 31.8 36.3 - - - > 7
HL-Net [21] RX-101 220M/382M 26.0 33.7 38.1 - - - 0.10
FCSGG [22] HRNetW48 - 87M/87M 13.6 18.6 22.5 2.3 3.2 3.9 0.13
SGTR [16] R-101 DETR 36M/96M - 24.6 28.4 - - - 0.21
VS3 [48] Swin-T - 93M/233M 26.1 34.5 39.2 - - - 0.16
VS3 [48] Swin-L - 124M/432M 27.3 36.0 40.9 4.4 6.5 7.8 0.24
OvSGTR Swin-T DETR 41M/178M 27.0 35.8 41.3 5.0 7.2 8.8 0.13
OvSGTR Swin-B DETR 41M/238M 27.8 36.4 42.4 5.2 7.4 9.0 0.19

4 Experiments

4.1 Datasets and Experiment setup

Datasets. The widely used VG150 dataset [41] contains 150 object and 50
relation categories annotated by humans. Of its 108, 777 images, 70% are used
for training, 5, 000 for validation, and the rest for testing. Following VS3 [48],
we exclude images used in pre-trained object detector Grounding DINO [23] ,
retaining 14, 700 test images. And we use an off-the-shelf language parser [25]
to parse relation triplets from image caption, which yields ∼117k images with
∼44k phrases and ∼2.5k relations for COCO caption training set. To showcase
the scalability of our model, we concat COCO caption data [3], Flickr30k [29],
and SBU Captions [28] to construct a large-scale dataset for scene graph pre-
training, resulting in ∼569k images with ∼198k type phrases and ∼5k relations.
Metrics. We adopt the SGDET [34,41] protocol (alias: SGGen) for fair com-
parison and report the performance on Recall@K (K=20/50/100) for each set-
tings. Mean Recall@K (mR@K, K=20/50/100) and inference speed are reported
under the setting of Closed-set SGG.
Implementation details. We use pre-trained Grounding DINO [23] models to
initialize our model, and keep the visual backbone (i.e., Swin-T or Swin-B) and
text encoder (i.e., BERT-base [6]) as frozen. Other modules like relation-aware
embedding are initialized randomly. And 100 object detections per image are
selected for pairwise relation recognition.

4.2 Compared with State-of-the-arts

Closed-set SGG Benchmark. The Closed-set SGG setting follows previous
works [16,34,41,46,48], utilizing the VG150 dataset [41] with full manual annota-
tions for training and evaluation. Experimental results on the VG150 test set are



10 Z. Chen et al.

Table 2: Experimental results (R@50/100) of OvD-SGG setting on VG150 test set.
Following VS3 [48], OvSGTR chooses image regions that best match the ground-truth
objects in post-processing for PREDCLS.

Method Base+Novel (Object) Novel (Object)
PREDCLS SGDET PREDCLS SGDET

IMP [41] 40.02 / 43.40 2.85 / 3.43 37.01 / 39.46 0.00 / 0.00
MOTIFS [46] 41.14 / 44.70 3.35 / 3.86 39.53 / 41.14 0.00 / 0.00
VCTREE [35] 42.56 / 45.84 3.56 / 4.05 41.27 / 42.52 0.00 / 0.00
TDE [34] 38.29 / 40.38 3.50 / 4.07 34.15 / 36.37 0.00 / 0.00
GCA [13] 43.48 / 46.26 - 42.56 / 43.18 -
EBM [33] 44.09 / 46.95 - 43.27/44.03 -
SVRP [10] 47.62 / 49.94 - 45.75 / 48.39 -
VS3 [48] (Swin-T) 50.10 / 52.05 15.07 / 18.73 46.91 / 49.13 10.08 / 13.65
OvSGTR (Swin-T) 60.58 / 62.10 18.14 / 23.20 59.01 / 60.65 12.06 / 16.49
OvSGTR (Swin-B) 60.83 / 62.33 21.35 / 26.22 59.30 / 60.95 15.58 / 19.96

Table 3: Experimental results of OvR-SGG setting on VG150 test set. † refers to w.o.
distillation.

Method Base+Novel (Relation) Novel (Relation)
R@50 R@100 R@50 R@100

IMP [41] 12.56 14.65 0.00 0.00
MOTIFS [46] 15.41 16.96 0.00 0.00
VCTREE [35] 15.61 17.26 0.00 0.00
TDE [34] 15.50 17.37 0.00 0.00
VS3 [48] (Swin-T) 15.60 17.30 0.00 0.00
OvSGTRSwin−T

† 17.71 20.00 0.34 0.41
OvSGTRSwin−T 20.46 23.86 13.45 16.19
OvSGTRSwin−B

† 18.58 20.84 0.08 0.10
OvSGTRSwin−B 22.89 26.65 16.39 19.72

reported in Tab. 1, demonstrating that the proposed model outperforms all com-
petitors. Notably, when compared to the recent VS3 [48], OvSGTR (w. Swin-T)
shows a performance gain of up to 3.8% for R@50 and 5.4% for R@100. The
performance gain regarding mR@K reflects that our model handles the long-tail
bias better than others.

Moreover, while many previous works rely on a complex message-passing
mechanism to extract relation features, our model achieves strong performance
with a simpler relation head consisting of only two MLP layers. For example,
OvSGTR (w. Swin-T) achieves a comparable, even better result than VS3 (w.
Swin-L). At the same time, our model has fewer trainable parameters (41M vs.
124M) and lower inference latency (0.13 s vs. 0.24 s).

OvD-SGG Benchmark. Following previous works [10, 48], the OvD-SGG
setting requires the model cannot see novel object categories during training.
Specifically, 70% selected object categories of VG150 are regarded as base cate-
gories, and the remaining 30% object categories are acted as novel categories. The
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Table 4: Experimental results of OvD+R-SGG setting on VG150 test set. † refers to
w.o. distillation.

Method Joint Base+Novel Novel (Object) Novel (Relation)
R@50 R@100 R@50 R@100 R@50 R@100

IMP [41] 0.77 0.94 0.00 0.00 0.00 0.00
MOTIFS [46] 1.00 1.12 0.00 0.00 0.00 0.00
VCTREE [35] 1.04 1.17 0.00 0.00 0.00 0.00
TDE [34] 1.00 1.15 0.00 0.00 0.00 0.00
VS3 [48] (Swin-T) 5.88 7.20 6.00 7.51 0.00 0.00
OvSGTRSwin−T

† 7.88 10.06 6.82 9.23 0.00 0.00
OvSGTRSwin−T 13.53 16.36 14.37 17.44 9.20 11.19
OvSGTRSwin−B

† 11.23 14.21 13.27 16.83 1.78 2.57
OvSGTRSwin−B 17.11 21.02 17.58 21.72 14.56 18.20

experiments under this setting are as same as Closed-set SGG except that novel
object categories are removed in labels. After excluding unseen object nodes,
the training set of VG150 contains 50, 107 images. We report the performance
of OvD-SGG setting in terms of “Base+Novel (Object)” and “ Novel (Object)”
in Tab. 2. It can be found that the proposed model significantly excel previous
methods. Compared to VS3 [48], the performance gain on novel categories is up
to 19.6% / 20.8% for R@50 / R@100, which demonstrate the proposed model
has more powerful open vocabulary-aware and generalization ability. Since the
OvD-SGG setting only removes nodes with novel object categories, learning pro-
cess of relations will not be affected; This indicates that the performance is more
dependent on the open-vocabulary ability of an object detector.

OvR-SGG Benchmark. Different from OvD-SGG which removes all un-
seen nodes , OvR-SGG only removes all unseen edges but keep original nodes.
Considering VG150 has 50 relation categories, we randomly select 15 of them as
unseen (novel) relation categories. During training, only base relation annotation
is available. After removing unseen edges, there exists 44, 333 images of VG150
for training. Similar as OvD-SGG, Tab. 3 reports the performance of OvR-SGG
in terms of “Base+Novel (Relation)” and “Novel (Relation)”. From Tab. 3, the
proposed OvSGTR notably outperforms other competitors even without distilla-
tion. However, a marked decline in performance is observed across all techniques,
inclusive of OvSGTR without distillation, within the “Novel (Relation)” cate-
gories, underscoring the intrinsic difficulties associated with discerning novel re-
lations in the OvR-SGG paradigm. Nevertheless, with visual-concept retention,
the performance of OvSGTR (w. Swin-T) on novel relations has been signifi-
cantly improved from 0.34 (R@50) to 13.45 (R@50).

OvD+R-SGG Benchmark. This benchmark augments the SGG from a
closed-set setting to a fully open vocabulary domain, where both novel object
and relation categories are omitted during the training phase. For its construc-
tion, we combine the split of OvD-SGG and OvR-SGG and use their base ob-
ject categories and base relation categories, resulting in 36, 425 images of VG150
for training. We report the performance of OvD+R-SGG in Tab. 4 regarding
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Fig. 3: Ablation study of relation queries on VG150 validation set (Closed-set SGG).

“Joint Base+Novel” (i.e., all object and relation categories considered), “Novel
(Object)” (i.e., only novel object categories considered), and “Novel (Relation)”
(i.e., only relation categories considered). From Tab. 4, the catastrophic forget-
ting still occurred in OvD+R-SGG as same as OvR-SGG, which is alleviated
by visual-concept retention in a significant degree. When juxtaposed with other
methods, our model achieves significant performance gain on all metrics.

Overall Analysis. Experimental results present distinct challenges and dif-
ficulties in these four settings. Based on these experiments, 1) many previous
methods rely on a two-stage object detector, Faster R-CNN [31], and compli-
cated message-passing mechanism. Nevertheless, our model showcases that a
one-stage DETR-based framework can significantly surpass R-CNN-like archi-
tecture even with only one MLP to obtain feature representation for relations. 2)
previous methods with a closed-set object detector struggle to discern objects
without textual information under the object-involved open vocabulary SGG
(i.e., OvD-SGG and OvD+R-SGG). 3) the performance drop compared to pre-
vious settings reveals that OvD+R-SGG is much more challenging than others,
indicating much room for extensive exploration toward fully open vocabulary
SGG.

4.3 Ablation Study

Effect of Relation Queries. We first consider remove relation query embed-
ding. The relation feature is given by esi→oj = fθ([vsi ,voj ]), which only encodes
hidden features for the subject and object node. Further, we extend the Sec. 3.1
to a more general form as esi→oj = 1

M

∑M
n=1 fθ([vsi ,voj , rn]), which averages

multiple relation query results. As shown in Fig. 3, the model achieves the best
performance when the number of relation queries is set to 1. This can be inter-
preted from two aspects. On the one hand, the relation queries interact with all
edges during training, which captures global information for the whole dataset.
On the other hand, increasing the number of relation-aware queries does not
introduce specific supervision yet heavy the optimization burden.
Relation-aware Pre-training. We compare OvSGTR trained on image cap-
tion data with others in Tab. 5. From the result, the OvSGTR (w. Swin-T) with
COCO captions outperforms others, scoring 6.61, 8.92, and 10.90 for R@20,
R@50, and R@100, respectively. When integrated with COCO Captions [3],
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Table 5: Comparison with others trained on image captions (which is referred to as
language-supervised SGG in [48]). All models are trained on image-caption data and
test on VG150 test set directly. Our models trained on COCO Captions are used as
the pre-training models for OvR-SGG and OvD+R-SGG settings.

SGG model Training Data Grounding R@20 R@50 R@100

LSWS [44] COCO - - 3.28 3.69
MOTIFS [46] COCO Li et al . [19] 5.02 6.40 7.33
Uniter [4] COCO SGNLS [49] - 5.80 6.70
Uniter [4] COCO Li et al . [19] 5.42 6.74 7.62
VS3 [48] (Swin-T) COCO GLIP-L [15] 5.59 7.30 8.62
VS3 [48] (Swin-L) COCO GLIP-L [15] 6.04 8.15 9.90
VS3 [48] (Swin-L) VG Caption GLIP-L [15] 10.98 15.51 19.75
Ours (Swin-B) VG Caption GLIP-L [15] 16.36 22.14 26.20

GroundingOurs (Swin-T) COCO DINO-B [23] 6.61 8.92 10.90

GroundingOurs (Swin-B) COCO DINO-B [23] 6.88 9.30 11.48

COCO+ GroundingOurs (Swin-T) Flickr30k+SBU DINO-B [23] 7.01 9.43 11.43

Table 6: Impact of hyper-parameter λ for distillation loss on VG150 validation set
under the setting of OvR-SGG. a → b refers to the performance shift from a (initial
checkpoint’s performance) to b during training.

λ Base+Novel Novel
R@50 R@100 R@50 R@100

0 7.25 → 13.74 8.98 → 16.11 10.78 → 0.32 13.24 → 0.38
0.1 7.25 → 16.00 8.98 → 19.20 10.78 → 11.54 13.24 → 13.94
0.3 7.25 → 14.35 8.98 → 17.04 10.78 → 10.71 13.24 → 12.71
0.5 7.25 → 13.34 8.98 → 16.08 10.78 → 10.90 13.24 → 13.22

Flickr30k [29], and SBU Captions [28] , its performance peaks at 7.01, 9.43, and
11.43 for the respective metrics. The results clearly indicate the effectiveness
of the proposed method, particularly when using the more lightweight Swin-
B backbone compared to Swin-L; For reference, the zero-shot performance on
COCO validation set of GLIP-L [15] (w. Swin-L) and Grounding DINO-B (w.
Swin-B) [23] stands at 49.8 AP and 48.4 AP respectively.
Hyper-parameter λ for Distillation. Tab. 6 illustrates the impact of varying
hyper-parameter λ . From the results, when λ = 0.1, the model with distillation
achieves the best performance. By contrast, without distillation, a significant
decline in performance for novel categories exists, showing the model struggles
to retain knowledge inherited from pre-trained models for novel categories.

4.4 Visualization and Discussion

We present qualitative results of our model trained under OvD+R-SGG setting
as well as Closed-set SGG setting, as shown in Fig. 4. From the figure, the model
trained on Closed-set SGG tends to generate more dense scene graphs as the
whole object and relationship categories are available during training. Despite
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Fig. 4: Qualitative results of our model on VG150 test set (best view in color). For
clarity, we only show triplets with high confidence in top-20 predictions. Dashed nodes
or arrows refer to novel object categories or novel relationships.

lacking full supervision of novel categories, the model trained on OvD+R-SGG
still can recognize novel objects like “bus”, “bat” (which does not exist in VG150
dataset), and novel relationship like “on’.
Limitations & Future works. One latent limitation of this work is that we
utilize an off-the-shelf language parser [25] to parse triplets from the caption.
The accuracy of the parser will have a significant impact on the pre-training
phase. Recently, LLM (large language model) has gained much attention. The
naive parser can be replaced with a LLM to provide more accurate triplets.
Moreover, it is worth discussing Can LLMs benefit the SGG task with fewer
manual annotations? or Can structured representations like scene graphs benefit
for LLMs to alleviate hallucination? In the future, we will try to answer these
two questions.

5 Conclusion

This work advances the SGG task from a closed set to a fully open vocabulary
setting based on the node and edge properties, categorizing SGG scenarios into
four distinct settings including Closed-SGG, OvD-SGG, OvR-SGG, and OvD+R-
SGG. Towards fully open vocabulary SGG, we design a unified framework named
OvSGTR with transformers. The proposed framework learns to align visual fea-
tures and concept information with not only base objects, but also relation cat-
egories and generalize on both novel object and relation categories. To obtain a
transferable representation for relations, we utilize image-caption data as a weak
supervision for relation-aware pre-training. In addition, visual-concept retention
via knowledge distillation is adopted for alleviating the catastrophic forgetting
problem in relation-involved open vocabulary SGG. We conduct extensive exper-
iments on the VG150 benchmark dataset and have set up new state-of-the-art
performances for all settings.
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