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Fig. 1: We propose MagicMirror, a method for fast text-guided 3D avatar head
generation, with the option of subject personalization. (left) We illustrate how given
subject pictures, MagicMirror can generate a 3D avatar with the subject’s stylized
appearance by following text descriptions. Avatars exhibit high-quality in both geometry
and texture, with significant alterations while preserving the identity of the subject.
(right) It can also generate well-known characters by only employing a text prompt.

Abstract. We introduce a novel framework for 3D human avatar gen-
eration and personalization, leveraging text prompts to enhance user
engagement and customization. Central to our approach are key inno-
vations aimed at overcoming the challenges in photo-realistic avatar
synthesis. Firstly, we utilize a conditional Neural Radiance Fields (NeRF)
model, trained on a large-scale unannotated multi-view dataset, to create
a versatile initial solution space that accelerates and diversifies avatar gen-
eration. Secondly, we develop a geometric prior, leveraging the capabilities
of Text-to-Image Diffusion Models, to ensure superior view invariance
and enable direct optimization of avatar geometry. These foundational
ideas are complemented by our optimization pipeline built on Variational
Score Distillation (VSD), which mitigates texture loss and over-saturation
issues. As supported by our extensive experiments, these strategies col-
lectively enable the creation of custom avatars with unparalleled visual
quality and better adherence to input text prompts. You can find more
results and videos in our website: syntec-research.github.io/MagicMirror

https://syntec-research.github.io/MagicMirror
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Fig. 2: Our two pipelines for 3D head avatar generation and customization follow the
same structure: a pre-trained conditional NeRF model serves as 3D prior for fast avatar
generation. Our pipelines additionally leverage two pre-trained text-to-image diffusion
models as texture and geometry priors, allowing for distillation-based customization of
both these components based on input text prompts with state-of-the-art quality.

1 Introduction
Customizable 3D human avatars are central for many experiences such as gaming,
v-tubing, augmented and virtual reality (AR/VR), or telepresence applications.
Intuitive editing and personalization techniques for such avatars are highly
desirable, as customized avatars provide a greater sense of engagement, ownership
and aid adoption of the aforementioned technologies. Traditional CGI editing
techniques, however, are still difficult, non-intuitive, and laborious for the average
user. Recently, text-prompting has emerged as a natural and intuitive interface to
control the creation and customization of highly complex generative outputs, due
to the impressive progress of Language-Image modeling [53] and Text-to-Image
Diffusion Models [24]. Two main approaches have emerged for generative modeling
of 3D assets: direct 3D modeling, and neural rendering techniques leveraging 2D
images.

Direct 3D models largely conform to the text-to-image paradigm which train
a generative model from a large dataset of labeled 3D assets [29]. Sourcing such
data at scale, however, is difficult and expensive [17]. 3D assets are nowhere nearly
as abundant as the 2D images easily available on the Internet. Furthermore,
3D assets that are available typically lack the rich semantic information that
often accompanies Internet images. Consequently, the results from this category
typically lack diversity and quality compared to their 2D large-scale counterparts.
The second category of methods leverage the implicit 3D knowledge within 2D
generative models, lifting 2D outputs onto 3D via differential rendering and
novel objective functions. Several designs of these objective functions have been
proposed, including simple reconstruction losses based on transformed 2D images
[23], high-level text-image misalignment scores [67], and model distillation [52].
These methods work best if the outputs of the 2D model are multi-view consistent,
which is usually not the case, leading to non-convergence and infamous "Janus
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Fig. 3: Our novel framework, MagicMirror, can successfully change facial expressions,
features, and add accessories or specific styles to the person.

face" artifacts [52]. Although appealing, this second category of methods has
several key challenges.

First, despite their ability to generate large amounts of text-guided 2D images
and supervisory signals, they are not guaranteed to be multi-view consistent.
Consequently, 3D optimization suffers from conflicting supervision. This issue can
be mitigated by reducing the amount of overlap between views, through reduced
view count, and evenly distributing views. However, a possible unfortunate effect
is in making the problem ill-posed, thus leading to poor results. An approach to
improve reconstructions might then be to improve the multi-view consistency of
existing 2D image generators. This could be achieved by training on multi-view
data and sharing information across views [46, 60]. While hopeful, this approach
still bears the burden of sourcing multi-view data, often as difficult as sourcing
3D assets described above. Other approaches based on model distillation require
the use of a high classifier-free guidance weight [25], causing textureless and
over-saturated results [52] and, more importantly, reducing diversity [71].

Another approach is to constrain the space of 3D objects of interest and their
representation, similar to popular parametric blendshapes models that enable
shape reconstruction given only partial information such as monocular landmarks
[16]. For text-guided avatar generation and editing, existing works typically employ
an object-specific parametric 3D morphable model (3DMM) [5] as underlying
geometry proxy. However, avatar customization remains challenging because it
requires creating novel, semantically meaningful geometric structures that need
to introduce new out-of-model elements. So far, because of the crucial dependency
on multi-view consistent supervision, it is still challenging to obtain high-quality
avatar customizations that closely follow their associated text prompts.

This paper presents MagicMirror, our novel framework for text-guided 3D
head avatar generation and editing whose visual quality improves upon the
current state of the art. Our key idea is to derive constraints and priors that make
the test-time optimization problem easier, and less dependent on photometric
consistency. This idea is implemented via the following important framework
components:

1. A constrained initial solution space is first learned as a conditional NeRF
model trained on an unannotated multi-view dataset of human heads; this
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flexible model can express a wide range of head appearances and geometries
and subsequently facilitates fast avatar generation and editing.

2. Leveraging a pre-trained text-to-image diffusion model and its ability to
learn new concepts, we build a geometric prior by teaching this model to
generate normal maps. This additional geometry prior encourages better
view invariance, direct geometry optimization, and also largely mitigates the
photometric inconsistency problem from conventional multi-view supervision.

3. When optimizing our conditional NeRF, Score Distillation Sampling (SDS)
[52] can lead to artifacts such as lack of texture and over saturation. We
overcome these issues by adopting Variational Score Distillation (VSD) [71],
allowing us to optimize both appearance and geometry with higher quality.

As demonstrated next, our framework generates custom avatars following specific
text instructions with a high level of faithfulness and visual detail. As in Dream-
Booth [54,57], we leverage a re-contextualization technique that allows users to
personalize their avatars with ease and high fidelity to their own identity, while
making it fun to create and explore.

2 Related Work
2.1 3D Representations for Photorealistic Avatars

The significance of 3D human modeling has spurred thorough exploration into
proper avatar representations. Early methods [2, 9, 13, 21, 28, 32, 39, 63, 64, 73]
adopt explicit geometry and appearance, particularly parametric human prior
models [5, 47]. However, these approaches struggle with limited representation
capabilities.

Lately, the rapid progress in volumetric neural rendering like NeRF [50] and
3DGS [38] has promoted implicit avatar modeling, owing to its rendering quality
and comprehensive representation. Nevertheless, training such a model typically
demands substantial multi-view data for a single subject. To enable monocular
inputs and facilitate animation, various human priors have been explored.

One approach involves hybrid representations that leverages morphable mod-
els, such as NerFACE [19], RigNeRF [1], IMAvatar [77], and MonoAvatar [3].
While efficient monocular avatar rendering and animation can be achieved, quality
is often compromised due to the limitations of explicit models. Another strat-
egy relies on generative human priors, capable of reconstructing high-quality
implicit avatars from sparse inputs. For example, PVA [55], CodecAvatar [8],
Live3DPortrait [65], and Preface [7]. In this work, we follow the latter approach
and demonstrate that such a prior not only assists with monocular avatar model-
ing but also text-driven avatar synthesis.

2.2 Text-Guided Avatar Generation and Editing

Generative models have enabled identity sampling within the 2D [36] and 3D [11]
latent space. Nonetheless, there is a general preference for better controllability.
Among various control modalities, such as scribbles [15], semantic attributes [59],
and image references [79], text prompts in natural language are more widely
accepted for a broad range of tasks.
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The emergence of the language-vision model CLIP [53] has made text-guided
avatar editing feasible. In 2D, pioneering work such as StyleGAN-NADA [20]
transfers pre-trained StyleGAN2 [37] models to the target style domain described
by a textual prompt. This capability extends to 3D as well, where CLIP supervi-
sion is integrated with explicit [26] or implicit [68] human models. However, these
models often encounter limitations in expressing full 3D complexity, primarily
due to the restricted capacity of CLIP in comprehending intricate prompts.

With the recent advancements in 3D-aware diffusion models, diffusion-based
text-guided avatar synthesis have garnered increased attention. DreamFace [76]
and HeadSculpt [22] introduce coarse-to-fine pipelines to enhance identity-
awareness and achieve fine-grained text-driven head avatar creation. Human-
Norm [29] presents an explicit human generation pipeline, employing normal-
and depth-adapted diffusion for geometry generation and a normal-aligned diffu-
sion for texture generation. In a similar two-stage pipeline, SEEAvatar [74] and
HeadArtist [22] evolve geometry generation from a template human prior and
represent appearance through neural texture fields. Meanwhile, AvatarBooth [75],
AvatarCraft [33], DreamAvatar [10], DreamHuman [41], and DreamWaltz [31]
propose text-driven avatar creation utilizing implicit surface representation, pa-
rameterized with morphable models for easy animation. In terms of editing,
AvatarStudio [49] achieves personalized NeRF-based avatar stylization through
view-and-time-aware SDS on dynamic multi-view inputs.

2.3 3D-Aware Diffusion Models

The success of text-to-image diffusion models [56] naturally encourages researchers
to explore 3D-aware diffusion. Building from 2D diffusion, many studies have
concentrated on synthesizing consistent novel 2D views of 3D objects, such
as 3DiM [72], SparseFusion [78], and GeNVS [12]. Zero-1-to-3 [45] proposes a
pipeline that fine-tunes a pre-trained diffusion model with a large-scale synthetic
3D dataset. SyncDreamer [46] further improves the cross-view consistency.

Direct 3D generation have also been explored across various representations,
including point clouds [48, 51], feature grids [35], tri-planes [61, 70], and radiance
fields [34]. However, due to the complexity of representations, heavy architec-
ture, and shortage of large-scale 3D data, 3D diffusion often suffers from poor
generalization and low quality results.

Compared to 3D diffusion models, lifting 2D diffusion for 3D generation is
more appealing, spearheaded by the pioneering works of DreamFusion [52] and
SJC [69]. At the heart of these approaches lies score distillation sampling (SDS),
which employs 2D diffusion models as score functions on sampled renderings,
providing supervision for optimizing the underlying 3D representations. Sub-
sequent works like DreamTime [30], MVDream [60], and ProlificDreamer [71]
refine the architectural design with better sampling strategy, loss design, and
multi-view prior. Meanwhile, Magic3D [42], TextMesh [66], Make-It-3D [62], and
Fantasia3D [14] extend the approach to other representations such as textured
meshes and point clouds. Notably, variational score distillation (VSD) is proposed
in ProlificDreamer to address oversaturation and texture-less issues of SDS. Our
method also adopts VSD to enhance the quality of the generated results.
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3 Method
We present two similar pipelines for (P1) text-driven generation and (P2) person-
alized 3D head avatars editing. Both pipelines have the same structure, illustrated
in Fig. 2. We start from a NeRF avatar initialization, and provide as input a text
prompt. We render random views from our avatar, chosen randomly from a set
of orbit renders. The avatar is parameterized by a conditional NeRF model and
initialized with any latent identity code (Sec. 3.1). We then employ a distillation
approach with a geometry prior to optimize the initial avatar’s NeRF appearance
and density, following the methodology described in Section 3.3.

In both pipelines, the geometry is captured by a diffusion prior, which is
fine-tuned to capture facial geometry features from a single avatar (Sec. 3.2).
More specifically, besides the conditional NeRF, in Pipeline P1 our method
mainly leverages a pre-trained text-to-image diffusion models that captures the
distribution of real RGB images. The diffusion model and the geometric prior
allows us to customize both the appearance and geometry of our initial NeRF
avatar as guided by an input text prompt in the form: “A portrait of a [source
description]”. There is no personalization element in P1. Thus, the prompt does
not require a subject identifier. Avatar customization is done using a distillation-
based objective function derived from Variational Score Distillation (VSD) [71]
(Sec. 3.3).

In Pipeline P2, we personalize on a particular subject by first conditioning
on user-provided 2D images in multiple views, or by rendering images from a
reconstructed digital asset of the target subject. This subject is associated with a
unique identity token [V] and [source description], using DreamBooth to fine-tune
our text-to-image diffusion model with the text prompt "A [V] portrait of [source
description]". The user can then supply a new [target description] prompt to
guide avatar stylization to their preference, which is achieved by optimizing
the conditional NeRF using the objective defined in equation 4, with the text
embedding corresponding to "A [V] portrait of [target description]".

Finally, a user can combine multiple priors in parallel to achieve different
objectives. Updates from subject-aware texture priors can be blended with
updates from text-to-image generic diffusion priors, prompted with multiple
context prompts.

3.1 Constraining the solution space

To lift the partial 2D information from text-to-image diffusion models, a 3D prior
model is needed to constrain the optimization domain. We thus parameterize
the subspace of 3D head avatars using a conditional NeRF, which simplifies the
optimization while remaining flexible enough to accommodate variations outside
the training data.

To learn our solution subspace, we leverage Preface [7], a conditional model
that extends Mip-NeRF360 [4] with a conditioning (identity) latent code concate-
nated to the inputs of each MLP layer. Here, we briefly describe how to train
this conditional NeRF on our multiview dataset of 1450 human faces with a
neutral expression, captured by 13 synchronized cameras under uniform in-studio
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lighting. More details can be found in the Supplementary material. Each face is
assigned a learnable latent code [6] that is optimized together with the model
weights, under the supervision of pixelwise reconstruction loss only. Each training
batch randomly samples pixel rays from all subjects and cameras, promoting
generalization over the space of human faces rather than over-fitting to a few
subjects. The importance of the diversity of training faces is highlighted in our
ablation study in Sec. 3.5.

3.2 View-invariant geometric prior

Fig. 4: Text-to-Image Diffusion
Model have the remarkable abil-
ity to re-contextualize new con-
cepts. We show the generated nor-
mal maps under new text prompts.
Note that they are not rendered
from a NeRF.

Given the above conditional NeRF that models
diverse 3D head avatars, we now turn to incor-
porating high-frequency geometric details that
are (1) authentic to specific target user and (2)
consistent with a given text prompt. To this
end, we show that an additional pretrained
text-to-image diffusion model Dcolor can be
used to capture new appearance and geome-
try concepts without any architectural change.
Instead of retraining the diffusion model to
encourage multiview consistency, we propose
a novel and effective solution that teaches the
model to also generate normal maps of hu-
man heads, effectively deriving a second model
Dnormal.

Our solution leverages the few-shot learn-
ing technique proposed by DreamBooth [57]:
given 60 world-space surface normal renderings

from different camera views of an avatar, we pair them with text descriptions
such as "A [W] face map of a man/woman [source description]", where "[W]" is
the unique identifier for the new concept of surface normal.

Next, we fine-tune the text-to-image diffusion model using these text-annotated
surface normal renderings. As a result, the fine-tuned diffusion model Dnormal
can now also predict reasonable surface normal maps for new heads, even when
re-contextualized to the rest of the text prompt description (Fig. 4). This new
capability provides additional geometric critique for avatar generation and editing,
driving the optimization to go beyond simple color edits to effectively improve
the geometry.

When defining the input data for fine-tuning the diffusion model, it is crucial
that surface normals be defined in a fixed world coordinate system that is aligned
with our solution space, hence independent of camera viewpoint. The source
normal maps can then be obtained from any subject, as evidenced in Sec. 3.5.

3.3 Test-time optimization objective

During our test-time optimization, the fine-tuned diffusion model is re-contextualized
with the prompt "A [V] portrait of a [target description]". Such geometric prior
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is then incorporated via a Variational Score Distillation (VSD) [71] optimization
objective, as described in the following.

To derive our solution, we first review Score Distillation Sampling (SDS) [52],
which minimizes the following loss function:

LSDS(sg(D), I, ϵ, T, t) = ω(t)∥sg(D(I, ϵ, T, t))− I∥2, (1)

where D represents the text-to-image diffusion model that outputs the denoised
image by processing the NeRF rendering I, Gaussian noise ϵ, a fixed target text
embedding T , and a time parameter t that follows certain annealing schedule
t → 0. sg(·) denotes the stop gradient operator, and ω(t) is a time-dependant
weighting factor. In what follows, some or all of the loss arguments may be
omitted when the context is clear.

It is commonly observed that SDS, with its default high Classifier-Free
Guidance (CFG) weight [25], often leads to textureless and over-saturated outputs
that significantly impact photorealism and diversity, while a lower CFG weight
tends to underperform with SDS. Variational Score Distillation (VSD) [71]
introduces a proxy of D, denoted as D′, which is optimized under the following
loss function:

Lproxy(D′, sg(I)) = ω(t)∥D′(I, ϵ, T, t)− sg(I)∥2. (2)

Typically, D′ is selected to be the Low Rank Adaptation (LoRA) [27] of D, having
identical outputs to D at the beginning of the optimization. Simultaneously, VSD
also optimizes the NeRF parameters by minimizing LSDS(I)− Lproxy(sg(D′), I).
The full VSD objective is formulated as:

LVSD(D′, I) = LSDS(I)− Lproxy(sg(D′), I) + Lproxy(D′, sg(I)). (3)

Leveraging the formulation above, our overall test-time optimization objective is:

Lours = LVSD(D′
color, Icolor) + λLVSD(D′

normal, Inormal), (4)

where two fixed text-to-image diffusion models, Dcolor and Dnormal, process color
images Icolor and normal maps Inormal, respectively. The normal map is computed
through analytic gradients of the NeRF density. During VSD, we also optimize
their LoRAs, D′

color and D′
normal. Our observations suggest that VSD allows for

a smaller CFG weight, generally enhancing convergence and output quality.

Mixing and weighting concepts: Through this distillation approach, we can
additionally compose and modulate different concepts expressed by the text
embedding. We proposevv to perform compositionality using a perspective akin to
findings in the context of Energy-Based Models [18,43] and Diffusion Models [44].
This notion allows us to generate a variety of results by mixing and weighting two
or more concepts, including removal of certain concepts or semantic interpolation,
thereby enriching the user experience. More generally, we can optimize the
conditional NeRF from initialization with a combination of objectives:

Lcomposed =
∑

T∈Positive

αT · Lours(T )−
∑

T∈Negative

βT · Lours(T ) (5)
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with {αT , βT } being the positive modulation constants, balancing the impor-
tance of different concepts. A probabilistic interpretation is provided in the
supplementary material. The associated updates to the NeRF paramenters θ are
thus

∇θLcomposed(T, θ) =
∑

T∈Positive

αT · ∇θLours(T, θ)−
∑

T∈Negative

βT · ∇θLours(T, θ)

(6)
which is an expression reminiscent of the concept-compositional sampling by
means of Langevin Dynamics in Energy-Based Models [18].

Besides the composability interpretation, we can generate smooth interpola-
tions by simply switching from one concept to another. This is, once we already
obtained the result from one concept, we can directly apply the optimization with
the objective associated to an alternate concept. We observe that the optimization
trajectory tends to remain within distribution, assuming the two concepts do not
introduce significant changes, such as the opening of the mouth or the addition of
extra geometry from accessories. We illustrate these interesting findings in Sec. 4
and hypothesize that incorporating additional data into training our 3D prior
model could lead to more meaningful optimization trajectories. Experiments on
both methodologies can be found in Sec. 4.3.

3.4 Implementation details

For a single prompt, MagicMirror needs a maximum of 1k iterations for both
geometry and texture generation, which are performed simultaneously. We utilize
4 TPUs of 96 GB of memory, with a batch sample of 128× 128 resolution per
device. Each device may leverage a different set of weights for its diffusion prior,
all of them implemented with Imagen 2.2.3. Our use of Imagen is primarily based
on its availability and compatibility with our pipeline. There is no evidence to
suggest that Imagen outperforms public models, especially considering recent
updates to and their ability to support higher resolutions than the 128 × 128 limit
of Imagen 2.2.3 The entire generation process takes about 15 minutes. Additional
details can be found in the supplementary.

3.5 Ablation studies

Role of (personalized) geometric prior. One noteworthy property of the
geometry supervision is its robustness. Fig. 5a (top row) illustrates the crucial
role played by the geometry prior. Without it, the normal map appears noisy
and distorted, with out-of-face structures like headphones poorly constructed.
Figure 5a (bottom row) shows that despite our geometry prior being trained on
a single avatar, its identity has a negligible impact on the final results. In this
comparison, we analyze the effects of a geometry prior trained on the original
normals of the subject (shown on the right) against one trained on normals from
a random female (shown on the left). The results are visually indistinguishable,
with both facial features and overall geometry are accurately generated.

Test-time NeRF initializations. We test different latent codes to initialize
our conditional NeRF for test-time avatar optimization. As can be seen in 5b,
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for personalized avatars, different latent codes does not yield significant variance
in the final results. The non-personalized avatars can have more variance since
there are no more constraints on the appearance than to follow the text prompt.

Diversity of training data for conditional NeRF. The performance of
MagicMirror significantly benefits from the diversity of the search space. As
aforementioned, employing a conditional NeRF trained on multi-view datasets
comprising multiple subjects has proven to be valuable. As illustrated in Figure
5c, the final results are notably influenced by the number of subjects used for
training the conditional NeRF. Training with a single subject tends to yield
very rigid geometry, much more challenging to modify compared to the texture.
Utilizing 350 subjects allow for modification in geometry but often results in
rough normals and a lack of fine details. Conversely, a more diverse training set
of 1450 subjects leads to substantially smoother and more precise geometry. We
choose the complete set for all of other experiments.

Impact of the avatar’s identity latent code In Fig. 5d, we demonstrate the
results of optimizing the conditional latent code in isolation. In this experiment, we
perform VSD while freezing the remaining parameters of the network. According
to the results, while substantial modifications to the overall geometry and texture
are achievable through NeRF conditioning, the solution space is inherently limited
to human-like faces, as dictated by the training set. The Figure illustrates how
latent inversion fails to accurately capture the green color and distinct facial
features of a fantasy character "the Grinch".

VSD vs. SDS. In this final assessment, we evaluate the advantages of VSD
over SDS regarding avatar generation in our system. Fig. 5e presents results
for both a real captured individual and a fictional character, employing CFG
weights of 20 and 100. These comparisons lead us to observe that SDS tends to
produce avatars with an overly smooth and saturated appearance that is deficient
in fine detail, as extensively documented in existing literature. In contrast, our
implementation of VSD yields avatars that exhibit significantly improved realism
and finer details, demonstrating the superiority of VSD in our method.

4 Experiments
4.1 Metrics and Evaluation

It is well known that evaluation is challenging when it comes to 3D generation.
Hence, we resort to human preference to assess the quality of our model. We create
a human study, where we show 3 rendered views of 18 generated recognizable
subjects for all (anonymous) methods to 36 people and ask them to rank them
from 1 (low) to 5 (high) in two dimensions. We ask about (i) visual quality as
a measure of realism of both shape and appearance of the generated avatars as
a generic human being; and (ii) similarity to the real person as a measure of
alignment to the real target person’s identity. Finally, we utilize the same set of
views to provide results for PickScore [40], which quantifies human preference.
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(a) Role of (personalized) geometric prior (b) Test-time NeRF initializations

(c) Diversity required for training cond. NeRF

(d) SDS w/ high CFG causes over-smoothing (e) Latent inversion fails out-of-distribution

Fig. 5: Ablation studies. We show that a geometric prior (5a) improves the results
(top-left) even when the geometry prior comes from a different subject (center-left).
(top-right) Our method yields very similar results in the personalized setting, even for
very different NeRF initializations (5b). A sufficiently diverse prior (5c) is required
for convincing results (middle). (bottom-left) we demonstrate the effectivenes of VSD
instead of SDS. (bottom-right) we show how inverting the latents works to a certain
extent but it fails for out-of distribution cases.

4.2 Quantitative Results

We observe in Fig. 6(bc) that MagicMirror outperforms baselines by a large
margin (> 1.5 compared to the best baseline), achieving very high marks on both
questions. In addition, Fig. 6(a) illustrates a similar trend as seen in the human
evaluation. Our method is chosen over baselines the majority of times.

4.3 Qualitative Results

Mixture of concepts We illustrate the mixture of concepts technique through
mixture of objectives described in Sec. 3.3. In Fig. 7a we show the optimized
NeRF under various modulation weights for the "happy" and "sad" concepts, as
well as an example of removing "green" from "joker". All NeRF are initialized
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(a) PickScore (b) Human Study:
Visual quality

(c) Human Study:
Similarity to the real person

Fig. 6: Quantitative evaluations of our method. (a) We compute PickScore [40] against
each baseline. The Bars indicate the percentage of times that our avatar is preferred
w.r.t. the baselines. (bc) We report average human study scores regarding visual quality
(b) and similarity to the real person (c) of all baselines. Scores range 1 to 5.

(a) The final optimized results under various modulation weights for two different concepts. Removing
a certain visual elements is also possible with this method, for example removing the green color
from the Joker re-contextualization for the given identity.

(b) The optimization trajectory from one concept to another. This works well when there are no
drastic change in geometry.

Fig. 7: Applying our editing framework with mixture of concepts.

from the common initialization. We can see the mixture results in natural and
plausible appearance while retaining the same quality of a single concept. In
Fig. 7b we show that it’s also possible to move from the concept "young" to
"old" by optimizing the target objective based on the optimized source objective,
although the trajectory may not always make sense if the intermediate states
are too out-of-distribution. Recall that our conditional NeRF is only trained on
neutral expression.

Identity preserving editing with text prompt AvatarStudio [49] is a recently
proposed text guided avatar editing method. It aims to modify the appearance
and geometry of the 3D avatar using the SDS technique. The 3D avatar is
represented as a conditional NeRF while the conditioning on the time in a
expression performance. Thus unlike our approach, there is no modelling of
different identities. We compare our results using the same identity and text
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Fig. 8: We compare our method with AvatarStudio [49]. Please zoom in to see more
details.

MVDream HumanNorm Ours MVDream HumanNorm Ours

Fig. 9: We compare with MVDream [60] and HumanNorm [29]. MVDream suffers
from color over-saturation and HumanNorm struggles with teeth and eyes and yields a
cartoon-ish result.

prompt. It’s worth mentioning that we do not have to reconstruct the user
at test time, since we only require photos to be used by DreamBooth. Thus
unlike AvatarStudio, we don’t need the camera pose estimation that may be
hard to obtain with user’s casually captured photos. We observe that we achieve
significant improvement in both visual detail and realism, largely benefit from
our constrained solution space.

Non-personalized generation with text prompt We now switch to celebrity
avatar generation using prompt only, and compare with two recent Text-to-3D
methods, MVDream [60] and HumanNorm [29]. MVDream integrates multi-view
attention mechanism in Stable Diffusion and fine-tunes the model on large 3D
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datasets Objaverse. It aims to generate 3D assets of various categories, including
humans. HumanNorm focuses on human avatar generation, which fine-tunes
Stable Diffusion on depth and normal renderings of 3D human models to guide
the geometry generation. Both of them employ DMTet [58] to extract mesh
geometry to have better decoupling of geometry and texture, and start the
test-time optimization from scratch. The results are visually compared in Fig. 9.
We see that MagicMirror achieves much higher realism and fidelity.

5 Limitations, Impact, and Conclusion
Although we do not require large scale 3D human data, collecting them for
hundreds or thousands of subjects can still be a relatively expensive and time
consuming effort. From another point of view, the data we used to constrain
the solution space also limit us in the sense that certain extremely out-of-
distribution modification is hard to achieve. Our approach can be also limited
by the computational resources, since we need multiple Text-to-Image Diffusion
Models, at least each for color and normal, and more if we want to perform
mixture of concepts. Future research can be invested in more modular design and
more direct approach to achieve fast and efficient generation and editing. For its
wider adoption, as with all other technologies, we must ensure its development
and application to satisfy the security and privacy of the user, and minimize any
negative social impact. In particular, we believe the alignment of the pretrained
large Text-to-Image Diffusion Models with human values is becoming ever more
important given their growing capability and popularity.

We have presented MagicMirror, a next generation text guided 3D avatar
generation and editing framework. Through constraining the solution space,
looking for a good geometric prior and choosing a good test-time optimization
objective, we have achieved a new level of visual quality, diversity and faithfulness.
The effectiveness of each component has been demonstrated in our thorough
ablation and comparison study. We believe we have made an important step
towards an avatar system that people will find it easy and fun to use.
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