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Appendix

A Implementation Details

For CIFAR-10 image generation [22], we employ the 100-step DDIM approach [50].
For the LSUN-Bedroom and LSUN-Church datasets [54], we implement 200 steps
with LDM-4 and 500 steps with LDM-8 [39], respectively. In conditional image
generation, we use the official pre-trained Stable Diffusion version 1.4 [39], gener-
ating images with both 50-step PLMS and DDIM samplers. We adopt methods
from [7,24,27,32] for model quantization and calibration, and use code from [24]
to quantize model.

To calculate the reconstruction coefficients and input bias, we first run the
full-precision model to generate a batch of samples, capturing the input and noise
estimations at each timestep. This is followed by running the quantized model to
determine these coefficients. Batch sizes are tailored to each task: 64 for CIFAR-
10, 128 for LSUN experiments, and 256 for text-guided image generation with
Stable Diffusion v1.4. In general, larger sample size may lead to better results.
we leave this for future investigation.

We evaluate the FID score [16] using the official PyTorch implementation.
For the IS score [45] evaluation on CIFAR-10, we utilize code from [6]. For high-
resolution datasets like LSUN-Bedroom and LSUN-Church, we efficiently assess
the results using pre-computed statistics over the entire dataset, as provided
by [6]. For comparative experiments, we rerun the official scripts from [15,24,47].

B Comparison of Input Bias Correction and Noise
Estimation Correction

In this section, we perform a comparative analysis between Input Bias Correction
(IBC), as introduced in Section 4.2, and the noise estimation bias correction ap-
proach inspired by [33]. While the former method simultaneously corrects both
the estimated noise, ϵ̂t, and the corrupted input, x̂t, the latter focuses exclu-
sively on correcting the corrupted noise estimation, ϵ̂t. The visualization results,
presented in Figure 4, clearly demonstrate that the noise estimation correction
strategy is less effective at preserving original content, often resulting in the loss
of important objects and causing structural distortions in the generated images.
Conversely, the IBC strategy, as implemented in TAC-Diffusion, produces images
that are more closely aligned with those generated by the full-precision model.
This efficacy can be attributed to IBC’s ability to adjust the deviated model
input back onto the correct path, consistent with the analysis of exposure bias
discussed in Section 4.2.
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(a) FP32

(b) Input Bias Correction

(c) Noise Estimation Bias Correction

Fig. 4: Comparison between different correction strategies in 256 × 256 unconditional
generation on LSUN-Church with W3A8 500 steps LDM-8
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C Overall Algorithm

The overall algorithm of TAC-Diffusion is described in Algorithm 1.

Algorithm 1 Timestep-Aware Correction
Pre-calculation:
Input: Full-precision diffusion model ϵθ and its quantized version ϵ̂θ
Output: Reconstruction Coefficient K and Bias Corrector B
for t = T to 0 do

Collect model output ϵθ (xt, t) and ϵ̂θ (x̂t, t)
Calculate the reconstruction coefficient Kt

Calculate the element-level bias Bt

Correct ϵ̂θ (x̂t, t) and x̂t with Kt and Bt

Save Kt and Bt for inference
end for

Inference:
Input: Quantized noise estimator ϵ̂θ, model input x̂t, coefficient Kt and corrector
Bt

Output: Corrected Output x̃0

for t = T to 0 do
Correct input x̂t with Bt

Estimate noise with corrected input x̃t

Reconstruct noise estimation with Kt and ϵ̂θ (x̃t, t)
end for

D Extending TAC-Diffusion to DPM-Solver++

In this section, we extend TAC-Diffusion to an advanced high-order solver, e.g .
DPM-Solver++ [31]. The procedure for this integration is summarized in Algo-
rithm 2, where we exclude the pre-calculation process for simplicity.

To align with the notation used in [31], we define λt = log
(

αt

σt

)
within Algo-

rithm 2. Here, σt represents the square root of the predefined forward variance
schedule, and αt =

√
1− σ2

t . During the sampling phase, we iterate i backward
from M to 1, identifying intermediate timesteps si that fall between ti−1 and ti,
thus ensuring a sequence t0 > s1 > t1 > · · · > tM−1 > sM > tM . To evaluate
the performance of integrating TAC-Diffusion with DPM-Solver++, we conduct
experiment on CIFAR-10, comparing our results with those of Q-Diffusion [24].
The quantitative results are detailed in Tab. 4.
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Algorithm 2 Timestep-Aware Correction with DPM-Solver++(2S) Sampler
1: Input: Quantized noise estimation model ϵ̂θ, data prediction model xθ, reconstruc-

tion coefficient K and initial data xT

2: Output: Corrected Output x̃tM

3: x̂t0 ← xT

4: for i← 1 to M do
5: hi ← λti − λti−1

6: ri ←
λsi

−λti−1

hi

7: ϵ̃θ
(
x̂ti−1 , ti−1

)
← Kti−1 ϵ̂θ

(
x̂ti−1 , ti−1

)
8: xθ

(
x̂ti−1 , ti−1

)
← 1

αti−1

(
x̂ti−1 − σti−1 ϵ̃θ

(
x̂ti−1 , ti−1

))
9: ui ←

σsi
σti−1

x̂ti−1 − αsi

(
e−rihi − 1

)
xθ

(
x̂ti−1 , ti−1

)
10: ϵ̃θ (ui, si)← Ksi ϵ̂θ (ui, si)
11: xθ (ui, si)← 1

αsi
(ui − σsi ϵ̃θ (ui, si))

12: Di ←
(
1− 1

2ri

)
xθ

(
x̂ti−1 , ti−1

)
+ 1

2ri
xθ (ui, si)

13: x̃ti ←
σti

σti−1
x̂ti−1 − αti

(
e−hi − 1

)
Di

14: end for
15: return x̃tM

Table 4: Unconditional generation results on CIFAR-10 (32 × 32), with a W3A8
diffusion model and a 50 steps DPM-Solver++

Method Bits(W/A) FID↓

Q-Diffusion [24] 4/32 5.38
Ours 4/32 5.29
Q-Diffusion [24] 4/8 10.27
Ours 4/8 10.05
Q-Diffusion [24] 3/8 38.82
Ours 3/8 18.70
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E Model Efficiency

In this section, we test the efficiency of the quantized diffusion model relative
to its full-precision counterpart. We employed the official PyTorch Quantization
API for model quantization. Given that this API does not support quantization
to precisions lower than 8-bit, we quantized both the weights and activations to
8-bit precision. Tab. 5 showcases the average inference time for a 100-step DDIM
process on the CIFAR-10 dataset, conducted on an Intel Xeon Platinum 8358
CPU. Operating with a batch size of 32, the quantized diffusion model achieves a
speed-up of morethan 3.9 times, while its size is diminished to about one-fourth
of that of the full-precision model. Furthermore, we note that the additional
computational overhead for our proposed method is minimal, resulting in a mere
0.65% increase in inference time compared to the Q-Diffusion [24] with a batch
size of 32.

Table 5: Inference speed test on CIFAR-10 (32 × 32), with pixel-space DDIM.

Model Method Batch Size Bits (W/A) Size (Mb) Time(s) Acceleration(×)

DDIM
(steps = 100
eta = 0.0 )

Full-Precision 64 32/32 143.20 77.95 1
Q-Diffusion [24] 64 8/8 36.21 26.79 2.91

Ours 64 8/8 36.21 26.98 2.89
Full-Precision 32 32/32 143.20 36.18 1

Q-Diffusion [24] 32 8/8 36.21 9.17 3.95
Ours 32 8/8 36.21 9.23 3.92

Full-Precision 16 32/32 143.20 13.48 1
Q-Diffusion [24] 16 8/8 36.21 5.86 2.30

Ours 16 8/8 36.21 6.03 2.24
Full-Precision 1 32/32 143.20 3.59 1

Q-Diffusion [24] 1 8/8 36.21 2.69 1.33
Ours 1 8/8 36.21 2.76 1.30

F Visualization of Dynamic Activation Distribution in
Noise Estimation Network

We visualize the activation distribution in several layers of LDM-8 during the
denoising process in Fig. 5. We can observe that the range of activation varies
greatly across timesteps in these layers. Since low-precision diffusion models
maintain a fixed quantization step size, a significant portion of activation values
inevitably becomes clamped during numerous timesteps. This clamping phe-
nomenon, occurring in many timesteps, leads to substantial information loss.
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Fig. 5: The activation distribution of multiple layers in full-precision LDM-8 on LSUN-
Church. The distribution varies during the denoising process. This dynamic nature of
activation is the main source of clipping error in low-precision diffusion model.

G Ablation Study on rQSNR weight in the
Reconstruction Loss Function

In this section, we conduct an ablation study on the weighting coefficient λ1

of the rQNSR penalty in the reconstruction loss function. This study employs
a W3A8 100-step DDIM on the CIFAR-10 dataset. The analysis, illustrated
in Fig. 6, explores the balance between the mean square error and the relative
quantization noise sensitivity by uniformly adjusting λ1 in increments of 0.1. This
ensures that both λ1 and 1−λ1 remain within positive bounds. The fitted curve
to the observed data points identifies an trade-off between these two components
in the reconstruction loss function. While minimizing MSE is a prevalent strategy
in numerous post-training quantization methods [1,5], our findings suggest that
integrating a balanced consideration of both absolute and relative error can
enhance reconstruction outcomes in quantized diffusion models, thereby leading
to improved noise estimation fidelity.
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Fig. 6: Ablation study on rQSNR weight

H Potential Negative Impact

The ability to create semantically coherent and visually compelling images with
ease raises concerns over the potential misuse of such technology. It can be ex-
ploited to generate fake or misleading content, including deepfakes, that can have
serious ramifications in areas such as politics, security, and personal reputation.
While our method enhances the fidelity of generated images on low-precision de-
vices, it also necessitates the development and enforcement of ethical guidelines
and technological solutions to detect and prevent the misuse of synthetic media.

I Limitations

In this study, our primary focus is on addressing the accumulation of quanti-
zation errors introduced by the dynamic nature of diffusion models. Extensive
experiments conducted on diverse datasets demonstrate that, with the input cor-
rection at each timestep, low-precision diffusion models can effectively mitigate
the accumulation of quantization errors, resulting in image quality comparable
to that of full-precision diffusion models. However, it is important to note that
our proposed method is applied exclusively to the model’s input and the noise
estimation, suggesting that quantization errors may still impact the model’s in-
ference at each timestep. Therefor, a more fine-grained correction strategy, such
as correction within the residual block, might further improve the performance
of quantized models. Moreover, we acknowledge the potential alternative ap-
proaches for mitigating quantization errors in low-precision diffusion models, e.g .
adaptive step size. We leave the exploration of these approaches as future work.

J Qualitative Result on CIFAR10

In this section, we present the quantitative result from experiments conducted
on the CIFAR-10 [22]. The generated images using the PTQ4DM [47] and Q-
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Diffusion [24], both implemented with W3A8 100 steps DDIM, are illustrated
in Fig. 7. Additionally, we display results achieved with the W3A8 50 steps
DPM-Solver++ in Fig. 8.

Fig. 7: Unconditional image generation using the W3A8 100 steps DDIM on the
CIFAR-10 dataset. The presented sequences, from top to bottom, are Full Precision
model, TAC-Diffusion, and Q-Diffusion [24].

(a) TAC-Diffusion (b) Q-Diffusion

Fig. 8: Unconditional image generation using the W3A8 50 steps DPM-Solver++ on
the CIFAR-10 dataset.
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K Results on ImageNet

To further explore the performance of our method on ImageNet, we report the
LPIPS, PSNR, SSIM, and FID in Tab. 6. Visualization results with W3A8 pre-
cision are provided in Fig. 9.

Table 6: Conditional generation results on ImageNet (256 × 256), with 20 steps LDM-
8

Methods Bits (W/A) LPIPS↓ PSNR↑ SSIM↑ FID↓

Full-Precision 32/32 – – – 10.91

TFMQ-DM [19] 8/8 0.026 33.59 0.958 10.79
Ours 8/8 0.023 34.14 0.962 10.82

TFMQ-DM [19] 3/8 0.227 20.61 0.776 8.62
Ours 3/8 0.206 22.15 0.788 8.36

FP Ours
LPIPS: 0.104
SSIM: 0.839
PSNR: 25.98

TFMQ-DM [19]
LPIPS: 0.151
SSIM: 0.829
PSNR: 21.75

FP Ours
LPIPS: 0.146
SSIM:0.848
PSNR: 22.26

TFMQ-DM [19]
LPIPS: 0.443
SSIM: 0.649
PSNR: 16.97

Fig. 9: Conditional generation on ImageNet (256 × 256) with W3A8 20 steps LDM-8

While LPIPS, SSIM, and PSNR evaluate the similarity between images gen-
erated by the quantized and full-precision models, improved performance on
these metrics indicates our method’s ability to enhance the performance of quan-
tized models towards that of the FP models.

L Quantitative Results on LSUN-Bedroom

In this sectiom, we provide more quantitative results with diffusion models of
extremely low precision. Unconditional generation results on LSUN-Bedroom
with W3A8 and W2A8 LDM-4 are visualized in Figs. 10 and 11. A constant im-
provement in image quality can be observed. Notably, when the diffusion model
is quantized to 2-bit, our method can still guarantee the quality of generated
image.
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M Conditional Generation with Stabel Diffusion

In text-guided image generation using Stable Diffusion [39], the diffusion model
provides estimates for two types of noise at each timestep: ϵuc for unconditional
noise in the input image and ϵc for conditional noise, which is closely tied to
the given prompt. During the collection of calibration samples for implementing
our proposed method, we observed that the conditional noise associated with
the input text can exhibit significant diversity when compared to unconditional
noise. Consequently, a considerably larger set of prompts may be required to
comprehensively capture the entire distribution of conditional noise. A practical
approach is to focus solely on correcting the unconditional noise. We present
images synthesized using a 50-step PLMS sampler and a 50-step DDIM sampler,
as illustrated in Figs. 12 and 13. Compared to Q-Diffusion, our method shows
remarkable improvements, especially in creating more accurate human faces and
more accurately depicting the number of objects as specified in the prompt.
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(a) LDM-8 FP32

(b) TAC-Diffusion W3A8

(c) Q-Diffusion [24] W3A8

(d) PTQD W3A8

Fig. 10: 256 × 256 unconditional generation on LSUN-Bedroom with W3A8 200 steps
LDM-4.
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(a) LDM-8 FP32

(b) TAC-Diffusion W2A8

(c) Q-Diffusion [24] W2A8

Fig. 11: 256 × 256 unconditional generation on LSUN-Bedroom with W2A8 200 steps
LDM-4.
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(a) Stable Diffusion FP32 with 50 steps PLMS sampler

(b) TAC-Diffusion W4A8 with 50 steps PLMS sampler

(c) Q-Diffusion W4A8 with 50 steps PLMS sampler

(d) Stable Diffusion FP32 with 50 steps DDIM sampler

(e) TAC-Diffusion W4A8 with 50 steps DDIM sampler

(f) Q-Diffusion W4A8 with 50 steps DDIM sampler

Fig. 12: Text-to-image generation at a resolution of 512 × 512 using Stable Diffusion,
with prompt A photograph of an astronaut playing piano.
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(a) Stable Diffusion FP32 with 50 steps PLMS sampler

(b) TAC-Diffusion W4A8 with 50 steps PLMS sampler

(c) Q-Diffusion W4A8 with 50 steps PLMS sampler

(d) Stable Diffusion FP32 with 50 steps DDIM sampler

(e) TAC-Diffusion W4A8 with 50 steps DDIM sampler

(f) Q-Diffusion W4A8 with 50 steps DDIM sampler

Fig. 13: Text-to-image generation at a resolution of 512 × 512 using Stable Diffusion,
with prompt A photo of two robots playing football.
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