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Abstract. Selective attention helps us focus on task-relevant aspects in
the constant flood of our sensory input. This constraint in our perception
allows us to robustly generalize under distractions and to new compo-
sitions of perceivable concepts. Transformers employ a similar notion of
attention in their architecture, but representation learning models with
transformer backbones like CLIP and DINO often fail to demonstrate
robustness and compositionality. We highlight a missing architectural
prior: unlike human perception, transformer encodings do not separately
attend over individual concepts. In response, we propose Sparo, a read-
out mechanism that partitions encodings into separately-attended slots,
each produced by a single attention head. Using Sparo with CLIP im-
parts an inductive bias that the vision and text modalities are differ-
ent views of a shared compositional world with the same corresponding
concepts. Using Sparo, we demonstrate improvements on downstream
recognition, robustness, retrieval, and compositionality benchmarks with
CLIP (up to +14% for ImageNet, +4% for SugarCrepe), and on near-
est neighbors and linear probe for ImageNet with DINO (+3% each). We
also showcase a powerful ability to intervene and select individual Sparo
concepts to further improve downstream task performance (up from +4%
to +9% for SugarCrepe) and use this ability to study the robustness of
Sparo’s representation structure. Finally, we provide insights through
ablation experiments and visualization of learned concepts.

Keywords: Selective attention · Slot representations · Transformers

1 Introduction

Selective attention is an intrinsic property of human perception [15, 44, 47],
enabling people to focus on task-relevant aspects of their surroundings while
tuning out the rest [55]. For instance, it allows a driver to focus on traffic sig-
nals, road signs, and other vehicles, or an individual searching for their friend
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in a crowd to attend to details like people’s heights and clothing. More broadly,
it empowers us to comprehend the vast complexity of our world with limited
mental resources [6] by constraining our perception to one concept at a time.
When a task requires information for multiple concepts (e.g ., looking at traf-
fic signals and pedestrians), this constraint calls for sequentially attending to
separate salient aspects of our stimuli [59]. The cognitive bottleneck of selective
attention, with the ability to separately represent concepts from our environ-
ment, enables human perception to remain insensitive to irrelevant distractions
and generalize to new compositions of perceivable concepts.

In machine learning, the notion of selective attention is party emulated by
the attention mechanism [3], which is a core component of transformers [60]
such as the vision transformer (ViT) [18]. However, transformer encodings learnt
using approaches like CLIP [50] and DINO [9] still struggle with robustness
[30, 31, 62, 70] and compositional generalization [33, 42, 52, 58, 67, 72]. For in-
stance, despite CLIP emerging as the de facto backbone for many vision tasks,
it can perform close to chance when evaluated for compositionality [42]. While
the attention mechanism equips these models with the ability to emphasize rele-
vant aspects of their intermediate representations, it does not endow them with
the means to produce encodings for separately-attended concepts. Consequently,
transformer-based representation learning models lack an important prior from
human cognition: that perception of a complex input can be broken down into
perception of its salient concepts.

This limitation deprives downstream tasks easy access to task-relevant as-
pects of the data’s underlying structure. In a task like ImageNet classification,
where most images contain one primary object of interest (e.g ., “dog”), infor-
mation like relationships between objects and attributes of the background are
irrelevant and can lead to overfitting if considered. However, these details can
become crucial to attain high performance in other tasks like image retrieval
(e.g ., “dog chasing a frisbee in a park”). Similar to the generalization benefits
of selective attention in human perception, encodings that allow easy separation
of attended concepts in the data can generalize to a diverse set of downstream
tasks. Without additional constraints, however, the emergence of such compo-
sitional structure in encodings is unlikely, especially in the common setting of
training on noisy internet data.

We propose Sparo (Separate-head attention read-out)5 as an improved
read-out mechanism for transformer encoders in vision inspired by selective at-
tention. Sparo replaces the last transformer block to provide a mechanism for
partitioning encodings into slots of separately-attended concepts. We design each
slot encoding to be a low-dimensional result of a single-head attention opera-
tion, producing a bottleneck that encourages each slot to “selectively attend.” In
this mechanism, producing multiple slots can be interpreted as selective attention
over different concepts occurring in parallel. When training CLIP, Sparo imparts
an inductive bias that both modalities are views onto a shared compositional
world with the corresponding slots of both encoders representing its concepts.

5 Source code: https://github.com/ankitkv/sparo-clip.
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In contrast, standard CLIP merely embeds the encodings of both modalities in
a shared vector space without imposing any additional structure.

Training Sparo using CLIP and DINO exhibits improved generalization, ro-
bustness, and compositionality while retaining the same model size. Our exper-
iments show that using CLIP with Sparo improves generalization for zero-shot
recognition, robustness, retrieval, and compositionality (e.g ., +14% for Ima-
geNet, +4% for SugarCrepe, when trained with 15M examples; +3% each when
trained with 400M examples). We also demonstrate improved linear probe perfor-
mance of CLIP (+10% trained with 15M examples; +2% with 400M examples),
as well as both linear probe and nearest neighbors performance of DINO (+3%
each). We showcase how Sparo’s representational structure enables the ability
to manually intervene and select relevant concepts for downstream tasks, lead-
ing to improved compositionality and generalization (up from +4% to +9% for
SugarCrepe trained with 15M examples; +3% to +6% with 400M examples). We
then study the robustness of this structure, validate the choice of separate-head
attention through ablations, and provide insights into the effect of the number
and dimensionality of concepts. Finally, we provide visualizations for some of
the concepts Sparo learns to attend to.

2 Related work

We situate our work amongst other transformer read-out mechanisms and slot
representation learning methods.

Transformer read-outs. For transformer [60] decoders with causal masking,
the last hidden state, corresponding to the end of sequence (EOS) input token, is
used as the output representation. BERT [17] proposed inserting a special CLS
token before input sequences for transformer encoders where information from
all positions is gathered to produce the encoding. Using the CLS token output
is also popular for Vision transformer (ViT) [9, 12, 18] backbones, along with
alternatives such as global average pooling [12, 64]. In the context of language,
Multi-CLS BERT [10] argues that an input text sequence can have multiple
facets, and that samples can be similar along one facet and dissimilar along
another. The authors aim to represent these facets by adding multiple CLS tokens
to the input sequence. Using separate attention heads for each Sparo slot can
also encourage attending to different facets of the inputs, but without requiring
expensive accumulations through each layer of the backbone. By keeping Sparo
independent of the backbone, we also allow for its easy potential placement on
top of frozen pre-trained models without needing to train for added CLS tokens.

Sparo is most related to the attentional pooler [39, 66] architecture, which
uses multi-head attention with embedded learned queries to produce output en-
codings. However, Sparo employs a critical structural constraint of not mixing
the information from separate attention heads, a design choice we justify em-
pirically in Sec. 5.3. Slot attention [41] also produces slot encodings through
the attention mechanism, but rather than having the input positions compete
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for each slot, the slots compete for each input position. Slot attention also pro-
poses an expensive iterative read-out mechanism where the role of each slot is
determined by sampling from a per-sample Gaussian distribution, which can be
limiting for large real-world datasets.

Slot representations. Object-centric slot representations have been studied
extensively in the literature [7,8,20,21,24–27,41,43,71]. Often, these representa-
tions are expected to represent predefined objects and attributes, and evaluated
in small-scale or synthetic settings. Recently, the use of slot attention on features
produced by a learned encoder [1, 49, 56], and utilizing unsupervised saliency
masks for object discovery [69] has enabled unsupervised learning of object-
centric representations in larger scale settings. Related to these ideas, Sparo
attends to features produced by a transformer using a single attention head per
slot, and each head is capable of learning saliency maps without supervision [9].
However, we do not constrain our slots to correspond to predefined types of ob-
jects in the data, nor do we impose any independence conditions between the
slots. Self-supervised simplicial embeddings (SEM) [37], with only a soft-discrete
slot structure constraint, enable improved generalization on downstream tasks.
Sparo replaces the separation of softmax application between SEM slots with
a separation of underlying attention operations.

3 Method

Having motivated our approach, we now detail the design of Sparo. We start
by introducing the relevant notation, then discuss the Sparo module. Finally,
we discuss the addition of Sparo in CLIP and DINO, and the applicability of
Sparo beyond these settings.

3.1 Notation

We envision Sparo as a special attention-based layer that modifies the top block
of a transformer encoder [51,60] backbone (including the ViT [18]). Transformers
take as input a sequence x = {x1, . . . ,xn} of length n, and produce an output
state per position {h1, . . . ,hn}, where xi 2 Rinput dim, hi 2 Rd, for any i 2
[n], with d the model width. Finally, a pooling operation reduces the sequence
of output states to output encodings with a fixed size y 2 RM . Examples of
pooling operations include attentional pooling [39], global average pooling, and
extracting the CLS or EOS token representations for images or text respectively.

3.2 Separate-head attention read-out (Sparo)

We replace the pooling operation of transformer encoders with a concatenation
of outputs of L single-head attention mechanisms. Sparo acts on the trans-
former outputs H = {h1, . . . ,hn} 2 Rn⇥d to produce the encoder output
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Fig. 1: Illustration of Sparo, a read-out mechanism that structures representations
as collections of separately-attended concepts. Take a standard N -block transformer
encoder (ViT here as an example), producing an encoding y through extraction of its
CLS token output. We can replace the Nth transformer block with the Sparo module
(typically with equal or fewer parameters) to produce a Sparo encoding y, which is
a concatenation of L Sparo slots. Each Sparo slot yl is produced through single-
head attention over the backbone outputs using an embedded query ql. The value
projection is a composition of slot-specific key projection parameterized by Kl and a
slot-wise projection shared between all Sparo concepts parameterized by W .

y = concat(y1, . . . ,yL) 2 RLV , where Sparo slot yl 2 RV , l 2 [L]. We il-
lustrate the architecture of Sparo in Fig. 1. Each Sparo slot is produced as:

yl = WKlH
Tsoftmax

✓
HK

T
l qlp
D

◆
. (1)

Here, Kl 2 RD⇥d is a learned key projection weight, and ql 2 RD is a learned
query embedding for attention. We parameterize the value projection as WKl

where W 2 RV⇥D is learned parameter shared between all L slots. Decom-
posing the value projection in this manner helps reduce the number of model
parameters, allowing a larger choice of L with fixed resources.

Generally, we pick V and D to be significantly smaller than the transformer
width. In practice, we use the typical value of D = 64 used in standard multi-
head attention modules, and set V to the same value in our experiments. There-
fore, each Sparo slot has limited expressivity and representational capacity. The
bottleneck underpinning each Sparo slot is a result of these constraints and the
mechanistic bottleneck of a single attention mechanism instantiating competi-
tion between its input features.

Sparo can be thought of as multi-head attention [60] where the queries
are learned embeddings, key and value projection weights are shared, and the
output projection weight is block-diagonal with each block containing the same
parameters. Assuming L = V = D =

p
d, Sparo requires a total of d2 + 2d

parameters, compared to multi-head attention’s 4d2.
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3.3 CLIP with Sparo

We add Sparo to both the image and text encoders of CLIP [50], setting the
same values of L and V in both encoders. Each Sparo slot is `2-normalized
separately, and we divide their concatenation by

p
L to produce the global `2-

normalized encoding. With this scheme, the cosine similarity between the image
encoding y

i and the text encoding y
t becomes the expected cosine similarity

between corresponding slot encodings:
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We train the model using the standard CLIP loss which maximizes sim(yi,yt)
of encodings y

i and y
t for aligned image-text pairs and minimizes it across all

other pairings. With Sparo’s separate-head attention bottleneck, maximizing
El⇠[L]

⇥
sim(yi

l,y
t
l )
⇤

for aligned pairs across the training dataset encourages both
modalities to learn similar attention semantics per slot l 2 [L]. Consequently,
Sparo imparts a prior that both modalities encode a shared world with L se-
lectively attendable concepts, and similarities between inputs can be expressed
as their average similarity for these concepts.

3.4 DINO with Sparo

The online and momentum encoders of DINO [9] are each comprised of a ViT
backbone which produces the encoding, and a DINO head that transforms it
into a categorical distribution for distillation. Unlike CLIP, these encoders have
an inherent bias for learning similar encoding functions due to one being an
exponentially moving average of the other. However, in standard DINO, there are
no constraints for selective attention in the encoding structure. We add Sparo
to DINO to impart the prior for representing separately-attendable concepts
in its encodings. Concretely, we replace the final transformer block of the ViT
backbone with the Sparo, but do not modify the DINO head.

4 Results

In Secs. 4 and 5, we evaluate our method on a variety of downstream tasks,
analyze Sparo’s representation structure with the ability to intervene on selected
slots, perform ablations to support our design, and visualize the learned concepts.

In this section, we validate that partitioning the representation structure
as a collection of separately-attended concepts leads to improved generalization
for downstream recognition, robustness, compositionality, and retrieval, using
Sparo with CLIP [50] in Secs. 4.1 to 4.3 and DINO [9] in Sec. 4.3.

Datasets. We train our CLIP models on one of Conceptual Captions 3M
(CC3M) [57], Conceptual Captions 12M (CC12M) [11], a combination of CC3M
and CC12M (CC15M), or LAION-400M (L400M) [54]. Appendix C provides the
statistics for our training datasets.
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Table 1: Zero-shot recognition, robustness, and SugarCrepe compositionality for CLIP
models trained on Conceptual Captions and LAION-400M.

Train Model
ImageNet- Object

Net
Sugar
CrepeV1 V2 Sketch A R

CC3M
CLIP16 (C) 0.141 0.122 0.068 0.033 0.177 0.080 0.611
C+GAP 0.156 0.134 0.069 0.033 0.187 0.081 0.616
C+Sparo 0.170 0.140 0.088 0.035 0.221 0.098 0.625

CC12M
CLIP16 (C) 0.361 0.311 0.249 0.091 0.467 0.218 0.697
C+GAP 0.382 0.330 0.262 0.101 0.501 0.241 0.695
C+Sparo 0.406 0.350 0.298 0.113 0.559 0.268 0.723

CC15M
CLIP16 (C) 0.384 0.337 0.268 0.105 0.503 0.238 0.699
C+GAP 0.399 0.343 0.287 0.114 0.531 0.252 0.701
C+Sparo 0.437 0.378 0.317 0.145 0.579 0.279 0.730

L400M
CLIP32 (C) 0.617 0.531 0.482 0.202 0.719 0.423 0.748
C+GAP 0.623 0.537 0.492 0.212 0.725 0.440 0.732
C+Sparo 0.635 0.552 0.507 0.231 0.747 0.459 0.770

Models. For all experiments in this section, we train CLIP models using the
open-source OpenCLIP [34] project. We consider two model sizes: those with
a ViT-B/16 visual backbone (CLIP16) and those with a ViT-B/32 backbone
(CLIP32). For models trained with Sparo, we replace the last transformer block
of the base transformer backbones. For our chosen settings, this ensures that the
resulting model size is comparable to the original model size. Further, since only
the CLS token output from the image transformer and the EOS token output from
the text transformer are used for the standard CLIP encodings, removing one
transformer block ensures that we do not gain an unfair advantage by attending
to positions from a layer that standard CLIP discards. Note that standard CLIP
also retains the MLP as a part of its final transformer block, which is absent
in the Sparo module. We also compare our encodings with those produced by
CLIP with global average pooling (CLIP+GAP), which enjoys the advantage
of being able to use all of the final layer outputs. When using Sparo, we use
L = V = 64 when training on Conceptual Captions, and L = 128, V = 64
when training on LAION-400M. We also provide results for CLIP with residual
network (ResNet) [28] encoders in Appendix B.3.

4.1 Zero-shot recognition, robustness, and compositionality

We evaluate the zero-shot classification accuracy of trained CLIP models on
ImageNet [16] and a set of robustness benchmarks including ImageNet-V2 [53],
ImageNet-Sketch [62], ImageNet-A [31], ImageNet-R [30], and ObjectNet [4].
Additionally, to evaluate the compositionality of our learned encodings in terms
of objects, attributes, and relations, we test our trained models on SugarCrepe
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(a) CLIP16 models trained on CC3M. (b) CLIP16 models trained on CC12M.

(c) CLIP16 models trained on CC15M. (d) CLIP32 models trained on L400M.

Fig. 2: Relative differences of CLIP+Sparo zero-shot accuracies when compared to
CLIP+GAP on the VTAB benchmark.

[33]. We report our results in Tab. 1, and provide more fine-grained SugarCrepe
numbers in Appendix B.4. We find that using Sparo encodings outperforms
CLIP and CLIP+GAP in all settings considered. The improved results on the
SugarCrepe benchmark suggests that Sparo encodings exhibit compositionality
at a level that enable better binding of object, attribute, and relation properties
than baseline encodings on average.

Finally, we also use the VTAB benchmark [70] to evaluate Sparo on a diverse
set of datasets [5,13,14,19,22,23,29,35,36,38,45,46,48,61,63,68] that vary more
significantly from the training data. We present the relative zero-shot classifica-
tion accuracy improvements of CLIP+Sparo over CLIP+GAP in Fig. 2 and the
corresponding absolute values in Appendix B.6. We see that Sparo outperforms
standard CLIP encodings for a majority of VTAB tasks in all four settings.

4.2 Zero-shot image and text retrieval

To separately evaluate the quality of the learned image and text encodings, we
consider zero-shot retrieval based on image and text on MS COCO [40], Flickr8k
[32], and Flickr30k [65]. Our results are presented in Tab. 2. To compute Recall@5
for ‘Text’ we find the nearest 5 texts for an image, calculate the fraction of those
texts that match the image, and average this metric over all the images (similar
for Recall@5 for ‘Image’). We find that Sparo encodings improve retrieval across
all three datasets for both modalities.
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Table 2: Image and text zero-shot Recall@5 retrieval results on MS COCO, Flickr8k,
and Flickr30k for CLIP models trained on Conceptual Captions and LAION-400M.

Train Model
Image R@5 Text R@5

COCO F8k F30k COCO F8k F30k

CC3M
CLIP16 (C) 0.237 0.400 0.353 0.294 0.489 0.469
C+GAP 0.260 0.430 0.400 0.312 0.534 0.497
C+Sparo 0.289 0.490 0.461 0.363 0.587 0.581

CC12M
CLIP16 (C) 0.474 0.691 0.715 0.614 0.837 0.817
C+GAP 0.499 0.714 0.725 0.628 0.819 0.847
C+Sparo 0.526 0.737 0.759 0.670 0.878 0.878

CC15M
CLIP16 (C) 0.512 0.738 0.757 0.636 0.844 0.865
C+GAP 0.535 0.761 0.772 0.659 0.849 0.881
C+Sparo 0.557 0.778 0.793 0.696 0.898 0.905

L400M
CLIP32 (C) 0.599 0.822 0.840 0.765 0.923 0.935
C+GAP 0.610 0.822 0.845 0.768 0.917 0.946
C+Sparo 0.616 0.836 0.854 0.774 0.935 0.950

Table 3: Left: ImageNet linear probe accuracy for CLIP models trained on Conceptual
Captions and LAION-400M. Right: ImageNet 20-nearest neighbors and linear probe
accuracy for encodings trained with DINO.

Model
ImageNet linear probe

Train: CC3M CC12M CC15M L400M

CLIP (C) 0.469 0.630 0.646 0.743
C+GAP 0.504 0.649 0.664 0.747
C+Sparo 0.561 0.700 0.711 0.755

Model
ImageNet eval

20-NN Linear probe

DINO 0.685 0.735
DINO+Sparo 0.706 0.757

4.3 Linear probe and DINO nearest neighbors classification

We evaluate the classification accuracy of linear probes trained on the encodings
of our trained models. For CLIP models, we follow [50] where we take a subset
of the training data to use as a validation set, and sweep for the best weight
decay hyperparameter on it for each model setting. Additionally, we evaluate
Sparo for self-supervised learning in vision using DINO [9]. We train DINO
with a ViT-S/16 backbone on ImageNet [16] without labels with 8 GPUs for
100 epochs without changing any other hyperparameters. Here, we use Sparo
with L = V = 64, replacing the last transformer block of the ViT encoder. The
trained DINO models are evaluated on k-nearest neighbours with k = 20 and
linear classification on ImageNet with labels. We report our results for CLIP and
DINO in Tab. 3. Our results for CLIP align with our previous results, with Sparo
outperforming CLIP and CLIP+GAP in all linear probe settings. Furthermore,
we see that a straightforward incorporation of Sparo in the DINO encoder
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Table 4: Effect of intervening to selecting only the top 32 slots based on zero-
shot ImageNet validation accuracy on SugarCrepe compositionality for CC15M-trained
CLIP16+Sparo and LAION-400M-trained CLIP32+Sparo.

SugarCrepe
CC15M L400M

Slots: 100% 50% 100% 25%

Replace
Object 0.896 0.912 0.927 0.929
Attribute 0.798 0.797 0.822 0.854
Relation 0.666 0.713 0.678 0.705

Swap Object 0.593 0.659 0.585 0.646
Attribute 0.700 0.703 0.719 0.740

Add Object 0.779 0.809 0.866 0.857
Attribute 0.679 0.737 0.794 0.822

Average 0.730 0.761 0.770 0.793

outperforms standard DINO for both nearest neighbors and linear classification.
We provide additional experimental details in Appendices C.1 and C.2.

5 Analysis

In this section, we provide insights into encodings learned by Sparo. We demon-
strate the ability of using Sparo’s slot structure to perform post-hoc selection
of slots for improving downstream performance. We then show that without this
structure, such selection is more prone to overfitting. Next, we validate the design
choice of using single-head attention to model the notion of selective attention
through controlled ablations. Finally, we visualize example concepts that CLIP
models trained with Sparo learn to attend to.

5.1 Post-hoc concept selection

Sparo enables downstream tasks access to a collection of concepts. However,
not all concepts may be important for a specific downstream task. For example,
attending to watermarks or caption style can be important when trying to de-
termine the source of a sample, but is unnecessary and often harmful for most
downstream tasks that focus on the elements in the scenes. The separation of
concepts in the structure of a Sparo encoding makes it possible to manually
intervene to select desirable slots.

We demonstrate this ability with a simple heuristic: we perform concept selec-
tion by computing the zero-shot ImageNet validation accuracy of each slot sepa-
rately, and pick only the top-performing 32 slots. In Tab. 4, we show that such an
intervention exposes improved compositionality when evaluating CLIP+Sparo
models trained on CC15M and LAION-400M on SugarCrepe.
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Table 5: Effect of overfitting a partitioned mask for image encodings y of frozen
CC15M-trained CLIP32+GAP and CLIP32+Sparo models by training on SugarCrepe.
We normalize the relative change on the evaluation benchmarks by the attained relative
change on SugarCrepe. The highlighted rows indicate settings where the structure
assumed for the mask aligns with Sparo’s representation structure.

(# parts,
Part size)

Model
(CLIP32)

Shape
of y

Training Evaluation

SugarCrepe VTAB Avg ImageNet 0-shot Acc

Initial Masked Initial Masked Relative
change Initial Masked Relative

change

(64, 64) +GAP (4096) 0.692 0.732 0.240 0.217 �1.689 0.343 0.292 �2.598
+Sparo (64, 64) 0.710 0.764 0.262 0.272 +0.497 0.370 0.364 �0.190

(64, 8) +GAP (512) 0.678 0.712 0.254 0.219 �2.794 0.345 0.279 �3.924
+Sparo (64, 8) 0.696 0.741 0.249 0.260 +0.688 0.355 0.347 �0.347

(512, 1) +GAP (512) 0.678 0.771 0.254 0.215 �1.119 0.345 0.250 �2.003
+Sparo (64, 8) 0.696 0.809 0.249 0.206 �1.059 0.355 0.224 �2.277

(4096, 1) +GAP (4096) 0.692 0.815 0.240 0.215 �0.596 0.343 0.286 �0.938
+Sparo (64, 64) 0.710 0.881 0.262 0.242 �0.316 0.370 0.328 �0.465

5.2 Robustness of Sparo’s slot structure

We further utilize the notion of post-hoc concept selection to study the robust-
ness of Sparo’s representational structure, and compare it with that of standard
encodings. We set up the experiment as an inverse of Sec. 5.1 — we perform
concept selection using the smaller SugarCrepe benchmark and evaluate the
resulting encodings on real-world benchmarks. SugarCrepe contains 7,512 ex-
ample pairs of positive and negative captions, differing only in compositional
interpretation in 7 ways, over a set of 1,561 images. Compositionality is a shared
high-level notion present in most real-world data, yet there is much information
that exists in data beyond what is necessary to solve the SugarCrepe tasks. The
small size of the SugarCrepe as a training dataset, together with the ubiquitous
nature of compositionality in machine learning tasks, makes it an ideal candidate
to overfit concept selection to for stress-testing the representational structure of
Sparo by evaluating on other tasks.

We train a global mask m 2 [0, 1]M of the image encodings y 2 RM to
maximize SugarCrepe performance, and evaluate the masked encodings m �
y on VTAB tasks and ImageNet for zero-shot classification. We train masks
for encodings of frozen CLIP32+GAP and CLIP32+Sparo models trained on
CC15M with M = 512 and M = 4096 each. For the Sparo models, we use
L = 64 and V = M/L. For each of these settings, we consider two types of
masking: per-dimension and per-slot. To compare the CLIP32+GAP encodings
on per-slot masking, we consider their L contiguous equal-sized partitions as
the slot encodings. We provide full implementation details of our mask training
setup in Appendix C.1.
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Table 6: Ablation experiments showing benefits of Sparo’s attention bottleneck
(Cross-attention is ‘Separate-head’) and cross-modal attention alignment (Slot-wise
LayerNorm and projection are ‘Yes’ or ‘N/A’) with CC15M-trained CLIP, CLIP+GAP,
CLIP+Sparo, and ablated variants of CLIP+Sparo that include multi-head cross-
attention and the attentional pooler (AttPool) [39, 66].

Model Replace
last block

Cross-
attention

Slot-wise
LayerNorm

Slot-wise
projection Params flops

(⇥109)
ImageNet
zero-shot

CLIP32 (C)
N/A N/A N/A N/A 151M 7.4 0.329

C+GAP 151M 7.4 0.345

C+AttPool

No

Multi-head

No No 440M 8.9 0.312

Ablated
C+Sparo

Yes 306M 8.8 0.344

Yes No 440M 8.9 0.338
Yes 306M 8.8 0.359

Separate-head

No No 306M 8.8 0.344
Yes 172M 8.7 0.358

Yes No 306M 8.8 0.344
Yes 172M 8.7 0.374

C+Sparo N/A N/A
161M 8.0 0.372

Yes 151M 7.4 0.370

We expect the compositionality of the data to be encoded in concepts that are
useful for real-world downstream benchmarks. Therefore, the aggressive selection
of only the concepts that perform well on a compositionality benchmark should
not significantly impact downstream performance. However, since SugarCrepe
does not represent all possible compositional manipulations, we expect to see a
drop in performance on some tasks due to overfitting. We present our results in
Tab. 5. We find that when the mask structure is aligned with the slot structure
of Sparo, overfitting concept selection improves the average performance on
VTAB tasks, and incurs only a minimal drop in performance on ImageNet.
Furthermore, even in settings where the masks are not trained to align with
Sparo’s slot structure, we see that Sparo remains more resilient to overfitting
than standard encodings in a majority of settings.

5.3 Ablating the bottleneck and cross-modal alignment of Sparo

We evaluate the generalization benefits of the separate-head attention bottleneck
and of aligning the Sparo attention heads between the modalities in CLIP. We
set up Sparo on one end of the ablation spectrum and the cross-attention read-
out of attentional pooler (AttPool) [39,66] to the other. AttPool uses multi-head
attention to attend to the backbone encoder’s outputs using embedded learned
queries whereas Sparo uses separate single-head attention mechanisms. Addi-
tionally, AttnPool performs layer normalization [2] followed by a linear projec-
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tion on the output of attention to produce the output encoding, whereas Sparo
directly uses the output of separate-head attention as the encoding.

We train CLIP32, CLIP32+GAP, and variants of CLIP32+Sparo on CC15M
with L = 128, V = 64 and evaluate for ImageNet zero-shot accuracy and model
size. We start by considering the choice of either separate-head or multi-head
cross-attention over the backbone outputs. For each cross-attention setting, we
apply layer normalization and linear projection operations to the attention mod-
ule’s outputs, similar to AttnPool. However, we additionally also consider slot-
wise variants of these operations. Here, a slot-wise operation f� is one that acts
separately on each input slot yl using the same parameters �, and produces the
slot-structured output concat(f�(y1), . . . , f�(yL)). When applied to an input
that is not slot-structured, we assume a slot structure by partitioning the input
into L contiguous equal-sized partitions. With Sparo, using both slot-wise layer
normalization and slot-wise projection enables each read-out attention head from
one modality to align with the corresponding head from the other without being
influenced by the other heads.

We present our results in Tab. 6, showing a clear advantage of Sparo over
AttnPool. Additionally, both the choices of separate-head attention over multi-
head and slot-wise operations over the alternatives result in improved gener-
alization, reduced model size, and fewer floating-point operations per second
(flops). While the former supports the effectiveness of the separate-head atten-
tion bottleneck, the latter validates the benefits of the prior for shared separately-
attendable concepts between the modalities enabled by Sparo.

5.4 Visualizations

To conclude our analysis, we qualitatively visualize the concepts represented
by Sparo using the CLIP16+Sparo model trained on CC15M from Sec. 4.1.
A limitation of visualizing attended positions is that it only provides partial
insight into the represented concept — we can tell where the information is
taken from, but not how the information is used. Different Sparo slots can have
similar attention maps for the same sample, but reveal different semantics when
comparing patterns across other images. For instance, a slot that attends to
animals (e.g . dogs, cats, elephants) and another that attends to transportation
(e.g . trains, boats, cars) can both have the same attention mask over patches
and words for a horse being used for transportation. Furthermore, not all Sparo
concepts align between the two modalities for every sample due to information
being present in one that is not possible to infer from the other.

To ease our interpretation of attended concepts, we choose concepts to visu-
alize that have sharp attention in the text modality, attend to non-overlapping
text tokens, and have cosine similarity more than 0.75 with the corresponding
image slots. We present examples of these filtered concepts in Fig. 3. In this
example, we see that Sparo is capable of attending to different concepts such
as subject of the scene, the activity represented, and the surrounding location,
for both vision and text. We provide additional visualizations in Appendix B.7.
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A herd of cattle walking down a road
being followed by a cowboy

Several surfboards standing in a row
on the beach

Two people riding horses on a rock
path

A man sitting alone on a park
bench in a park

A herd of cattle walking down a road
being followed by a cowboy

Several surfboards standing in a row
on the beach

Two people riding horses on a rock
path

A man sitting alone on a park
bench in a park

A herd of cattle walking down a road
being followed by a cowboy

Several surfboards standing in a row
on the beach

Two people riding horses on a rock
path

A man sitting alone on a park
bench in a park

Fig. 3: Visualizing of the attended image and text positions for three Sparo slots (one
per row) across four examples (one per column) from MS COCO. We surmise that the
Sparo concepts from top to bottom represent the subject, activity, and location.

6 Discussion

Humans utilize a prior for compositionality to coherently represent different
subsets of salient aspects of the world. We can enrich our comprehension by
selectively attending to new aspects or specialize to a task by filtering out dis-
tracting ones. We introduce Sparo with a goal of imparting a similar prior to
transformers in representation learning frameworks by partitioning encodings
into separately-attended concepts. Although we see evidence of disentanglement
through positive results of post-hoc concept selection and visualization of at-
tention maps, we do not impose any explicit independence or disentanglement
constraints. In our representation learning frameworks, the pressure for learn-
ing distinct concepts arises from the need to explain the factors of variation
through the training objective with only the features that can be accumulated
by a single head of attention with embedded queries and limited dimensionality.
However, auxiliary training objectives to impose stronger distributional condi-
tions on the learned concepts can be explored as promising future directions.
Beyond pretraining, we highlight that more sophisticated post-hoc concept se-
lection approaches than explored in our work, like using human interaction or
set cover algorithms, can further improve the downstream utility of Sparo.
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