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Supplementary Material

A. Overview

This material includes both supplementary quantitative and qualitative experi-
mental results, along with additional information such as implementation details,
and discussions to complement the main paper.

B. Extended 3D Vehicle Assets Generation

In this section, we introduce solutions to generate extended 3D vehicle assets
with the proposed method.
Cooperating with Text-guided Style Transfer Models. While the pro-
posed method effectively addresses the challenge of rendering novel views from
in-the-wild observations, it is also desired to generate diverse appearances to
construct a comprehensive 3D asset bank. Thus, we propose to use the text-
guided style transfer models [2, 5] to transform the paint of the raw vehicle,
and then generate extended 3D vehicle assets through the proposed method. An
illustration of this solution is presented in Fig. 1.
Cooperating with Text-to-image Models. We cannot guarantee that the
data collected on the road covers all the wanted car models. Hence, to build a
complete 3D vehicle assets bank, we also want to generate vehicle assets without
requiring in-the-wild observations. Therefore, we propose to use text-to-image
generative models, such as Stable Diffusion (SD) [11], to produce reference im-
ages for VQA-Diff directly. Thus, the proposed method can generate 3D vehicle
assets based on prompts. An illustration of this solution is depicted in Fig. 2.
Cooperating with Text and Shape Guided Object Inpainting Models.
VQA-Diff can cooperate with text and shape-guided object inpainting mod-
els [15] to generate intricate vehicles by providing fine-grained prompts, such as
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Fig. 1: We propose applying text-guided style transfer models [2,5] to alter the vehicle’s
paint in the raw image, utilizing prompts like "painted brown". Then, we use the
proposed method to generate photorealistic renderings of the same vehicle model with
different paintings.

spoiler, wheel, shape, and part. The results are presented in Fig. 3. In particu-
lar, we adopt the inpainting model to change the details of the raw vehicle by
providing a fine-grained prompt, such as adding a rear spoiler, and specifying
the desired inpainting region. Simultaneously, we modify the VQA result with
fine-grained words (e.g ., "with a rear spoiler") to guide the generation of the
desired geometry with VQA-Diff. Finally, the newly obtained reference image
and the multi-views are utilized to create intricate vehicles with desired details.

Remark. Note that the reference images shown in Fig. 1 and Fig. 2, while pho-
torealistic, are not 3D vehicle assets, as their object poses are not controllable. In
contrast, the renderings created by our method have controlled object poses. In
addition, we want to emphasize that generating vehicle assets from real-world ob-
servations holds particular significance in constructing a simulation environment
for autonomous driving [14, 16]. Because the appearances of vehicles generated
in this manner closely resemble those found in data collected on the road.
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Fig. 2: We propose applying text-to-image models, such as Stable Diffusion [11], to
generate reference images for our method. Consequently, our approach can produce
photorealistic renderings of vehicles without relying on in-the-wild observations. In this
example, the reference images are generated by Stable Diffusion [11] from the manually
designed prompts. Note that the multi-expert DMs did not learn the structures of a
Tesla Model 3 as ShapeNetV2 [3] does not encompass this model.

C. Effect of Number of DMs

In this section, we explore the effect of adopting different DM schemes as a sup-
plementary experiment to the main paper. Specifically, we compare the proposed
multi-expert DMs with a single DM. In the single DM scheme, the model learns
to generate all desired multi-view structures in one image. "Single DM (16)" and
"Single DM (9)" imply that there are either 16 views or 9 views within a single
image. All the models are obtained through fine-tuning a pretrained Stable Dif-
fusion v1.5 [11] on the ShapeNetV2 [3] for 50 epochs with a learning rate of 1e-5
and a batch size of one. We input the same prompt regarding a BMW X5 into all
the models and compare the generated images with the multi-view images of the
BMW X5 in the training data. The qualitative and quantitative comparisons are
presented in Fig. 4 and Table 1. As seen in Table 1, the multi-expert DMs yield
better performance than the single DM schemes. Moreover, as pointed out by the
red arrows in Fig. 4, there are inconsistent parts in the views generated by the
single DM schemes. We provide our analysis in the following. The SD Model [11]
is a Latent Diffusion Model (LDM). The learning of the LDM is supervised by
both text embeddings (derived from the prompts) and feature maps (extracted
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Fig. 3: We propose applying text and shape guided object inpainting models, such
as SmartBrush [15], to generate intricate vehicles with desired details. Utilizing fine-
grained prompts, the inpainting model creates a new reference image with desired
details. Then, VQA-Diff generates intricate vehicle assets based on the new reference
image and fine-grained prompt.

Table 1: Ablation study of the multi-expert DMs.

Method ITC score ↑ CLIP similarity ↑ FID ↓

Single DM (16) 0.272 0.781 192.55
Single DM (9) 0.311 0.811 150.31
Multi-expert DMs 0.333 0.835 122.91

from the raw images). Given that the prompts provided to the models are the
same, we analyze the 4×64×64 feature map encoded by VAE [10]. Considering
that the resolution of the feature map is fixed in VAE, as seen in Fig. 5, the rep-
resentation quality of a single view degrades as the number of views increases.
This indicates that the single DM has to learn from a supervision with a worse
quality and the performance will be inferior to our method.

D. Impact of Structure Training Dataset and ControlNet

In this section, we study the impact of the structure training dataset and Con-
trolNet. We compare all the methods on Waymo [12]. First, to demonstrate

Table 2: Ablation study of the structure training dataset and ControlNet.

Method ITC score ↑ CLIP similarity ↑ FID ↓

NFI [9] (ShapeNet [3]) 0.210 0.744 428.35
NFI [9] (ShapeNet [3] + ControlNet [5, 17]) 0.261 0.761 267.47
Ours (ShapeNet [3]) 0.403 0.831 186.98
Ours (ShapeNet [3] + ControlNet [5, 17]) 0.418 0.840 163.40



VQA-Diff 5

Fig. 4: A visual comparison of the generated multi-view structures using different DM
schemes.

that the superiority of VQA-Diff is not brought by training on ShapeNetV2 [3]
but the method itself, we compare the NFI [9] trained on ShapeNetV2, which
is denoted by NFI (ShapeNet), with our method without adopting Control-
Net, which is denoted by Ours (ShapeNet). As presented in Table 2, although
both models are trained on ShapeNetV2, our method outperforms NFI as our
method generates the correct geometry using the VQA result. The appearance
of novel views in our method is created by ControlNet [5, 17]. Thus, for a fair
and comprehensive comparison, we also apply the ControlNet to the result of
NFI (ShapeNet), which is represented by NFI (ShapeNet+ControlNet). As seen
in Table 2, although the performance is boosted by applying the ControlNet,
NFI (ShapeNet+ControlNet) is still inferior to Ours (ShapeNet) because the
geometry is wrong. Fig. 6 shows the visual comparison.

E. Impact of Question Design and VQA Model

Fig. 7 shows the evaluation of the generated images during the question design
process. In particular, we employ the CLIP txt2txt score [10, 13] to evaluate
the matching between the VQA prediction and the ground truth caption. In
particular, the original image is used to update the prompt, and we compute the
txt2txt score each time we obtain an answer from the VQA model. As seen, the
score increases and the image quality improves until reaching convergence, where
the txt2txt score is high and the generated image refers to the same vehicle as
the raw image. Compared to the question design solution proposed in VQA-Diff,
one might consider an alternative method: iteratively using SD outputs as inputs
to VQA, where the SD outputs are used to update the prompt. We present the
results of this solution in Fig. 8. As seen, from the second step, SD predicts wrong
images as inputs to VQA, so using SD outputs as inputs to VQA yields worse
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Fig. 5: An illustration of how the number of views affects the feature map. The repre-
sentations of an individual view are denoted by blue boxes.

Fig. 6: A visual comparison of NFI [9] and our method trained on ShapeNetV2 [3] w/
and w/o ControlNet [5, 17].

score and image quality. The effect of adopting different VQA models in VQA-
Diff is illustrated in Fig. 9. Although there are multiple SOTA VQA models,
such as LLaVA [7], Qwen VL [1], and BLIP-2 [6], we chose BLIP-2 because
we found it capable of recognizing more vehicle cues. As seen in Fig. 9, LLaVa
fails to provide key information while QWen VL fails to provide production year,
resulting in inferior renderings, although they might outperform BLIP-2 in other
VQA tasks. We conjecture this is attributed to pretraining data of VQA models.

Fig. 7: Evaluation of the generated images during our question design process.
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Fig. 8: An illustration depicting the effect of an alternative question design solution.

Fig. 9: Comparison of adopting different VQA models [1, 6, 7] in VQA-Diff.

Fig. 10: Success and failure cases of other categories.

F. Application to More Generic Objects

As mentioned in the main paper, extending the proposed method to generic ob-
jects is challenging. We present success and failure cases of other categories in
Fig. 10. For the success case, as shown in Fig. 10, VQA-Diff can be extended to
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generate some motorbike assets and shows better results compared with those
generated by Zero123XL [4, 8]. However, we also found that VQA predictions
are less robust for motorbikes compared to cars, which we conjecture is due to
the pretraining data of VQA. Moving on to the failure case, as shown in Fig. 10,
our approach does not show good result for the teddy bear generation. In par-
ticular, we tried to follow the same prompt engineering process for dealing with
vehicles to obtain geometry constraints via VQA. Unfortunately, VQA cannot
provide key information about the teddy bear (such as model, manufacturer,
etc.), so it cannot constrain fine-grained structures. Consequently, although the
final description of the teddy bear includes many details and the color of the
final rendering is close to the raw image, the structure of the final rendering is
still inconsistent with the raw image.
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