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Abstract. This paper introduces innovative solutions to enhance spatial controlla-
bility in diffusion models reliant on text queries. We first introduce vision guidance
as a foundational spatial cue within the perturbed distribution. This significantly
refines the search space in a zero-shot paradigm to focus on the image sampling
process adhering to the spatial layout conditions. To precisely control the spatial
layouts of multiple visual concepts with the employment of vision guidance, we
propose a universal framework, Layered Rendering Diffusion (LRDiff), which
constructs an image-rendering process with multiple layers, each of which ap-
plies the vision guidance to instructively estimate the denoising direction for a
single object. Such a layered rendering strategy effectively prevents issues like
unintended conceptual blending or mismatches while allowing for more coherent
and contextually accurate image synthesis. The proposed method offers a more
efficient and accurate means of synthesising images that align with specific lay-
out and contextual requirements. Through experiments, we demonstrate that our
method outperforms existing techniques, both quantitatively and qualitatively, in
two specific layout-to-image tasks: bounding box-to-image and instance mask-
to-image. Furthermore, we extend the proposed framework to enable spatially
controllable editing. The project page is available here.

Keywords: Diffusion Models · Controlled image generation · Image Editing

1 Introduction

Large-scale Text-to-Image (T2I) diffusion models trained at scale (e.g., 250 million
captioned images for DALL¨E [46]) have recently shown remarkable capabilities in
generating high-fidelity images, covering diverse concepts. Meanwhile, the excellent
data synthesis capabilities of diffusion models have been extensively leveraged in di-
verse fields, encompassing 3D modelling [16,56], training data creation [55], video
generation [23], among others.

Despite the versatility of text, diffusion models relying solely on text input encounter
challenges in achieving spatial controllability. This hinders fine control over the layout
of generated results. Existing methods to tackle this issue mainly fall into two categories:
(1) Inputting additional spatial layout entities (e.g. semantic maps [64] or serialised
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bounding boxes [31]) and extra parameterised components through fine-tuning models;
(2) Manipulating the attention map through gradient computation aims to enhance the
attention score of noise features and text within specific areas [2,9]. Although the former
can achieve competitive results with precise spatial alignment, it is noteworthy that
they incur substantial computational costs for fine-tuning models and labour costs for
data curation. The latter modifies all features simultaneously, presenting a challenge
in distinguishing adjacent objects with the same category (see the giraffe example in
Fig. 2). Besides, the latter, which directly updates the attention map through gradients,
will increase the latency due to frequent backpropagation.

In this paper, our focus is on achieving controllable image synthesis without model
re-training or fine-tuning. We propose a universal framework, a two-stage Layered
Rendering Diffusion (LRDiff), specifically designed for the above task in a zero-shot
paradigm. LRDiff aims to process multiple visual concepts without blending their
representations and aligns the results with the input spatial conditions, such as bounding
boxes or instant masks. The denoising process in LRDiff is divided into two separate
sections. In the first section, we estimate the denoising direction of each object in layers
to ensure the accuracy of layouts, employing an innovative concept termed ‘vision
guidance’. The second denoising section focuses on enriching the texture details and
aligning the high-level concepts, guided by the global context of the original caption.
Vision guidance, constituting one of the cores of LRDiff, provides a spatial cue for
explicitly estimating the denoising direction of each object in layers to ensure the
accuracy of its location, shapes, or contour without gradient computation, as illustrated
in Fig. 1(a). The implementation of vision guidance empowers LRDiff with zero-shot
capabilities for each object and allows adaptation to two common controllable image
synthesis tasks, including box-to-image and mask-to-image.

Our experimental results demonstrate that the proposed LRDiff provides excellent
spatial controllability for T2I diffusion models while generating photorealistic scene
images. Compared to previous methods, including BoxDiff [57], DenseDiffusion [29],
and Paint-with-Words (eDiffi-Pww) [2], among others, our results show improved per-
formance, both quantitatively and qualitatively, as demonstrated in Fig. 2 and Fig. 3. The
main contributions of this paper are summarised as follows:

– We introduce a universal framework for controllable image synthesis, which is a
two-stage layered rendering diffusion model to process multiple visual concepts in
layers while aligning the results with the global text.

– We propose visual guidance, independent of the network structure, and incorporate
it into each layer to achieve spatial controllability for each object. Vision guidance
provides a spatial cue in a zero-shot paradigm without the need for backpropagation.

– Three applications are enabled by the proposed framework: bounding box-to-image,
instance mask-to-image, and controllable image editing.

2 Related Works

Text-to-Image (T2I) Models. To adhere to some specifications described by free-form
text in image generation, T2I typically models the image distribution along with the en-
coded latent embeddings of the text prompts as the condition entities via pre-trained lan-
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guage models, such as CLIP [44]. Large-scale text-to-image models can be categorised as
auto-regressive models [46,11,14,61] and diffusion-based models [38,47,45,49]. Inspired
by non-equilibrium statistical physics, Dickstein et al. [51] pioneeringly introduced the
diffusion model, the concept of which is revisited in Sec. 3. To accelerate training and
sampling speed, the latent diffusion model [47], a.k.a. Stable Diffusion (SD) is devel-
oped to operate the diffusion process in the latent space [12] instead of the pixel space.
However, when it comes to the intricate spatial semantic arrangement of multiple objects
within a scene, T2I diffusion models fall short, exhibiting object leakage and a lack of
awareness regarding spatial dependencies.

Layout-to-Image (L2I) Diffusion Models. Current layout-guided generation methods
can be broadly classified into two main categories based on the necessity of a training pro-
cess: (1) methods that involve fine-tuning diffusion models [31,59,64,7,8,36,58,42,66,28,25],
and (2) training-free approaches [9,43,57,17,4,29,63,40,65,33,67,62,3,30]. The former
achieves locality-awareness by incorporating layout information as an additional con-
dition to the pre-trained T2I diffusion model. Methods necessitating fine-tuning, like
ControlNet[64], GLIGEN [31] and T2I-Adaptor [36] integrate extra modules into the
backbone network. These modules work in concert with spatial control entities to ensure
the generated images match the specified spatial conditions. ReCo [59] and GeoDiffu-
sion [7] augment the textual tokens by incorporating new positional tokens arranged
in sequences akin to short natural language sentences. However, it’s worth noting that
these approaches require further training on curated datasets collected with paired an-
notations, which imposes significant computational and labour costs, bottlenecking
applications in an open world. On the other hand, the second group of methods, such
as Paint-with-words (eDiffi-Pww) [2] and ZestGuide [9], endows T2I diffusion models
with localisation abilities through manipulating the cross-attention maps in the estimator
network, amplifying the attention score for the text tokens that specify an object. How-
ever, when the initial noise does not tend to generate the target objects, it is difficult to
change the direction of denoising by only manipulating the attention map. Besides, these
methods are likely to cause the blending of appearances of adjacent objects sharing the
same visual concept. This issue is exemplified in the first and second columns of Fig. 2,
where the phenomenon is clearly observable.

Image Editing with Diffusion Models. Image editing, as a fundamental task in com-
puter graphics, can be achieved by modifying a real image by inputting auxiliary en-
tities, including scribble [34], mask [1], or reference image [6]. Recent models for
text-conditioned image editing [19,26,34,10] harness CLIP [44] embedding guidance
combined with pre-trained T2I diffusion models, achieving excellent results across
a range of editing tasks. Research in this field primarily advances along three direc-
tions: (1) zero-shot algorithms that steer the denoising process towards a desired CLIP
embedding direction by manipulating the attention maps of the cross-attention mecha-
nisms [18,39,34,35,27]; (2) textual token vector optimisation [48,15]; (3) fine-tuning
T2I diffusion models on curated datasets with matched annotations [6,37]. In contrast
to prior works that rely on text prompts to guide the editing, we aim to leverage the
proposed vision guidance information to better assist the generation process.
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3 Preliminaries

Denoising Diffusion Probabilistic Models (DDPMs). DDPM [21] involves a forward-
time diffusion process and a reverse-time denoising process from a prior distribution.
Let x0 P RhˆwˆD be a sample from the data distribution p0pxq. When using a total of
T noise scales in the forward-time diffusion process, the discrete Markov chain is

xt “
a

1 ´ βtxt´1 `
a

βtϵt´1, t “ 1, ¨ ¨ ¨ , T , (1)

where ϵt denotes the noise sampled from N
`

0, I
˘

at timestep t, tβtu
T
t“1 is a pre-defined

variance schedule. When recursively applying the noise perturbations Eq. (1) to a real
sample x0 „ p0pxq, it ends up with xT „ N

`

0, I
˘

. The reverse-time denoising process
can be defined as:

xt´1 “ α̃txt ` β̃t∇x log ptpxq
looooooomooooooon

direction pointing to xt

` σtϵt
loomoon

random noise

,

« α̃txt ` β̃tŝt
loomoon

estimated direction pointing to xt

` σtϵt
loomoon

random noise

.
(2)

where α̃t, β̃t, and σt denote the coefficients, the values of which can be derived from β.
Practically, the score of the perturbed data distribution, ∇x log ptpxq for all t, can be es-
timated with a score network sθpxt, tq optimised by using score matching [24,53]. After
training to get the optimal solution ŝt “ s˚

θpxt, tq « ∇x log ptpxq, new samples can be
generated by starting from xT „ N

`

0, I
˘

by recursively applying the estimated reverse-
time process. Following classifier-free guidance [22], the implicit update direction ŝt
can be considered in the following form

ŝt “ γsθpxt, t, cq ` p1 ´ γqsθpxt, t,∅q, (3)

where sθpxt, t,∅q is referred to as as an unconditional model, γ ě 1 controls the
guidance strength of a condition c P C. Trivially increasing γ will amplify the effect of
conditional input. Condition space C can be further defined to be text words, called text
prompt [38], fundamentalising current T2I models.

4 Method

Given a global text caption and the layout condition (bounding boxes or instant masks),
our framework can generate images with accurate spatial alignments in a zero-shot
paradigm. The remainder of this section is organised as follows: First, we introduce
vision guidance, constituting one of the cores of our framework, acting as a foundational
spatial cue for the score estimate network to guide the denoising direction of a single
visual concept within a specified region. Subsequently, we detail the image-rendering
process of LRDiff, where vision guidance is employed in layers for multiple visual
concepts while aligning high-level concepts of the images with the global caption. The
overall pipeline is shown in Fig. 1.
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Layered Caption : [<…banana>, <…donut>, <… grassland…>]
y1

+
xt ξ!"

+

y2

y3

y1 y2

Global Caption c : a banana and a chocolate frosted donut
sitting in a grassland with a baggie

y3

General reverse diffusionLayered denoising direction estimation

+
xt ξ!#

+
xt ξ!$

c

Loop:

Loop:

𝑡 ≥ 𝑡%

𝑡 < 𝑡%

ξ𝟏
𝜹𝟏 * *𝜹𝟏

𝑴𝟏 (𝟏 −𝑴𝟏 )

ξ𝟐
𝜹𝟐 * *𝜹𝟐

𝑴𝟐 (𝟏 −𝑴𝟐 )

ξ!$Vision Guidance
(a) (b) (c)

From Eq. (5)

Fig. 1: Overview of our framework. (a) For synthesising a sense, the user provides the
global caption, the layered caption, as well as the spatial layout entities which are used
to construct the vision guidance. LRDiff divides the reverse-time diffusion process into
two sections: (b) When t ě t0, each vision guidance is employed into separate layers
to alter the denoising direction, ensuring each object contour generates within specific
regions. (c) When t ă t0, we perform the general reverse diffusion process to generate
texture details that are consistent with the global caption.

4.1 Vision Guidance

We introduce vision guidance, denoted as ξ P RhˆwˆD, as an additional feature map to
the score estimate network, forming sθpxptq, t, c, ξq. Furthermore, the vision guidance
entities are input into the network in a zero-shot form. A significant advantage of this
zero-shot paradigm is that the introduction of the additional condition has no re-training
requirement for off-the-shelf conditional diffusion models, thereby substantially reducing
computational costs. More analysis of vision guidance can be found in the supplementary
material.
The Definition. We factorise the vision guidance into two components: a vector δ P RD

and a binary mask M P t0, 1uhˆw. Each element ξj,k,l of ξ is defined as follows:

ξj,k,l “ δl ¨ Mj,k ´ δl ¨ p1 ´ Mj,kq,

“ δl ¨ p2Mj,k ´ 1q,
(4)

where Mj,k is assigned the value 1 if the spatial position pj, kq falls within the expected
object region. For the region containing an object, we add δ to enhance the generation
tendency of that object. Conversely, for areas outside the target region, we subtract δ to
suppress the generation tendency of the object. The binary mask M can be derived from
user input, such as converting a bounding box or instance mask provided by the user into
the binary mask. Next, we introduce two distinct approaches to compute the vector δ.

Constant vector: A naiv̈e approach for the configuration is to set the vector δ
to some constant values. When the diffusion model operates in the RGB space, we can
set δ to constant values corresponding to some colour described by the text prompt (e.g.,
r0.3, 0.3, 0.3s corresponding to a white colour with transparency). When operating in
the latent space of VAE, δ can be set to the latent representation of the constant values
when operations such as dimension expansion and tensor repeat are required. Although
the manual adjustment of δ to some constant values is versatile for generating objects
with various visual concepts, it necessitates human intervention, such as defining the
colour of the object.
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Dynamic vector: Beyond simply assigning constant values to δ, we propose to
dynamically adapt the values of δ based on the input text conditions in order to reduce
human intervention during generation. In this context, we consider the implementation
of Stable Diffusion [47] wherein text tokens are interconnected with the visual features
via cross-attention modules. At the initial denoising step, i.e., t “ T , we extract the
cross-attention map A P R|c|ˆhw from an intermediate layer in the U-Net. For a more
straightforward illustration, we will consider the synthesis of an image containing a
single object, corresponding to the i-th text token from the text prompt c. Subsequently,
to derive the vector δ in Eq. Eq. (4), we perform the following operations:

S “ tpj, kq|Ai
j,k ą ThresholdKpAiqu,

δ “
λ

|S|

ÿ

txtpj, kq|pj, kq P Su,
(5)

where xtpj, kq denotes the element at spatial location pj, kq in xt. The
ř

operation
sums up all items within the S set. Additionally, the operation ThresholdKp¨q selects
the K-th largest value from the top K values in Ai. The strength of vision guidance
is modulated by the coefficient λ, alongside the classifier-free guidance coefficient γ.
Given the presence of multiple cross-attention blocks within the score network, we opt
to select the block following the down-sampling in each stage and subsequently average
their outputs.

4.2 Layered Rendering

Considering an upcoming image drawing n objects, we encapsulate all the condition
entries of the diffusion model into the following

Global Caption : c,

Layered Captions : ry1pcq, ¨ ¨ ¨ , ynpcqs,

Vision Guidance : rξ1, ¨ ¨ ¨ , ξns,

Layered Masks : rM1, ¨ ¨ ¨ ,Mn
s,

(6)

where we define a set of mappings yi : C Ñ Y , and yipcq 4 represents the text condition
for layer i. ξi is the vision guidance for the ith object constructed by the Mi and δi.
Appendix A from our supplementary material details the implementation of layered
caption construction.

As mentioned in Sec. 1, our layered rendering algorithm divides the full reverse-time
denoising process into two denoising sections, i.e. rT, ¨ ¨ ¨ , t0s, rt0´1, ¨ ¨ ¨ , 1s. At each
timestep t P rT, ¨ ¨ ¨ , t0s, the denoising process is given by

xt´1 “ α̃txt ` β̃trγ Φt ` p1 ´ γqsθpxt, t,∅qs ` σtϵt, (7a)

Φt “

n
ÿ

i“1

Mi

řn
i“1 M

i
b sθpxt`ξi, t, yiq. (7b)

4 We denote yi
pcq by yi for simplifying notations.
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As shown in Fig. 1, we construct Φt by fusing estimated noises in each layer and sending
it into the next denoising loop. Equation 7 assures that the prediction xt´1 for any step
from rT, ¨ ¨ ¨ , t0s is within the data distribution ptpxq, so that the score network sθ needs
no fine-tuning. The derivation process of Equation 7 is provided in the supplementary
material. We carry out the layered generative process along with vision guidance as
expressed in Equation 7 for rT, ¨ ¨ ¨ , t0s. For timesteps in the second denoising section,
e.g., rt0´1, ¨ ¨ ¨ , 1s, we perform the standard denoising process but with the global
caption c as the solid condition information, illustrated in the third column in Fig. 1. The
overall generative process is described by Algorithm 1. The framework of our method
is illustrated in Fig. 1. We assign a null value ∅ to the vision guidance ξn in the final
layer (e.g., the 3rd layer in Fig. 1), encompassing scene descriptions, such as ‘a beautiful
grassland’ or other objects without defined layouts.

Algorithm 1 Layered Rendering Diffusion
1: Input: c, ry1, ¨ ¨ ¨ , yn

s, rM1, ¨ ¨ ¨ ,Mn
s,

2: Pre-trained diffusion model sθ;
3: Initialise xT Ź Noise initialisation
4: rξ1, ..., ξn

s Ð Calculate Eq. (5)
5: for t “ T, ¨ ¨ ¨ , t0 do
6: Ź Estimate layered denoising direction
7: Φt Ð Calculate Eq. (7b)
8: xt´1 Ð Calculate Eq. (7a)
9: xt “ xt´1

10: for t “ t0´1, ¨ ¨ ¨ , 1 do
11: Ź Estimate general denoising direction
12: ŝt “ sθpxt, tq ` γ

`

sθpxt, t, Cq ´ sθpxt, tq
˘

13: xt´1 “ α̃txt ` β̃tŝt ` σtϵt
14: xt “ xt´1

15: Output: x0

5 Experiments

Dataset and Implementation Details. All the experiments are run on a single NVIDIA
Tesla V100. Unless specified otherwise, we use the DDIM sampler [52] with 50 sampling
steps for the reverse diffusion process with a fixed guidance scale of 7.5; t0 is set to 15
by default. We construct our dataset by selecting 1134 captions with one or more objects
and corresponding bounding boxes or instance masks from the MS-COCO validation
set [32]. For a fair comparison, we implement LRDiff based on a diffusion model with a
version similar to that used by other methods, aiming to eliminate differences in results
caused by variations in the capabilities of the foundational diffusion model.
Evaluation Metrics. For evaluating synthesised images with both bounding box and
instance mask inputs, we employ two distinct metrics: image-score and align-score.
The image-score specifically measures the fidelity of the synthesised image to the text
prompt, incorporating sub-indicators such as T2I-Sim [57] and the CLIP score [20] for
a nuanced assessment. On the other hand, the align-score evaluates the image’s spatial
alignment with the given layout condition, using the AP results predicted by YOLOv4
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as a benchmark for alignment accuracy. Additionally, regarding instance mask inputs,
we assess the precision of object contours using the IoU scores produced by employing
YOLOv7 [54] and the ground truth.

Bounding Box
Image-Score Align-Score

T2I-SimÒCLIPÒmAPÒAP50ÒAP75Ò

SD [47] 0.292 0.316 - - -
TwFA [60] 0.210 0.179 9.9 16.3 9.0
eDiffi-Pww [2] 0.279 0.299 4.2 8.6 4.0
BoxDiff [57] 0.295 0.319 5.8 17.2 3.0
LRDiff(Ours) 0.281 0.292 17.4 35.6 15.5

Table 1: The quantitative results of bound-
ing box input.

Instance Mask
Image-Score Align-Score

T2I-SimÒCLIPÒAP50ÒAP75Ò IOUÒ

SD [47] 0.292 0.316 - - -
eDiffi-Pww [2] 0.287 0.304 16.5 6.4 33.11
MultiDiff [4] 0.277 0.281 30.9 8.2 47.59
DenseDiff. [29] 0.289 0.310 11.3 1.3 27.65
LRDiff(Ours) 0.280 0.295 35.0 15.4 49.06

Table 2: The quantitative results of in-
stance mask input.

5.1 Bounding boxes as layout condition

Quantitative comparison. In Table 1, we present a comparative analysis of our method
against BoxDiff [57], eDiffi-Pww [2], and TwFA [60]. Our evaluation revealed a trade-
off relationship between the align-score and image-score among the compared methods.
For instance, while TwFA [60] achieved superior alignment scores compared to other
diffusion methods, its limited image generation capabilities led to lower-quality gen-
erated backgrounds. Consequently, this facilitated easier foreground differentiation by
YOLO [5], resulting in higher detection metrics. To ensure fairness in comparisons, we
established SD [47] as the baseline for the image-score. Notably, our results exhibited
higher AP values in contrast to eDiffi-Pww and TwFA, while closely aligning with the
baseline in terms of image-score. Furthermore, our image-score values are close to those
of BoxDiff, but our three alignment score sub-metrics exceed BoxDiff by 11.6%, 17.6%,
and 12.5%, respectively.
Qualitative comparison. Fig. 2 presents qualitative comparisons among various meth-
ods in a multi-object layout. According to the results, LRDiff can effectively mitigate
the issue of visual blending between adjacent objects within the same category, which
is a challenge for other methods such as BoxDiff [57] and eDiffi-Pww [2]. This effec-
tiveness is exemplified in the synthesis of giraffes, as shown in the second column of
Fig. 2. Furthermore, our method surpasses eDiffi-Pww when synthesising images within
intricate layouts. Notably, in the third column, where a cat, bed and laptop are closely
arranged, our LRDiff proficiently handles mutual occlusion, underscoring its capability
to manage complex scene compositions. Additionally, our approach shows high fidelity
in generating small-scale objects, which remains challenging for the listed methods that
rely on manipulating cross-attention maps to control layout.

5.2 Instance masks as layout condition

Quantitative comparison. The instance masks, serving as layout guides, provide both
positional and contour details. As highlighted in Table 2, our approach outperforms other
diffusion-based zero-shot techniques [29,4,2] in the IoU metric. Similar to the analysis in
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A person on skis and with 
poles in the snow and facing 

the blue sky

Three zebra standing side 
by side on a dirt field 

next to a flowery forest

A glass bowl of chopped 
oranges and 
strawberries

A pair of giraffe standing 
in a big open area

There is a black bear that can 
be seen walking own a hill

A cat laying on a bed
next to a laptop

Fig. 2: Qualitative comparisons of methods that use bounding box entities as the spatial
condition. Our results show better spatial alignments than other methods.

subsection. 5.1, there is a trade-off correlation between the image-score and align-score.
Our results significantly outperform eDiffi-Pww and DenseDiff by over 16% and 22%,
respectively, in the IOU metric while closely aligning with their image-score outcomes.
The observed low image-score in MultiDiff [4] is attributed to its limited interaction
with global captions, leading to a ‘copy-paste-like’ phenomenon. In contrast, our method
integrates all layers and interacts with global captions after delineating object outlines in
layers. Consequently, compared to MultiDiff [4], our method achieves a closer alignment
with the baseline image-score, surpassing it by 1.6% in the mIoU metric. Furthermore,
substantial enhancements in both AP50 and AP75 indicators by over 9% each signify
the accurate alignment and positioning of generated objects within the specified mask
area, validating the efficacy of our approach.

Qualitative comparison. Fig.3 presents qualitative comparisons between our method
and others across both single and multi-object layouts. The results highlight our effec-
tiveness in generating small-scale objects, which is still a challenge for DenseDiff [29].
Examples to justify our effectiveness are provided in the first and fifth columns of Fig.3
where the synthesised elephants and zebras are faithful to the shapes provided in the
layout entity. MultiDiff [4] demonstrates high effectiveness in achieving precise spatial
alignment within images. However, it exhibits limitations in harmonising the overall
image composition, occasionally resulting in a ‘copy-paste’ result. This inadequacy is
particularly evident in the first and last columns of the figure, where an elephant appears
inserted into a tree and a toilet lacks seamless integration with the surrounding envi-
ronment. Conversely, our method ensures precise image layout accuracy by employing
visual guidance and achieves seamless integration throughout the entire image due to the
fusion of all layers and interaction with the global captions.
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A dog with a leash on is 
sitting near a park bench

Two zebras at the zoo 
eating some grass

A cat sitting on a bench 
in front of a house

Two trucks parked next to 
each other on a dirt road

An elephant in a grassy 
area with trees around

O
ur
s

M
ul
tiD
iff

D
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D
iff

A toilet with 
glitter paint on it

Fig. 3: Qualitative comparisons of methods that use instance mask entities as the spatial
condition. Our results show better spatial alignments than other methods.

5.3 Ablation Study

In this section, we conduct experiments primarily to demonstrate the necessity of our
designed vision guidance and the different impacts on different ways of calculating δl.
Additionally, we showcase the impacts of our method across diverse t0 values. Further
ablation experiments and more results are provided in the supplementary material.
The necessity of vision guidance. To investigate the necessity of visual guidance, we
conduct an experiment by removing the visual guidance within the target area and only
suppressing the vision guidance outside the target area. Correspondingly, we modify
Eq. 4 as follows:

ξj,k,l “ ´δl ¨ p1 ´ Mj,kq. (8)

To write concisely, we name the two ways of constructing ξ using Eq. 8 and Eq. 4
respectively as setting #1 and setting #2. First, the qualitative difference between the two
ways can be found in Fig. 4 and Fig. 5. The results show that suppressing visual guidance
outside the target region can effectively eliminate the tendency to generate objects.
However, this does not relatively enhance the tendency to generate objects within the
target region, as the features in the unmodified region may inherently lack the capability
to generate objects. Interestingly, the use of setting #2, as demonstrated in Fig. 5, has
a certain effectiveness on simple objects, such as pizza, where realism is lacking. This
is attributed to the mask providing certain additional shape information. Furthermore,
Tables 3 and 4 present a direct comparison between the results obtained with and without
vision guidance in the target area. The outcomes strongly indicate that the absence of
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Bounding Box
Image-Score Align-Score

T2I-SimÒCLIPÒmAPÒAP50ÒAP75Ò

setting #1 0.1967 0.1642 1.3 3.8 0.7
setting #2 0.281 0.295 17.4 35.6 15.5

Table 3: These results depict the outcome
when vision guidance is not applied within
the target areas under the bounding box
condition.

Instance Mask
Image-Score Align-Score

T2I-SimÒCLIPÒAP50ÒAP75Ò IOUÒ

setting #1 0.2599 0.2767 5.2 0.8 28.16
setting #2 0.280 0.295 35.0 15.4 49.06

Table 4: These results depict the outcome
when vision guidance is not applied within
the target areas under the instance mask
condition.

such guidance renders the results nearly unusable. Considering the findings from these
tables and figures, it can be concluded that vision guidance significantly impacts the
effectiveness of the generated outcomes.

Fig. 4: The bounding boxes condition. The first row shows the results using setting #1
and the second row shows the results using setting #2.

mask setting1 setting2 mask setting1 setting2

Fig. 5: The instant mask condition. The different results of using setting #1 and setting #2.

Constant vs. Dynamic. We visually compared two approaches for calculating the vector
δ in vision guidance (Fig. 6). In constant mode, if the prompt does not specify colour
(the first column), δ defaults to brown, which is a common colour for horses. However,
this may mislead, as brown becomes associated with roads instead of horses. The reason
is that ‘brown information’ is not effectively associated with the concept of a horse
without explicit cue. The constant mode excels when colour is explicitly mentioned
(second column). On the contrary, the dynamic vector strategy consistently aligns with
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the layout, making it preferable for real-world applications, and eliminating the need for
human intervention in specifying object colours.

constant dynamic 

a horse... a brown horse... a brown horse...a horse...

Fig. 6: The dynamic vector strategy shows high spatial alignment to the given layout,
eliminating the need for human intervention .

Constructing δ with K random vectors. From the above experiments, we observe that
dynamic vision guidance serves as an effective cue for providing layout information.
Furthermore, we present an alternative implementation of δ in dynamic mode, utilising
K random vectors. Specifically, for each position in the object area, we fill the position
with a vector randomly sampled from set S from Eq. 5. We denote this as ‘random-
vectors’, distinguishing it from the ‘mean-vector’ method mentioned in Sec. 4.1. Table 5

Bounding Box
Image-Score Align-Score

T2I-SimÒ CLIPÒ mAPÒ AP50Ò AP75Ò

random-vectors10 0.278 0.293 17.0 30.0 13.9
mean-vector10 0.284 0.298 17.2 33.2 14.6
random-vectors20 0.272 0.287 17.1 32.9 14.5
mean-vector20 0.281 0.295 17.4 35.6 15.5

Table 5: Comparison of ‘random-vectors’
and ‘mean-vector’ with bounding box en-
tities. The grey line indicates the results in
Table 1. The subscript denotes the choice
of value K.

Instance Mask
Image-Score Align-Score

T2I-SimÒ CLIPÒ AP50Ò AP75Ò IOUÒ

random-vectors10 0.281 0.296 36.5 19.2 49.02
mean-vector10 0.277 0.287 37.9 19.8 49.41
random-vector20 0.278 0.292 40.5 21.0 49.54
mean-vector20 0.280 0.295 35.0 15.4 49.06

Table 6: Comparison of ‘random-vectors’
and ‘mean-vector’ with instance mask en-
tities. The grey line shows the results in
Table 2. The subscript denotes the choice
of value K.

and Table 6 highlight the remarkable similarity in results obtained through these two
different approaches to constructing δ. The ‘mean-vector’ method better aligns with the
input text compared to the ‘random-vectors’. The results also show that K is set to 10,
the image-score outperforms that achieved when K is set to 20. However, to ensure
a balanced performance between image-score and align-score, we opt for the ‘mean-
vector’ method with K set to 20. The ‘random-vectors’ approach exhibits advantages in
achieving texture diversity among multiple objects of the same category within a scene.
Illustrated in Fig. 7, an example clarifies the divergent visual effects of employing these
two approaches. However, in most cases, the ‘mean-vector’ method suffices entirely.
The impact of different t0. LRDiff divides the reverse diffusion process into two
denoising sections: rT, ¨ ¨ ¨ , t0s, rt0´1, ¨ ¨ ¨ , 1s. As we analyse in Fig. 8, a longer first



6. OTHER APPLICATIONS 13

K = 10 K = 20 K = 10 K = 20

mean-vector multi-vectors

Fig. 7: The varying impacts of employing different construction methods. The generated
images with ‘random-vectors’ are more diverse in terms of textures and patterns for
different objects.

Layout T − t! = 3 T − t! = 10 T − t! = 15

Fig. 8: The impacts of different t0. A short first denoising period can result in less precise
spatial alignment

denoising period (i.e., |T ´ t0|) will generate images of higher spatial aliment with the
given spatial layout. However, a short first denoising period can result in less precise
spatial alignment. We attribute this raised deviation to the ambiguity in object shapes
during the early denoising steps, where they are particularly susceptible to noise from
other layers. We observe that setting |T ´ t0| “ 15 usually gives some decent results.
The lower part in Fig. 8 shows that when setting |T ´ t0| “ 15 the knife’s shape fits
better than the others.

6 Other applications

We extend our framework to controllable image editing. We employ the DDIM inversion
technique [52] to obtain the noise latent representation. This inverted latent noise serves
as the final layer (e.g., the 3rd layer in Fig. 1) in our pipeline, enabling further processing.
As demonstrated in Fig.9, our method allows inserting or replacing objects of various
sizes at different locations within a provided image. Thanks to our layered rendering
technology, the edited images seamlessly fit the given prompts, while keeping other
areas of content as unchanged as possible.



14 Z. Qi et al.

on the snow-covered ground 
Dog/Car

teapot bottle/teddy bear

Fig. 9: Example results of controlled image editing. Insert or replace an object at a
specific location.

7 Dissuasion and limitations

While the proposed framework has delivered refined controllability for layout-to-image
tasks, certain limitations exist that necessitate further exploration. First, the spatial
conditional inputs are limited to bounding boxes and object masks. We could extend
our framework to include other layout conditions, such as key points refining human
poses and depth maps providing 3D information about the scene. Additionally, we
lack discussion of the sensitivity of the t0 to different types of scenes, such as indoor
and outdoor scenes. In our future work, we may address this by using learnable t0 by
optimising reward model [13] to enhance the robustness of our method across various
scenes. In our experiments, we construct our framework with SD v1.5. Moving forward,
we can explore our method with other versions of diffusion models with enhanced
capabilities [41] or higher speed [50]. Another promising direction involves customised
generation under additional layout conditions by combining with a personalisation
method, such as DreamBooth [48].

8 Conclusion

In this paper, we introduce a universal framework designed to generate results aligned
with the input spatial layout conditions while avoiding the blending of multiple visual
concepts. The proposed framework, termed LRDiff, comprises a two-stage Layered
Rendering Diffusion, establishing an image-rendering process with multiple layers. It
incorporates an innovative concept known as vision guidance, playing a crucial role in
achieving precise spatial alignment for individual objects in a zero-shot paradigm. The
effectiveness of our method has been demonstrated through the experiments, highlighting
the superior capabilities of our framework. Additionally, we explored various approaches
to constructing vision guidance. Our technology finds applications in three domains:
bounding box-to-image, instance mask-to-image, and controllable image editing. We
also extended our framework to controllable image editing.
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