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1.   There is          near a       .
2.   There is a        near the         .

4.   A          next to a big        is open.
3.   The              is covered in         .

5.   The           under the         is lush green.
6.   A large               standing in a field near a        .

10. A big                standing next to a        in a field of grass.

13. Two                 standing next to each other on a lush green              next to a          .

15. Two                 standing next to each other on a grass covered          next to a lush green          .

11. An               standing next to a        with a blue       behind it.

9.   Two                 standing next to a        and a blue       .

12. Two                 standing in the           near a        and a blue      .

14. Two                 standing next to a        in a         with a blue       and         behind them.

Samples Generated from CIC-BART-SSA

7.   Two                 walking under a        in the           .
8.   Two                 standing in the          next to a        .

Original Captions

Fig. 1: Existing captioning datasets contain captions that describe the entirety of an
image. This is reflected in the narrow distributions of the entities that appear in those
captions and the caption lengths (the red-colored histograms). CIC aims to generate
diverse descriptions by controllably re-focusing on different spatiosemantic aspects of
an image, such as the semantically coherent subsets of image objects. Our proposed
CIC-BART-SSA is designed to produce diverse, controlled captions ranging from brief
and concise to detailed and comprehensive. Sentences 1-15 are example outputs of our
approach where the highlighted text indicates the focus of a controllable caption. The
histograms demonstrate that our approach generates high-quality descriptions for a
wider range of scene focus (number of visual entities) and caption length compared to
the original captions. Image is licensed under CC BY-SA 2.0.

Abstract. Controllable Image Captioning (CIC) aims at generating
natural language descriptions for an image, conditioned on information
provided by end users, e.g., regions, entities or events of interest. How-
ever, available image–language datasets mainly contain captions that
describe the entirety of an image, making them ineffective for training
CIC models that can potentially attend to any subset of regions or rela-
tionships. To tackle this challenge, we propose a novel, fully automatic
method to sample additional focused and visually grounded captions us-
ing a unified structured semantic representation built on top of the exist-
ing set of captions associated with an image. We leverage Abstract Mean-
ing Representation (AMR), a cross-lingual graph-based semantic formal-
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ism, to encode all possible spatio-semantic relations between entities, be-
yond the typical spatial-relations-only focus of current methods. We use
this Structured Semantic Augmentation (SSA) framework to augment
existing image–caption datasets with the grounded controlled captions,
increasing their spatial and semantic diversity and focal coverage. We
then develop a new model, CIC-BART-SSA, specifically tailored for the
CIC task, that sources its control signals from SSA-diversified datasets.
We empirically show that, compared to SOTA CIC models, CIC-BART-
SSA generates captions that are superior in diversity and text quality,
are competitive in controllability, and, importantly, minimize the gap
between broad and highly focused controlled captioning performance by
efficiently generalizing to the challenging highly focused scenarios. Code
is available at https://github.com/SamsungLabs/CIC-BART-SSA.

1 Introduction

Image captioning refers to the task of providing an AI system with an input
image, and asking the system to describe the visual content in natural language.
This process requires the captioning system to understand what objects are
present, in what context (e.g., event or scene), and how they relate. Recent deep
learning approaches to this task [14,26,29,31,37,39,40,49,50,57] surpass human
performance in standard image captioning metrics. However, these models tend
to generate general captions that describe the entirety of an image, and are often
of limited diversity; see Original Captions in Fig. 1.

Controllable image captioning (CIC) overcomes these challenges by generat-
ing different descriptions for the same image in a user-controlled fashion. That
is, a CIC model receives as input an image paired with a user-specified control
signal (e.g., entities or regions of interest), and generates a caption conditioned
on the control signal. CIC models are thus capable of generating a diverse set
of captions by varying the control signal for the same image; see CIC generated
captions 1–15 in Fig. 1.

In realistic applications, the easiest way for the user to control the generation
of captions is to limit the focus of the desired captions by selecting different
entities (objects) using their bounding boxes, as shown in Figs. 1 and 2. Most
previous work focuses on such spatial control signals [18, 23, 28, 47, 55, 56]. To
improve performance, more recent studies supplement this spatial signal with
additional information on the desired length, style, or syntactic and semantic
structure of the generated text [12,13], increasing the richness and complexity of
control signals. However, for the CIC approach to succeed, the CIC models need
to be trained on equally rich datasets that incorporate, explicitly or implicitly,
those control signals. Unfortunately, most image captioning datasets today, such
as Flickr30k [36] or MS-COCO [18], lack this necessary diversity of controls and
corresponding captions.

Our goal is to achieve SOTA performance in CIC without the need for new,
increasingly rich, yet also costly, and impractical-to-collect datasets, where hu-
man workers would face the burden of having to provide multitudes of control

https://github.com/SamsungLabs/CIC-BART-SSA
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Original Captions
(1) a house with a freshly mowed lawn 
is preceded by a small dock with a boat.
(2) a boat sits in the water in front of 
a brick two story house.
(3) a boat is docked in the water 
near a large house.
(4) a view of a house from across 
the water.
(5) a large body of water sitting in front 
of a house and green lawn.

z7/dock-01

z2/water:ARG2

z1/boat

:ARG1

(a) a boat is docked
in the water.

(b) the house has a lawn
in front of it.

z18/precede-01

z22/dock
:ARG2

z4/house

:ARG1

(c) the house is preceded 
by the dock.

z18/precede-01

z4/house:ARG1

z22/dock

:ARG2

z6/story:mod 2:quant

z23/small:mod

(d) a two story house precedes a small dock.

z8/near-02

z4/house
:ARG2

z7/dock-01

:ARG1

z6/story:mod 2:quant

z1/boat:ARG1

z2/water

:ARG2

z14/body:consist z9/large:mod

(e) a boat docked in a large body of water near a two story
house.

z19/have-03

z4/house
:ARG0

z16/lawn

:ARG1

z0/sit-01

z1/boat

:ARG1

z2/water

:ARG2

z3/in-front-of:location

z7/dock-01:ARG1-of

:ARG2

z8/near-02:ARG1-of

z14/body:consist

z9/large:mod

z13/sit-01
:ARG1-of

z15/front

:ARG2

z12/and:op1-of

z4/house:op1

z16/lawn:op2 z17/green-03
:ARG1-of

z19/have-03

:ARG1-of

z20/mow-01

:ARG1-of

:ARG0

:mod

z5/brick

:consist-of

z6/story:mod

z10/view-01

:ARG1-of

z18/precede-01

:ARG1-of

2:quant

z11/across

:source

:op1

z22/dock

:ARG2

:prep-with
z23/small:mod

z21/fresh-04
:manner

:ARG2

:op1

meta-vgAMR

Samples of our
SSA Augmentations.

Fig. 2: An example of our Structured Semantic Augmentation (SSA) approach.
Visually-grounded captions (1)-(5) are used to create a meta-vgAMR graph, which
includes all available image information in one representation. Sub-graphs of meta-
vgAMR are then sampled to generate a new and diverse set of captions, such as the
sentences (a)-(e). Image is licensed under CC BY-SA 2.0.

signals and corresponding descriptive captions. To achieve this goal, we propose
a novel Structured Semantic Augmentation (SSA) method, which automatically
generates an augmented set of captions and the corresponding control signals
with diverse spatiosemantic focus starting from only the core set of “original” un-
controlled captions. The method takes advantage of a detailed visual-linguistic
semantic graph (illustrated in Fig. 2) constructed from the original captions
and their image groundings. To build these semantic graphs, we use Abstract
Meaning Representation (AMR) [6], a semantic formalism that can capture fine-
grained linguistic relations beyond the exclusively spatial relationships present
in the common scene graphs [24]. The availability of robust AMR parsers [5,9] al-
lows us to generate semantic graphs for individual captions automatically, which
we then merge into a rich meta-AMR graph for the joint image–language pair.
From this meta-graph, we sample diverse connected subgraphs that represent se-
mantically coherent combinations of image-anchored entities, events, and their
relations, which we then turn into controlled captions automatically via existing
AMR-to-text models [9]. Fig. 2 depicts an example of our meta-graph inferred
from the original uncontrolled captions associated with an image. Filled nodes
in the meta-graph indicate image entity groundings. Five semantically coherent
subgraphs (a)–(e) of variable complexity are then sampled from the meta-graph,
which are subsequently used to generate novel captions, shown below each sub-
graph. These new captions augment the original caption set by providing both
image focus, through node groundings, and increased semantic diversity induced
by the sampled subgraphs. Building upon SSA, we introduce a new CIC model,
CIC-BART, suitable for generating focused controlled captions. Alongside the
regions of interest, CIC-BART also makes use of the length of the desired cap-
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tion as a control signal proxy for the verbosity of the caption. CIC-BART can be
trained on SSA-augmented versions of standard VL datasets such as MS-COCO
or Flicker30k to accommodate the CIC task. Our experiments show that, com-
pared to several SOTA models, the captions generated by our model have supe-
rior text quality and diversity, while being comparable in terms of faithfulness
to control signals.
In summary, our contributions are:

1. We propose a novel data augmentation technique, SSA, that draws on a
structured semantic formalism (AMR) to automatically generate focused cap-
tions suitable for training of CIC models. We empirically show that our SSA
technique enables CIC models to generate captions with high controllability, di-
versity, and text quality.

2. We propose CIC-BART, a model designed for CIC, that does not require
overly descriptive and complex control signals that SOTA models often require
to achieve high performance. We show a superior overall performance, compared
to SOTA, while relying on simple control signals (i.e., regions of interest and
preferred caption length).

3. We present an extensive evaluation of our model, compared with existing
SOTA. Specifically, we report results on different aspects of generated captions,
including controllability (faithfulness to control signal), diversity, and text qual-
ity (linguistic well-formedness). To account for the trade-off among these metrics,
we propose an overall performance score based on their harmonic mean. This
metric helps us identify models that perform well in all these aspects.

2 Related Work

Controllable Image Captioning (CIC). Various types of control have been
used for CIC, including visual entities, a type of region-based control [18, 23,
28, 47, 55, 56], where generated captions should learn to focus on the regions of
interest. Others draw on complex control signals where additional knowledge
about the generated caption structure is provided. For example, some recent
work provides the complete skeleton of the desired sentence in the form of a
number of objects or attributes or object-relation-object templates [12,13]. Ad-
ditional control signals that CIC draws on include different caption styles, e.g.,
positive, negative, humorous, or romantic tone [20, 21, 32, 33, 45, 47, 53, 54], user
personality [17,41], or the length of the generated captions [19,22,45,47,48]. The
use of complex control signals aims at improving the diversity of captions and
the quality of the text in CIC models. However, it requires the users to provide
a detailed description of the control signal, which is not realistic in practical set-
tings where such models are to be deployed (e.g., a self-driving car or personal
assistant). We instead draw on two simple control signals (regions of interest and
desired caption length) and show that we can achieve competitive performance
on CIC, while keeping the control signals simple and practical.

Recent SOTA models that draw on spatial control include the SCT model [18]
that also uses the Faster R-CNN feature vectors and object tags (corresponding
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GloVe vectors [35]) of the entities of interest, as well as models that include
skeleton-based control, namely ASG2Caption [13] and VSR [12]. ASG2Caption
uses an abstract scene graph (ASG) to express the desired structure of a cap-
tion. ASG contains three types of unlabeled abstract nodes (object, attribute,
relationship) that are grounded in the image by extracting features from the
corresponding bounding boxes (for objects and attributes) or from the union
of bounding box pairs (for a relationship node). ASG2Caption shows improved
controllability (by conditioning on ASGs), and diversity (by automatically sam-
pling diverse ASGs as control signals). The VSR model [12] draws on GloVe
embeddings of Faster R-CNN object tags for visual entities (as in SCT). It also
uses a skeleton control signal (like ASG2Caption), but one that includes more
detailed information and richer semantics. Specifically, the VSR control signal
follows the form of a fine-grained PropBank entry4 — i.e., specifying the exact
verb(s) expressing action(s) depicted in the image, and their visually grounded
arguments (e.g., subject, object, location, manner). Thus, VSR uses the most
descriptive control signal among the SOTA models. Refer to our supplementary
material for an illustrative example of the control signal used for each method.

Compared to ASG2Caption and VSR, our control signal is kept minimal and
only specifies the bounding boxes and desired caption lengths. To improve the
diversity of captions, we draw on a structured semantic graph (AMR) that ex-
presses the semantics of a sentence based on PropBank semantics. Notably, we
do not use these rich graphs to express detailed and overly descriptive control
signals (as in VSR), but we use these semantic structures to augment our train-
ing data with richer and diverse captions, which will result in the model learning
to generate more diverse captions. Additionally, we include a length control sig-
nal to further increase diversity without needing to specify detailed information
about the structure of the output (e.g., number of attributes per object, etc.).
This way, we can generate a variety of captions for a fixed image sub-region by
simply controlling the desired length of the output.
Abstract Meaning Representation (AMR). AMR [7] is a rich semantic
formalism for expressing the meaning of natural language sentences as a formal
graph. AMR draws on PropBank, which is a rich lexical semantic resource encod-
ing predicates expressing an action or state, as well as the number and nature of
the participating entities (arguments and other semantic roles, such as location,
manner, etc.). AMR is a widely researched semantic formalism for which highly
accurate automatic Text-to-AMR and AMR-to-Text models are developed [5,9].
We rely on these models to augment original image–caption datasets with newly
generated captions (as explained in Sect. 4).
AMRs vs. Scene Graphs. Recent studies [1,15,16,52] have shown that AMRs
better capture the semantic relations of an image as compared to the scene
graphs [11]. Existing scene graph annotations mainly capture geometric or pos-
sessive relations, which account for more than 90% of the relations captured,
whereas more than 1/3 of the captured entities refer to clothing, object, or body
parts information [1,52]. This difference is crucial for high-quality image caption-

4 https://propbank.github.io

https://propbank.github.io
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ing, as we use higher-level semantic relations in our everyday language rather
than geometric ones. For instance, during a soccer game, we would probably
describe a goal save as ‘the player kicks the ball away from the goal’ or ‘the
goalkeeper defends his team by saving a goal’ and not by using mainly geomet-
ric and possessive relations like ‘a person wearing a white shirt, standing with
his right leg lifted, close to a ball which is above the ground’. In the supplemen-
tary, we provide a detailed comparison of AMR and scene graph representations,
particularly focusing on their applications in data augmentation.

3 Model

Bidirectional Multimodal Encoder

Global 
Image

Visual 
Entity 

1

Visual 
Entity 

K

Autoregressive 
Text Decoder

Controlled 
Caption

Length Verbs
(optional)

…

Visual Control Signal Text Control Signal

Fig. 3: The architecture diagram of our
model, CIC-BART.

We propose CIC-BART, specifically
designed to generate controlled im-
age captions. Specifically, it can gen-
erate descriptions of particular areas
within a scene with a desired level
of detail. Our model, based on VL-
BART [14], utilizes a transformer-
based encoder-decoder architecture,
as shown in Fig. 3. CIC-BART ex-
tends VL-BART encoder to the CIC
task by modifying the encoder input
to include: a) a global image embed-
ding that provides the context of the
full image to the model; b) the visual control signal, including the visual em-
bedding of the regions that contain the entities of interest; c) the text control
signal, containing length control (indicating the desired length range of the out-
put caption) and an optional verb signal that indicates the action we want the
generated caption to concentrate on.

The visual embeddings of the regions are position-aware embeddings from
a Faster R-CNN model [38] trained for visual object and attribute classifica-
tion [3] on Visual Genome. The global image feature vector is extracted as well
from Faster R-CNN. For the length control signal, we add to our vocabulary L
tokens for the L different caption length levels; for instance, level one represents
sentences between one and nine words, and level two, ten to nineteen. These to-
kens describe our coarse levels, for a finer sentence size accuracy, we accompany
the tokens with the desired number of words. This choice gives our model the
capacity to generate diverse captions for a particular length level. Finally, the
output of the decoder generates the desired, controlled image caption.

4 Structured Semantic Augmentation (SSA)

The goal of our SSA method is to augment existing image captioning datasets
with new focused captions along with their control signals (i.e., regions corre-
sponding to entities). We rely on datasets where visual entities in the captions
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are annotated with their corresponding regions (see Sect. 5 for details on the
datasets). The SSA process consists of four main steps, as described below. For
more details, refer to our supplementary material, which also includes a step-by-
step example of our SSA methodology.
Step 1: Image-level AMR graph generation. Our objective in this stage
is to enclose all the information available from the visually grounded captions
into a single representation. To accomplish this, we create a visually grounded
AMR graph (vgAMR) for each caption of an image and then merge them into a
single image-level graph, the meta-vgAMR. To create the vgAMRs of an image,
we first convert each of its N captions to their AMR representation, using the
Neural transition-based Text-to-AMR parser [5] which also aligns words in a
caption with their respective nodes in the AMR graph. We utilize the alignment
information of 1) caption words and AMR nodes (from Text-to-AMR parser)
and 2) caption words to image bounding boxes (from existing dataset annota-
tions) to visually ground the AMR nodes. After this step, we get the collection
of nodes referring to visual entities, where each grounded meta-AMR node is
linked with a non-empty set of bounding boxes. This extended representation,
‘AMR + visual grounded nodes’, is our vgAMR.

Our next step is to combine the N vgAMRs to form a single meta-vgAMR. To
achieve this, we employ a pairwise strategy to merge the most similar vgAMRs
first (we measure similarity with Smatch score [10]). We use the UPGMA hier-
archical clustering algorithm [30,34] to find the optimal merge ordering starting
from the most similar graphs. UPGMA creates a hierarchy where the bottom
level consists of the N individual vgAMRs. By merging all vgAMRs using the
UPGMA ordering, we obtain a single structure called meta-vgAMR.

When merging two vgAMRs, the main challenge is identifying which nodes
correspond to the same concepts, such as entities, attributes, actions, and re-
lations. We use three node properties to accomplish this: a) visual grounding
information, b) semantic similarity of node labels, and c) node neighborhood
semantic similarity. We derive two node-merging criteria from there: 1) visu-
ally grounded entity nodes are merged if they point to the same image-bounding
boxes. When 1) does not hold, we check the second criterion: 2) for the remaining
non-grounded nodes, including amr-specific, predicates, adjectives, and adverbs,
we use a combination of node label semantic similarity (cosine similarity of the
labels using their GloVe embeddings) and neighborhood similarity. Neighbor-
hood similarity examines the similarity of parents for adjectives/adverbs nodes
and children for predicate nodes, along with the similarity of connecting edge
roles. When two nodes satisfy criterion 1) or 2), we merge them into a single
node. Moreover, if they have different labels, we maintain both names by keeping
a list of synonyms to increase representation diversity. In the special case when
the two vgAMRs describe two totally different concepts, and hence they have
no common nodes, we add an amr-specific node called ‘multi-sentence’ as the
root with the two independent vgAMRs as its children. The final graph, meta-
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vgAMR, includes all non-redundant5 elements of the original N captions while
preserving the visual grounding between the meta nodes and their respective
image regions.
Remark: Meta-vgAMR efficiently compresses all available image information into
a single structure. Following our approach, we can easily scale when new scene
information becomes available by applying our pairwise merge procedure.
Step 2: Event-based graph sampling from image-level AMRs. We start
from the predicate nodes, which mainly correspond to verbs, to sample sub-
graphs in meta-vgAMR graphs. Predicate nodes are identified by their label
and the edges connected to them. The label of a predicate node typically fol-
lows the format ‘predicate_name-xx,’ where ‘xx’ represents the different senses
a word can have regarding the concept it is used for. Predicate nodes have
outward ARGy edges, where ‘y’ can take values from 0 to 5, connecting them
to their arguments. We sample subgraphs from these nodes by following the
outgoing argument edges, which are labeled as ARGn in an AMR graph, each
defining a particular semantic role (e.g., ARG0 points to the agent, ARG1 to
the patient, etc.). Finally, we add one more subgraph containing the remaining
children branches of other non-ARG optional predicate edges (e.g., ‘location’,
‘time’). We repeat this process until the leaves of the graphs are reached. During
sampling, we randomly select one of the synonyms if a node is a list of synonym
labels, as mentioned in the previous step. The output of this step is our more
focused event-focused sub-graphs. In Fig. 2, we can see some instances of our
event-based sampling (SSA samples), where the predicate nodes include z0/sit-
01, z7/dock-01, z13/sit-01, and so on6. Although we cannot show all the sampled
event-based subgraphs in the figure, we included five of them and used colored
roots and edges for visualization purposes.
Step 3: New caption generation from sampled AMRs We use the SPRING
AMR-to-Text model [8] to generate new event-focused captions from the sampled
vgAMR subgraphs. Because both vgAMR merging and sampling steps introduce
noise, the output captions are not always of good quality. We automatically filter
low-quality captions by using a linguistic well-formedness measure, GRUEN [58],
which is a reference-free metric based on BERT contextual embeddings.
Step 4: Control signal generation. The last step is to create the control sig-
nal for the generated captions. The spatial control signal for a specific caption
is extracted from the corresponding sampled vgAMR, by pulling the bounding
boxes of the visual entity linked AMR nodes.

5 A node may have different names for the same bounding box in different meta-
vgAMRs, such as ‘A male’ and ‘A person’. According to criterion 1), we merge the
corresponding AMR nodes and keep both ’male’ and ’person’ in the names list to
avoid redundancy. Therefore, criteria 1) and 2) ensure that multiple nodes don’t
describe the same concept in the meta-vgAMR.

6 Note that in Fig. 2, the node z17/green-03 is also categorized as a predicate. This
may seem an error because we usually think of ‘green’ as an attribute node rather
than a predicate. However, in AMRs, when ‘green’ is paired with its argument, in
this case, z16/lawn, it encapsulates a predicate/verb that can be expressed in natural
language as ‘the lawn is green.’
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4.1 Mixing Strategies of Original and SSA Data

To analyze the impact of our SSA data, we explore various mixing strategies
with the original training set. Assume D represents the training control-caption
pairs in the original dataset, containing ND samples, and SSA represents our
SSA samples, containing NSSA instances. The augmented dataset DSSA is de-
fined by combining D and SSA: DSSA = samD(τD, pD) ∪ samSSA(τSSA, pSSA),
where the functions samD samples a subset of the original dataset, and samSSA

a subset of our SSA data. Since we are interested in the effect of our SSA, we
assume that samD(τD, pD) = D, with τD = ‘Random Sampling Strategy’ and
pD = 100%, meaning that all original data are included in the mixed dataset.
Depending on the samSSA parameter τSSA we have the cases:
Random Sampling Strategy. In this case, we randomly select a pre-specified
number of examples from SSA. The parameter pSSA expresses the percentage of
SSA samples included in DSSA. With boundary cases pSSA = 100% (all NSSA

samples are included), and pSSA = 0% (no SSA data are added).
Uniform-Coverage Sampling Strategy. To mitigate the original dataset’s
bias (having mainly samples describing the entire image), we aim to create a
new focus-unbiased dataset. By modeling the control signal focus as the im-
age area percentage covered by the bounding boxes of the control signal, we
split the original data into B coverage bins. Then, we will randomly add in
each bin SSA samples, aiming to create a new uniform, coverage-unbiased DSSA

dataset. Here, pSSA contains the range of each bin for the coverage histogram.
For example, in the case where we choose ten uniform coverage bins, we have
pSSA = {[0%, 10%), [10%, 20%), . . . , [90%, 100%]}.

Due to space limitations, we present results from the Random Sampling
Strategy for pSSA = 0% and pSSA = 100% in the main paper. Results from
other scenarios can be found in the supplementary material.

5 Experimental Setup

5.1 Data

We use Flickr30k Entities (Flickr-Ent) [36] and MS-COCO Entities (COCO-
Ent) [18] for training and evaluation. Flickr-Ent augments the original captions
of Flickr30k [51] with manually-annotated region–phrase groundings. Flickr-Ent
contains the original 31K images annotated with five captions each. COCO-Ent
augments the original MS-COCO [27] (120K images each annotated with around
five captions) with semi-automatically collected grounding annotations; see [18]
for details on the annotation process. For both datasets, we follow previous
work and use the training and test splits by Karpathy et al . [25]. We apply
our SSA algorithm on the aforementioned datasets to create their augmented
variations, COCO-Ent-SSA and Flickr-Ent-SSA, containing about 800K and
250K training captions, respectively, of which 33% and 37%, are generated by
our SSA algorithm.
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For all four training sets, we automatically generate image–control–caption
triplets to train our model on. For spatial control, we extract from the grounded
captions the bounding boxes of the entities of interest using the annotations from
COCO-Ent and Flickr-Ent. Note that since these datasets do not contain the
text control signal, we use each ground-truth caption as a proxy for a controlled
caption, from which we first generate the coarse- and fine-length control levels
and then extract their verbs using part-of-speech tagging for the optional action
control.

5.2 Models and Evaluation Metrics

We compare two variations of our model (with and without SSA augmentations)
with SOTA models as our baselines: Show Control & Tell (SCT) [18] that uses
region-based control (bounding boxes of visual entities of interest); ASG2Caption
(ASG) [13] that draws on visually grounded abstract scene graphs as control sig-
nal; and VSR [12] that uses overly descriptive control signals that express verb(s)
and fine-grained verb-specific semantic roles of the desired captions; ComPro [48]
that learns a mapping from the bounding boxes of the entities of interest and
caption length level to GPT-2 Large prompts aiming to retrieve controlled cap-
tions; and the LaBERT length-control-only model [19].

We report the performance of our models and baselines using a comprehensive
set of metrics that evaluate different aspects of caption controllability, diversity,
and quality. We also propose and report an overall performance metric that
summarizes these different aspects in a meaningful way. To measure diversity,
we compute n-gram diversity, D-n for n = 1, 2 [4], as well as self-CIDEr-based
diversity (sC) [46]. For a fair comparison of the different CIC models, we mea-
sure diversity for the five generated captions for each test image (in COCO-Ent
and Flickr-Ent), and report their average. To measure content controllability we
design an extended version of the IoU metric of [18] that calculates the degree-of-
match (faithfulness) between a control signal and the corresponding generated
caption. For our control signal, we use the set of nouns E that represent the
entities of interest, which are the names of the visual objects in the control. To
extract nouns from the predicted sentences, we use the Stanford part-of-speech
tagger [42,43]. We then find the semantic intersection of the two sets using Hun-
garian Matching, as in [18]. Finally, we calculate the semantic intersection over
union of the control nouns and the nouns extracted from the controllable cap-
tion, which gives us our content controllability IoU. We further analyze IoU by
introducing the Hallucinating Nouns (Hal) metric. Details can be found in the
supplemental material. For length controllability (L), we measure the Mean Abso-
lute Error (MAE) between the fine length control (number of words) and the size
of the resulting M = 10 controlled captions, which are generated from M ran-
domly created control signals. We also calculate the length precision (LP) [19] by
determining the percentage of generated captions that match the desired coarse
length level. We assess text quality of generated captions using GRUEN (G) [58],
a reference free metric based on BERT contextual embeddings that measure the
syntactic and semantic well-formedness of a text segment. Finally, we measure
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Table 1: Performance of CIC models for the original test sets. ∗ASG-type dataset is
not released for Flickr-Ent; therefore, we could not reproduce the ASG results.

Model H ↑ IoU↑ G↑ sC↑ D-1↑ D-2↑ L↓ H ↑ IoU↑ G↑ sC↑ D-1↑ D-2↑ L↓

COCO-Ent Flickr-Ent
SCT [18] 55.8 67.3 64.4 42.8 27.0 35.5 - 54.6 50.7 79.8 44.0 29.3 36.5 -
ASG* [13] 74.2 72.6 72.0 78.3 37.8 56.6 - - - - - - - -
VSR [12] 56.2 77.6 39.0 67.4 30.0 42.2 - 62.5 60.2 54.0 77.9 33.3 49.3 -
CIC-BART 75.9 76.2 73.0 78.7 38.0 56.2 .49 69.8 54.0 85.0 78.6 43.6 58.2 1.24
CIC-BART-SSA 78.3 77.2 74.8 82.5 44.6 63.2 .11 71.3 55.0 86.0 81.7 47.0 62.6 1.05

Table 2: Performance of CIC models, for the SSA-only samples.

Model H ↑ IoU↑ G↑ sC↑ D-1↑ D-2↑ H ↑ IoU↑ G↑ sC↑ D-1↑ D-2↑

COCO-Ent (SSA only) Flickr-Ent (SSA only)
SCT [18] 51.7 62.1 64.8 37.8 23.7 31.0 43.9 29.9 77.3 45.7 31.0 36.7
CIC-BART 69.2 61.4 73.9 74.0 44.2 57.0 68.5 53.0 80.5 79.8 52.9 62.9
CIC-BART-SSA 75.6 65.2 80.7 83.7 53.8 67.8 72.0 55.6 82.9 86.1 56.5 69.3

the overall performance of each model based on its ability to balance content
controllability, diversity, and text quality. To calculate this, we use the harmonic
mean of IoU, G, and sC. All of these metrics range between 0 and 1, with a
higher value indicating better performance. The harmonic mean (H) helps us
determine the model with the best overall performance. It prioritizes models that
perform well across all metrics while penalizing those with poor performance,
even in one metric. In our supplementary, we include comparisons of the CIC
models on standard captioning metrics (like CIDEr [44] and Spice [2]).

6 Results

6.1 Overall Performance

We first compare the overall performance of our models with the SCT, ASG,
and VSR baselines with respect to controllable captioning metrics. We do not
include ComPro in this comparison due to the unavailability of the codebase. We
also exclude LaBERT since this model solely focuses on length controllability.

Tab. 1 presents results for content and length controllability (IoU and L), text
quality (G), and diversity (sC, D-1, D-2), as well as the harmonic mean (H). For
both datasets, CIC-BART-SSA has the best performance in all metrics, except
IoU, where it is the second best. Specifically, CIC-BART-SSA is superior to
all other models with respect to diversity (sC, D-1, D-2) and text quality (G),
but comparable to VSR in terms of content controllability (IoU). The length
controllability (L) scores show that our SSA augmentation helps the model learn
to generate high-quality output at the desirable length (compare CIC-BART
and CIC-BART-SSA). This is due to the increased diversity in caption length
provided by our SSA augmentations.

Importantly, we can see that model performance can vary depending on the
metric. E.g., whereas VSR has the highest IoU, it falls behind in text quality and
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diversity. In our qualitative analysis, we observe the poor quality of the captions
generated by VSR. The best-performing model should be identified based on the
H score that summarizes content controllability, text quality, and diversity into
a single score. Based on this score, CIC-BART-SSA is better than SCT and VSR
baselines by a large margin, and notably better than ASG. Nevertheless, ASG
requires complex control signals in the form of scene graphs, in contrast to the
simple control signal requirements of CIC-BART.

Next, we conduct a further evaluation of the CIC performance on our SSA
samples from the test set images of COCO-Ent and Flickr-Ent. We present
the results in Tab. 2 for our models CIC-BART, CIC-BART-SSA, and SCT.
ASG and VSR are excluded since they need complex control signals (grounded
abstract scene graphs for ASG and grounded verb semantic roles for VSR),
which are only available for COCO-Ent and Flickr-Ent. We observe a significant
improvement in overall performance for our CIC-BART-SSA model. We notice
that the models (SCT and CIC-BART) trained on the original datasets, which
describe the entire image, had difficulties generalizing to cases where they had to
focus on a specific sub-region of an image. However, our model CIC-BART-SSA
was able to generate focused and diverse descriptions of the challenging, highly
focused examples present in our SSA data.

Table 3: Length Precision (LP)
for CIC models on COCO-Ent and
Flickr-Ent original test sets.
Model LP↑ LP↑

COCO-Ent Flickr-Ent
ComPro [48] 94.7 81.4
LaBERT [19] 99.7 98.4
CIC-BART 99.9 88.0
CIC-BART-SSA 99.9 91.3

We compare the length precision of our
model with the baselines utilizing length con-
trol in Table 3. LaBERT uses only length-
control signals without spatial control, while
our model employs both spatial and length-
control signals to generate focused captions.
This makes the LaBERT task much easier
since it only focuses on generating specific
length descriptions of an image. On the other
hand, our model focuses on generating cap-
tions that describe only a specific sub-region
of the scene while maintaining a desired de-
scription length level. Although our task is
more challenging than LaBERT, we achieve competitive length precision perfor-
mance. Lastly, we want to emphasize that the remarkable improvement in length
controllability (L) and length precision (LP) from CIC-BART to CIC-BART-
SSA stems from the increased length diversity found in our SSA augmentations,
which enriches the original COCO-Ent and Flickr-Ent datasets. In the supple-
mentary, we provide an analysis of the caption length statistics in the original
datasets and our SSA-derived captions.

6.2 Effect of SSA on Content Controllability

To analyze the impact of our SSA augmentations, we measure the content con-
trollability (IoU) performance of CIC-BART at different levels of focus of the
control signals and report it in Fig. 4. We use coverage, defined as the area of the
image enclosed by the bounding boxes of the entities of interest in the control
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COCO-Ent
based

Datasets

Flickr-Ent
based

Datasets

Evaluation Set: Original Dataset Test Set Evaluation Set: SSA Samples Test Set

Fig. 4: IoU histograms for CIC-BART (green) and CIC-BART-SSA (blue). The first
column depicts the IoU on the original test set and the second on the original test set
images’ SSA (only) data. The Samples curve (orange) represents the distribution of
test captions in each coverage (image area covered by the control signal) interval.

A young girl in a martial arts uniform is holding a stick and a sword.

a boy in a white uniform kicking a red stick holding a man

CIC-BART

CIC-BART-SSA

Two young girls are practicing martial arts with sticks while on a red mat.

VSR kick is playing with a game

two people, one man and one woman, practicing martial arts with sticks on a mat.

a boy in a white karate is holding a stick with a stick

a boy in a white karate is holding a stick

CIC-BART

CIC-BART-SSA

VSR

SCT

SCT

Two martial artists, one male and one female, practicing martial arts with sticks.

there is a train that is pulling into the station
a train station with a train pulled into the station
a train and a train

a train at a train station
a black and white photo of a train

CIC-BART
CIC-BART-SSA

VSR
ASG
SCT

a train that is sitting on the tracks
traveling and a train on the tracks

a train that is sitting on the tracks

a train on the tracks at a train station
train parked at a train station

CIC-BART
CIC-BART-SSA

VSR
ASG
SCT

a train station with a train on the platform and a roof over the train
a train station with a train parked on the platform and a covered overpass

depicted and a train at a train station with a platform

a train parked next to a train at a train station
a train station with a train station and a train station

CIC-BART
CIC-BART-SSA

VSR
ASG
SCT

CIC-BART

CIC-BART-SSA

VSR

SCT

CIC-BART

CIC-BART-SSA

VSR

SCT

A woman in a blue dress with a black purse is sitting on a bench in front of a white car as people walk by.

A woman in a blue dress is sitting on a bench in front of a white car while a man with a briefcase walks by.

a woman in a blue jacket sitting on a bench passed a man in a white car

a woman in a blue jacket is sitting on a chair on a bench in front of a car

A woman is sitting on a bench in front of a white car, while two men in suits walk by in the background.

A woman is sitting on a bench in front of a white car, while a man in a suit walks by behind her.

a woman sitting on a bench pulls in front of a white car while a man in a man walking

a man and a woman is sitting on a bench while a man in a white car

CIC-BART
CIC-BART-SSA

VSR
ASG
SCT

a man is taking a picture of a pizza
a man is eating a pizza in a restaurant
taking a picture of a pizza
a picture of a pizza on a white plate
a man cutting a pizza and a pizza

takes a pizza and a pizza on a picture of a man

a man is taking a picture of food at a restaurant
a black and white photo of a man eating a pizza

a man taking a picture of a pizza
a man takes a picture of his pizza on a pizza

CIC-BART
CIC-BART-SSA

VSR
ASG
SCT

taking a picture of a pizza on a table with a man
a black and white photo of a man eating at a table
a man is taking a picture of a meal on a table

a man taking a picture of his pizza while sitting at a dinner table
a man sitting at a table with a picture of a pizza and a pizza

CIC-BART
CIC-BART-SSA

VSR
ASG
SCT

Fig. 5: Qualitative examples for the original test sets. Strikethrough marks hallucina-
tions and redundancies. a, b licensed under CC BY-SA 2.0; c, d under CC BY 2.0.

signal, to quantify that focus. For example, highly focused control signals cover
a small area, yielding low coverage, while broader signals cover a larger area
and have high coverage. We ‘break down’ the IoU performance into 10 coverage
bands and report the average IoU over control signals in those bands. In addition,
the ‘Samples’ curve shows the distribution of test captions over the same bands.
The results in Fig. 4 indicate that by training with SSA (blue bars), the spa-
tial controllability improves significantly in the low-coverage regime, where the
control signals are highly focused. Interestingly, these are also the most under-
represented (data deprived) parts of the original dataset Flickr-Ent. Therefore,
SSA which enriches the original datasets with highly focused examples (please
refer to our supplementary for % Samples per coverage bands for the training
sets), is effective in improving generalization performance in CIC. We include
the performance of hallucinating nouns metric in the supplementary material.

https://farm5.staticflickr.com/4102/4888234256_538b8dee56_z.jpg
https://farm9.staticflickr.com/8501/8308004994_44eb2d562d_z.jpg
https://creativecommons.org/licenses/by-sa/2.0/
https://flickr.com/photo.gne?id=101362133
https://www.flickr.com/photos/moriza/151970521/
https://creativecommons.org/licenses/by/2.0/
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6.3 Qualitative Analysis

CIC-BART

CIC-BART-SSA

A gymnast performs on stage.

one woman is practicing a skill.

CIC-BART

CIC-BART-SSA

A woman in a blue dress is walking.

one woman is dressed up in a blue dress.

CIC-BART

CIC-BART-SSA

SCT

there is one man standing in a crowd

CIC-BART

CIC-BART-SSA

A man is reaching into a store window.

one man is making a repair on a machine.

SCT a woman is sitting on a bench

SCT

SCT three children dressed in white outfits

An Asian man is giving a speech.

a man in a black shirt and a
man in a black shirt and a man

a group of people are walking down the street
while carrying bags

Fig. 6: Examples for SSA-only test set.
Strikethrough marks hallucinations. Up to
Down: a licensed under CC BY 2.0; b under
CC PDM 1.0, for last two see Fig. 5.

In Fig. 5, we present qualitative exam-
ples from the original test sets, and in
Fig. 6 examples from our SSA (only)
test set control signals. In the two fig-
ures, each highlighted word found in
the generated controlled captions cor-
responds to the control entity of the
same color. This shows the match be-
tween the captions produced and the
control signal. We also strike through
the parts where the model halluci-
nates or generates redundant refer-
ences to the entities of interest. Our
models have been observed to out-
perform the previous state-of-the-art
models by substantially enhancing the
quality of the generated controlled
captions. This behavior was expected
from our quantitative analysis, which
showed that our models have signifi-
cantly higher text quality (G). More importantly, our CIC-BART-SSA model is
capable of generating captions that are faithful to the control signal and better
understand the relationships that connect the entities of interest. We include
additional qualitative samples in the Supplementary Material.

7 Conclusions

We address two main challenges faced by the controllable image captioning (CIC)
models. First, standard image–caption datasets lack the controllability and di-
versity needed for proper training and evaluation of CIC. Second, most recent
SOTA models require complex and overly descriptive control signals as input
(including, e.g., the main action/verb to appear in the generated caption). To
address the first challenge, we propose a novel technique that draws on a struc-
tured semantic augmentation (SSA) formalism to generate focused captions and
the corresponding control signals for images. For the second challenge, we pro-
pose a transformer-based vision-language model attuned to the CIC task. We
show that this model performs competitively with SOTA models without re-
quiring complex and explicit control signals. Importantly, when combined with
our SSA approach, our model generates highly diverse captions and significantly
reduces the content controllability performance gap between the different levels
of focus of the generated controlled captions. Finally, when provided with the
commonly used verb guidance of other SOTA approaches, our model shows a
substantial improvement in performance.

https://www.flickr.com/photos/thunderchild5/183647966/
https://creativecommons.org/licenses/by/2.0/
https://flickr.com/photo.gne?id=7249763658
https://creativecommons.org/publicdomain/mark/1.0/
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