
Sparse Refinement for Efficient High-Resolution
Semantic Segmentation Supplementary Material

Zhijian Liu1,2,∗ Zhuoyang Zhang3,∗ Samir Khaki4 Shang Yang1

Haotian Tang1 Chenfeng Xu5 Kurt Keutzer5 Song Han1,2

1MIT 2NVIDIA 3Tsinghua University 4University of Toronto 5UC Berkeley
https://sparserefine.mit.edu

0 Table of Contents

This supplementary material includes:

• Sec. 1: More model details of the entropy selector and the sparse feature
extractor.

• Sec. 2: More ablation details of the learnable selector, entropy ensembler, and
mIoU improvement for different object sizes.

• Sec. 3: More latency results on NVIDIA RTX 3090 and Jestion AGX Orin.

• Sec. 4: More visualizations.

1 More Model Details

1.1 Entropy Selector

In Figure 2(b) of the main paper, we present the recall-density curve of
HRNet-W48 on Cityscapes to demonstrate the effectiveness of the entropy selector.
Additionally, in Figure 1, we provide the recall-density curves of HRNet-W48
on the remaining four datasets we reported in the main paper. Our entropy
selector consistently achieves high recall rates at low density, showcasing its
overall effectiveness.

https://sparserefine.mit.edu

2 Liu�, Zhang�, Khaki, Yang, Tang, Xu, Keutzer, and Han

Fig. 1: The entropy selector consistently achieves high recall rates at low density on
different datasets.

In Table 1, we present the entropy thresholds (�) chosen for different baseline
models on Cityscapes. Our guiding principle for � selection is based on the
desired recall ratio. In this work, we determine a threshold for each model to
target a recall rate of at least 80%.

Table 1: Entropy threshold, recall rate, precision, and density for each baseline model.

Entropy Recall Precision Density

HRNet-W48 0.3 84.9% 22.8% 11.8%
SegFormer-B5 0.1 84.7% 20.1% 13.9%
Mask2Former-T 0.05 93.4% 13.1% 24.1%
Mask2Former-L 0.005 97.3% 9.1% 35.0%
SegNeXt-L 0.1 80.8% 24.2% 10.0%

1.2 Sparse Feature Extractor

By default, we use a 6-stage sparse feature extractor where channel dimensions
for each stage are defined as 32, 64, 128, 256, 512 and 1024, respectively. For
Mask2former-T, we use a 5-stage sparse feature extractor where channel dimen-
sions for each stage are defined as 32, 64, 128, 256 and 512, respectively. Due
to space limit, we illustrate the detailed 5-stage model architecture in Figure 2.
At each stage, we employ two ResNet basic blocks before downsampling and an
additional two after upsampling. These ResNet basic blocks incorporate sparse
convolution, with a kernel size of 3 used for each sparse convolution operation.
This choice enables us to capture ample spatial information while maintaining a
manageable model size.

Sparse Refinement for Efficient High-Resolution Semantic Segmentation 3

Sp
ar

se
C

on
v,

 (3
,3

),
32

Sp
ar

se
C

on
v,

 (3
,3

),
(2

,2
),

1/
2

Sp
ar

se
C

on
v,

 (3
,3

),
(2

,2
),

1/
2

Sp
ar

se
C

on
v,

 (3
,3

),
(2

,2
),

1/
2

Sp
ar

se
C

on
v,

 (3
,3

),
(2

,2
),

1/
2

Sp
ar

se
C

on
v,

 (3
,3

),
32

Sp
ar

se
In

ve
rs

eC
on

v,
 (3

,3
),

×
2

Sp
ar

se
In

ve
rs

eC
on

v,
 (3

,3
),

×
2

Sp
ar

se
In

ve
rs

eC
on

v,
 (3

,3
),

×
2

Sp
ar

se
In

ve
rs

eC
on

v,
 (3

,3
),

×
2

Li
ne

ar
, 1

9

Sp
ar

se
C

on
v,

 (3
,3

),
64

Sp
ar

se
C

on
v,

 (3
,3

),
64

Sp
ar

se
C

on
v,

 (3
,3

),
64

Sp
ar

se
C

on
v,

 (3
,3

),
64

Sp
ar

se
C

on
v,

 (3
,3

),
12

8

Sp
ar

se
C

on
v,

 (3
,3

),
12

8

Sp
ar

se
C

on
v,

 (3
,3

),
12

8

Sp
ar

se
C

on
v,

 (3
,3

),
12

8

Sp
ar

se
C

on
v,

 (3
,3

),
25

6

Sp
ar

se
C

on
v,

 (3
,3

),
25

6

Sp
ar

se
C

on
v,

 (3
,3

),
25

6

Sp
ar

se
C

on
v,

 (3
,3

),
25

6

Sp
ar

se
C

on
v,

 (3
,3

),
51

2

Sp
ar

se
C

on
v,

 (3
,3

),
51

2

Sp
ar

se
C

on
v,

 (3
,3

),
51

2

Sp
ar

se
C

on
v,

 (3
,3

),
51

2

Sp
ar

se
C

on
v,

 (3
,3

),
25

6

Sp
ar

se
C

on
v,

 (3
,3

),
25

6

Sp
ar

se
C

on
v,

 (3
,3

),
25

6

Sp
ar

se
C

on
v,

 (3
,3

),
25

6

Sp
ar

se
C

on
v,

 (3
,3

),
12

8

Sp
ar

se
C

on
v,

 (3
,3

),
12

8

Sp
ar

se
C

on
v,

 (3
,3

),
12

8

Sp
ar

se
C

on
v,

 (3
,3

),
12

8

Sp
ar

se
C

on
v,

 (3
,3

),
64

Sp
ar

se
C

on
v,

 (3
,3

),
64

Sp
ar

se
C

on
v,

 (3
,3

),
64

Sp
ar

se
C

on
v,

 (3
,3

),
64

Sp
ar

se
C

on
v,

 (3
,3

),
32

Sp
ar

se
C

on
v,

 (3
,3

),
32

Sp
ar

se
C

on
v,

 (3
,3

),
32

Sp
ar

se
C

on
v,

 (3
,3

),
32

Sp
ar

se
C

on
v,

 (3
,3

),
32

Sp
ar

se
C

on
v,

 (3
,3

),
32

Sp
ar

se
C

on
v,

 (3
,3

),
32

Fig. 2: Detailed model architecture of the sparse feature extractor.

2 More Ablation Details

2.1 Learnable Selector

In Section 3.2 of the main paper, we introduced the learnable selector, as an
alternative to the entropy selector for identifying less confident predictions. The
learnable selector was designed to use the features available at the selection point
of the SparseRefine pipeline, this includes the original RGB image and the low-
resolution baseline logits. We feed the RGB image through 2 dense convolutions
to gain a feature representation. We then concatenated these features with the
logits before feeding it into an MLP. We include the corresponding PyTorch
descriptor code below:

class LearnableSelector(nn.Module):
def __init__(self, threshold: float):

self.conv = nn.Sequential(
nn.Conv2d(3, hidden_channels, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(hidden_channels, output_channels, 3, 1, 1),
nn.ReLU()

)
self.mlp = nn.Sequential(

nn.Linear(num_classes+out_channels, mlp_hidden_size),
nn.ReLU(),
nn.Linear(mlp_hidden_size, mlp_hidden_size),
nn.ReLU(),
nn.Linear(mlp_hidden_size, 1)

)
self.sig = nn.Sigmoid()
self.threshold = threshold

def forward(self, image, logits):
image_feats = self.conv(image)
concat_feats = torch.cat([image_feats, logits], dim=-1)
out_feats = self.mlp(concat_features)
return self.sig(out_feats) > self.threshold

Our lightweight learnable selector incurs a relatively similar latency compared
to the entropy selector. Using the above PyTorch code, we set hidden-channels=16,
output-channels=16, mlp-hidden-size=32 achieving a selector latency of 4.0 ms.

4 Liu�, Zhang�, Khaki, Yang, Tang, Xu, Keutzer, and Han

In Section 5a of the main paper, we empirically show that the lightweight learn-
able selector offers a marginal performance improvement (1:0% in recall) over the
entropy selector, however at roughly 2× the latency and no miou improvement.
Given that our SparseRefine pipeline is built to achieve a competitive latency-to-
accuracy trade off, we can conclude that the entropy selector works sufficiently
well for the identification of uncertain predictions, particularly given that the
downstream mIoUs are similar.

2.2 Entropy Ensembler

We provide further details about the entropy-based ensembler mentioned in
Section 4.3 of the main paper. We show the PyTorch implementation below:

class EntropyEnsembler(nn.Module):
def forward(self, l1: torch.Tensor, l2: torch.Tensor) -> torch.Tensor:

p1 = torch.softmax(l1, dim=-1)
e1 = -torch.sum(p1 * torch.log(p1.clamp(min=1e-5)), dim=-1, keepdim=True)
p2 = torch.softmax(l2, dim=-1)
e2 = -torch.sum(p2 * torch.log(p2.clamp(min=1e-5)), dim=-1, keepdim=True)
return torch.where(e1 < e2, l1, l2)

2.3 mIoU for Different Object Scale.

Figure 3 shows mIoU improvements from the low-resolution baseline, for
various object sizes in the Cityscapes dataset. We bin the objects into small,
medium and large based on the percentage of the frame they occupy. Cumulatively
we show that our method disproportionately improves the segmentation of smaller
objects. Table 2 includes a subset of our per-class mIoUs from Table 8 (main), with
the relative class size per frame. Notably, we exhibit larger mIoU improvements
for smaller objects such as traffic lights, and riders.

m
Io

U
 (%

)

25

40

55

70

85

100

Binned Object Sizes

Small (<1%) Medium (1%-10%) Large (>10%)

94.8

81.8

54.8

94.4

80.0

49.2

Low Resolution SparseRefine

Fig. 3: Comparing the mIoU for low resolution and SparseRefine on different sized
objects in the Cityscapes Dataset.

3 More Latency Results

In the main paper, we reported the latency of SparseRefine using FP16
precision and a batch size of 4 on an NVIDIA RTX 3090. To provide a more

Sparse Refinement for Efficient High-Resolution Semantic Segmentation 5

Table 2: Average class size and mIoU per frame on Cityscapes

Traffic Light Rider Road Building

Low Resolution (mIoU) 70.0 62.3 98.3 92.8
+ SparseRefine (mIoU) 75.0 67.4 98.4 93.4

Relative Size (%) 0.34 0.42 38.44 22.83

comprehensive understanding of latency, Table 3 offers a detailed measurement
of latency across various precision modes and batch sizes. It’s noteworthy that
SparseRefine consistently reduces latency across different precision modes and
batch sizes. As the batch size increases, we generally observe a decrease in
the inference latency of SparseRefine. This phenomenon can be attributed to
larger batch sizes leading to higher GPU utilization during sparse convolution
operations. Furthermore, it’s worth mentioning that some larger models encounter
out-of-memory errors when performing inference on high-resolution inputs with a
large batch size. In contrast, SparseRefine does not face this issue, underscoring
its efficiency and robustness in handling resource constraints.

We also conducted latency evaluations of SparseRefine on an NVIDIA Jetson
AGX Orin, a widely adopted platform for autonomous driving, and the outcomes
are summarized in Table 4. These results offer crucial insights into the practical
applicability of our approach. In general, it is observed that the inference latency
on the NVIDIA Jetson AGX Orin platform is roughly four times slower compared
to the NVIDIA RTX 3090. Despite this discrepancy, SparseRefine manages to
achieve a noteworthy speedup on the NVIDIA Jetson AGX Orin, affirming its
promise and suitability for real-world applications in the context of autonomous
driving.

4 More Visualizations

We present visualizations of the prediction differences between the high-
resolution and low-resolution baseline models on Cityscapes in Figure 4. These
visualizations clearly illustrate that the differences in their predictions primarily
emerge in a sparse set of pixels. This further strengthens the claim we made at
the beginning of Section 3.2 in the main paper.

6 Liu�, Zhang�, Khaki, Yang, Tang, Xu, Keutzer, and Han

Table 3: Latency under different precision and batch size on NVIDIA RTX 3090.
SparseRefine benefits from high utilization of sparse convolution, particularly as the
batch size increases.

FP16 FP32

Input Resolution B1 B2 B4 B8 B1 B2 B4 B8

HRNet-W48 1024�2048 (D) 46.3 54.1 53.4 51.5 95.2 96.5 90.9 89.7

HRNet-W48 512�1024 (D) 20.2 15.1 14.5 14.1 26.8 25.8 24.4 23.8
+ SparseRefine 1024�2048 (S) 43.1 34.0 32.4 30.6 69.3 64.2 60.8 58.7

SegFormer-B5 1024�2048 (D) 149.5 141.1 140.6 141.3 311.5 302.1 299.2 OOM

SegFormer-B5 512�1024 (D) 39.0 20.6 18.5 17.8 43.7 39.9 38.3 37.2
+ SparseRefine 1024�2048 (S) 65.4 41.8 38.5 36.0 91.5 83.0 79.2 76.7

Mask2Former-T 1024�2048 (D) 73.9 72.7 66.8 65.4 156.6 145.9 138.8 OOM

Mask2Former-T 512�1024 (D) 37.5 24.1 19.1 17.1 49.7 42.1 37.6 34.6
+ SparseRefine 1024�2048 (S) 67.9 51.7 44.8 44.4 111.9 99.2 93.7 89.3

Mask2Former-L 1024�2048 (D) 158.4 150.8 146.3 144.6 382.2 371.1 367.1 OOM

Mask2Former-L 512�1024 (D) 56.3 45.4 40.3 37.5 113.0 100.8 94.6 92.1
+ SparseRefine 1024�2048 (S) 106.4 90.6 80.4 76.4 213.9 195.3 186.4 182.2

SegNeXt-L 1024�2048 (D) 85.3 87.3 86.3 84.0 132.7 155.2 141.5 134.2

SegNeXt-L 640�1280 (D) 34.7 35.4 33.6 32.8 53.5 62.7 56.7 52.7
+ SparseRefine 1024�2048 (S) 56.9 53.7 50.9 48.7 91.3 97.5 89.0 83.7

Fig. 4: Visualization of the prediction difference between the high resolution and low
resolution baseline models.

We have included additional visualization results of refinement in Figure
5. These supplementary results exhibit enhanced recognition of small, distant
objects and finer details around object boundaries. These observations serve as
further evidence of the efficacy of our SparseRefine.

Sparse Refinement for Efficient High-Resolution Semantic Segmentation 7

Table 4: Latency under different precision and batch size on NVIDIA Jetson AGX
Orin.

FP16 FP32

Input Resolution B1 B2 B4 B1 B2 B4

HRNet-W48 1024�2048 (D) 233.0 217.1 211.1 360.6 365.8 349.4

HRNet-W48 512�1024 (D) 78.6 63.9 60.5 98.9 93.6 90.5
+ SparseRefine 1024�2048 (S) 157.0 138.9 134.1 277.4 269.9 265.3

SegFormer-B5 1024�2048 (D) 751.5 721.0 719.5 1220.5 1172.5 1172.8

SegFormer-B5 512�1024 (D) 110.8 102.4 98.8 179.9 161.3 163.1
+ SparseRefine 1024�2048 (S) 197.5 186.7 183.1 386.1 363.7 362.3

Mask2Former-T 1024�2048 (D) 449.1 433.7 422.8 583.2 591.7 585.6

Mask2Former-T 512�1024 (D) 133.0 126.2 115.1 174.8 171.4 149.8
+ SparseRefine 1024�2048 (S) 259.0 250.5 241.0 486.1 479.1 453.7

Mask2Former-L 1024�2048 (D) 882.1 903.2 888.1 1217.7 1198.5 1201.8

Mask2Former-L 512�1024 (D) 262.2 243.7 226.6 356.7 334.0 317.6
+ SparseRefine 1024�2048 (S) 432.6 412.0 396.9 784.4 757.5 736.9

SegNeXt-L 1024�2048 (D) 525.4 529.3 539.1 712.0 743.7 731.8

SegNeXt-L 640�1280 (D) 209.9 214.6 202.7 280.3 296.9 288.5
+ SparseRefine 1024�2048 (S) 278.4 279.5 266.2 447.5 450.6 441.5

8 Liu�, Zhang�, Khaki, Yang, Tang, Xu, Keutzer, and Han

(a) Input images (b) HRNet-W48 (LR) (c) HRNet-W48 (LR) + SparseRefine

Fig. 5: SparseRefine improves the low-resolution (LR) baseline with substantially better
recognition of small, distant objects and finer detail around object boundaries.

	Sparse Refinement for Efficient High-Resolution Semantic Segmentation Supplementary Material

