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Abstract. Explainable visual question-answering research focuses on
generating explanations for answers. However, in complex VQA scenar-
ios, there can be a significant semantic distance between the question and
the answer. This means that generating explanations solely for the an-
swer can lead to a semantic discrepancy between the content of the expla-
nation and the question-answering content. To address this, we propose
a step-by-step reasoning approach to reduce such semantic discrepan-
cies. Additionally, the task of explaining VQA should include generating
explanations for the reasoning steps to obtain explanations for the final
answer. We introduce a diffusion chain-of-thought model to implement
this step-by-step reasoning and the explanation process. The model con-
sists of two processes: the external diffusion and the internal diffusion.
The external diffusion process generates explanations for each reasoning
step, while the internal diffusion process describes the probability of the
question transitioning to each step of the explanation. Through experi-
ments on eight sub-tasks in the ScienceQA dataset, we demonstrate that
our diffusion chain-of-thought model outperforms GPT-3.5 in terms of
the answer accuracy and the explanation ability while only using 1%
of GPT-3.5’s parameters. Furthermore, the model approaches GPT-4,
Llama, and so on in eight sub-tasks.

Keywords: Vision question answering · Explicable question answering
· Chain-of-Thought · Diffusion model

1 Introduction

Vision Question Answering (VQA) aims to answer questions posed about a given
image [2]. While traditional VQA methods can provide corresponding answers,
they lack explanations for their outputs [10, 44, 47]. To address this, existing
researches have explored three approaches: 1) Explanation Generation: This in-
volves adding an interpretable module to the model to generate explanations for
the answers [30, 45, 46, 51]. 2) Prototype Network: An interpretable QA model
based on metric learning, which represents QA pairs as low-dimensional space
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Fig. 1: VQA-TD Thought Diffusion Algorithm Process Framework Diagram.

vectors to calculate the distance between them for explanation [8, 12, 23, 37].
3) Local Interpretable Model-Agnostic Explanations (LIME): Used for post-hoc
attribution analysis of model predictions, it constructs the relationship between
sample features and prediction results to explain the predictive actions of black-
box models [5, 20,35,41].

The explanation methods can be regarded as mapping functions from <Ques-
tion Q, Image I, Answer A> to explanations R. It can be estimated by M :<
Q, I,A >→ R. Although these approaches can elucidate QA results, they often
fail to provide step-by-step explanations for the reasoning process. In complex
VQA scenarios, they may yield explanations with large semantic deviations from
answers [5, 8, 12, 20, 23, 30, 35, 37, 41, 45, 46, 51]. Due to the semantic distance
between < Q, I > and the answer is large. This gap makes it challenging to
directly generate explanations.

To address this issue, this paper proposes that VQA generates answers throu-
gh a step-by-step reasoning process [1]. By introducing multiple reasoning steps
between < Q, I > and the answer, the semantic distance is reduced. Conse-
quently, generating explanations for intermediate reasoning steps can avoid the
problem of excessive semantic deviation between explanations and answers. In
other words, this method can be viewed as an iterative mapping relationship.
M :< Q, I,Ri−1 >→ Ri, where the last explanation Rn must contain the an-
swer A. As shown in Fig. 1, for the input I and Q, "M :< Q, I,R0 >→ R1" first
outputs "R1) Observe each object", then "M :< Q, I,R1 >→ R2" outputs "R2)
Each object...", ..., and finally outputs the explanation of the answer A "R5) ...
the common property of these two objects is saltiness".

Unfolding the iterative mapping relationship above, it can be expressed as
"M :<<<< Q, I >→ R1 >→ R2 >→ · · · >→ Rn", simplified as "M :<
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Q, I >→ R1 → R2 → · · · → Rn". The reasoning steps from "< Q, I >" to
"Rn" can be interpreted as a diffusion process that conforms to the Markov
chain [13, 53]. To achieve the process, this paper proposes an explainable VQA
model based on the diffusion chain-of-thought (VQA Thought Diffusion, VQA-
TD), as shown in Fig. 1. The model consists of three parts: the semantic embed-
ding module, the semantic alignment module, and the reasoning module. The
semantic embedding module uses the text model T5 [34] and the image model
DETR [7] to implement the semantic embedding of the input Q and I. The
semantic alignment module adopts the joint attention model Co-Attention [49]
to fulfill the alignment of text and image semantics. The reasoning module con-
sists of two diffusion processes: the external diffusion and the internal diffusion.
Inspired by U-ViT [3] and DiT [31], both diffusion processes use the transformer
decoder of the Markov diffusion process. They can obtain the transition prob-
ability (P (Ri → Ri+1)) between reasoning explanations and the probability
(P (< Q, I >→ Ri)) of the question migrating to explanations. VQA-TD intro-
duces the internal diffusion to enhance the relationship between the question
and explanations, thereby reducing the semantic deviation between them.

The main contributions are as follows:
1) We propose a novel VQA-TD neural network that addresses the limita-

tions of existing VQA explanation models [5,8,12,20,23,30,35,37,41,45,46,51].
Unlike traditional models that directly generate explanations, VQA-TD gradu-
ally obtains explanations for each reasoning step. It reduces the semantic gap
between < Q, I > and answer. Different from the large language (multi-modal)
models that use external CoT prompts to output explanations [11, 18, 21, 28,
32, 42, 43, 48, 52, 53], VQA-TD embeds the diffusion chain-of-thought model to
produce explanations without external prompts.

2) We propose a diffusion chain-of-thought model composed of the external
diffusion and the internal diffusion to support step-by-step explanations. It ob-
tains the connection between reasoning steps through the external diffusion and
generates the explanation for each reasoning according to the question through
the internal diffusion.

3) Experiments on eight sub-tasks of ScienceQA dataset [26] demonstrate
that VQA-TD, with only 1% of the parameter size of GPT-3.5 [6], surpasses
GPT-3.5 in both the answer accuracy and the explanation capability. Also it
approaches GPT-4 [1], Llama [39] and so on in the sub-tasks.

2 Related Work

Traditional VQA explainable methods include 1) Explanation Generation, 2)
Prototype Network, and 3) LIME.

1) Explanation Generation has been proposed to improve the explainabil-
ity of VQA by incorporating an interpretable module within the framework. The
models leverage various techniques, including attention mechanisms, deep multi-
modal reasoning, noise-resistant robustness design, and competitive explanation
generation, as shown in Fig. 2.
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Fig. 2: Comparison of VQA interpretable methods.

Wu et al . [46] proposed a VQA explanation generation that combines visual
attention with an explanation generation module to capture the relationship
between text and relevant image regions. The answer is then used to infer the
corresponding relationship between these regions. Zhang et al . [51] proposed a
deep multi-modal reasoning and fusion network. It performs fine-grained rea-
soning and adaptive fusion through multi-image reasoning and fusion layers. An
explanation generation module is also designed to improve the explainability of
answer. Patro et al . [30] proposed a robust explanation method. This method is
resistant to noise perturbations. And it enhances the consistency between tex-
tual, visual explanations and the answer through a co-association module. Chen
et al . [45] proposed a competitive textual explanation generation framework. It
generates textual explanations for each answer by comparing the explanations of
multiple competing answers. This framework aims to improve VQA performance
on complex questions and enhance the interpretability of VQA systems.

2) Prototype Network [8,12,23,37] is an interpretable QA model based on
metric learning. It learns to represent QA as vectors in a low-dimensional space,
and then calculates the distance between the QA (such as Euclidean distance or
cosine similarity), as shown in Fig. 2.

Chen et al . [8] proposed the ProtoPNet model. It utilizes a generalized con-
volution as prototype layer to calculate the distance between QA. However,
ProtoPNet needs to set up a separate prototype layer for each category, which
makes its training process complex and the interpretability weak. To address
this problem, Rymarczyk et al . [37] proposed the ProtoPool model. It signif-
icantly reduces the number of required prototype layers by sharing prototype
layer between categories. In addition, ProtoPool introduces a new metric simi-
larity function to help the model focus on more salient visual features to provide
interpretability of the model.

3) LIME [5,20,35,41] is an algorithm for explaining the predictions of black
box models. It works by constructing a local linear model that approximates
the relationship between local features and prediction outcome. LIME is imple-
mented using a combination of techniques, including local interpretable model
learning, representative predictive instance selection, optimized sampling and
automated feature selection, and a structural visualization framework, as shown
in Fig. 2.
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Ribeiro et al . [35] proposed LIME for explaining the prediction decisions
of classifiers. It learns an interpretable model to approximate the relationship
between prediction and local features. Wang et al . [41] further proposed the
MO-LIME based on LIME [35]. It improves efficiency and reduces manual inter-
vention by optimizing the sampling process of predictive instance selection and
automated feature selection. Liang et al . [20] proposed the multi-modal visual-
ization model MULTIVIZ. It divides the explanation into four stages. In each
stage, it provides existing and newly proposed analysis tools to identify the con-
tribution of each modalities to the prediction, explore the interactions between
modalities, reveal which feature combinations play an important role in model’s
decision-making process, and analyze how decision-level features are combined
to make predictions.

Although VQA explanation methods can provide explanations for the an-
swer, they fail to provide a step-by-step explanation of the reasoning process. In
complex scenarios, due to the long semantic distance of QA, those methods may
fail to map. So this may cause semantic deviation. VQA-TD effectively avoids
this problem by using diffusion models to explain each stage of reasoning. It
ensures semantic distance short.

3 Diffusion Chain-of-Thought Model

The proposed diffusion chain-of-thought model incorporates two diffusion pro-
cesses: the external diffusion and the internal diffusion. The external diffusion
is used to obtain the transition probability in reasoning steps (P (Ri → Ri+1)).
The internal diffusion is used to obtain the probability of the question migrat-
ing to each explanation (P (< Q, I >→ Ri)). It augments the internal diffusion
to strengthen the relationship between the question and explanations, thereby
reducing the semantic gap between them.

3.1 Diffusion Model

Diffusion model is a generative model that learns to denoise data by gradually
removing noise from a noisy input [13]. This process can be divided into two
stages: a forward process and a reverse process.

In the forward process, the noise is gradually added to the real data. Given
a real data point, n steps of Gaussian noise are cumulatively added to obtain n
noisy data points. The noise at each step is generated from a Gaussian distribu-
tion controlled by a hyper-parameter {βi ∈ (0, 1)}ni=1. Since each time step i only
depends on the previous time step i− 1, the forward process can be considered
as a Markov chain [13,17] and is represented by the following two equations:

q(R1:n|R0) =

n∏
i=1

q(Ri|Ri−1) (1)

q(Ri|Ri−1) = N (Ri|
√
αiRi−1, βiI) (2)
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among them, Eq. (1) is expressed as the cumulative noise migration process
based on the Markov chain from R0 to R1:n. Eq. (2) represents the noise addition
relationship from Ri−1 to Ri, where βi is the i-th step Gaussian noise parameter,
αi = 1−βi. It can be seen from Eq. (1) and Eq. (2) that Ri is formed by gradually
adding Gaussian white noise ϵ to the initial R0 [13].

Ri =
√
ᾱiR0 +

√
1− ᾱiϵ

R (3)

where ᾱi =
∏n

i=1 αi.
The backward process is the process of gradually restoring the real data

from Gaussian noise Rn ∼ N (0, I), where each step of denoising is expressed as
q(Ri−1|Ri). Since the mathematical expression of q(Ri−1|Ri) cannot be obtained,
the deep learning model pθ (parameter is θ) is used to estimate it [13,17].

pθ(R0:n) = p(Rn)

n∏
i=1

pθ(Ri−1|Ri) (4)

pθ(Ri−1|Ri) = N (Ri−1|µθ(Ri, i), Σθ(Ri, i) (5)

where Eq. (4) is expressed as the cumulative denoising migration process based
on the Markov chain from Rn to R0:n. Eq. (5) represents the denoising relation-
ship from Ri to Ri−1, µθ(Ri, i) is the noise mean, and Σθ(Ri, i) represents the
noise variance [38]. The noise mean µθ can be expressed by the following Eq. (6).

µθ =
1

√
αi

(Ri −
βi√
1− ᾱi

ϵθ(Ri, i)) (6)

where ϵθ is the noise going from Ri at the i time.

3.2 External Diffusion

The external diffusion regards the intermediate reasoning steps from the question
< Q, I > to the answer Rn (< Q, I >=→ R1 → R2 → · · · → Rn) as a diffusion
process. This process is used to describe the transition probability P (Ri → Ri+1)
in reasoning steps, where < Q, I > is the initial state R0 of the process. And
the intermediate reasoning step Ri is injected with Gaussian noise by Ri−1.
Rn represents the final answer state. This process (shown in Fig. 1(a)) can be
expressed by Eq. (1) and Eq. (2).

3.3 Internal Diffusion

In the process of adding noise to the internal diffusion (as shown in Fig. 1(d)),
the initial question f0 is < Q, I >, and r0 is composed of two consecutive in-
terpretation steps (Ri ⊕ Ri−1) in the external diffusion process. rt is generated
by adding noise to rt−1, which can be expressed by Eq. (2). ft is the content
formed by introducing noise under the two conditions of ft−1 and rt, and the
relationship between them is expressed by the full probability q(ft, ft−1, rt).
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In the denoising and restoration process of the internal diffusion shown
in Fig. 1(e), ft−1 is obtained by denoising on ft, which is expressed by Eq. (5). In
addition, rt is obtained by denoising on ft and rt+1. It is formed by denoising re-
duction under two conditions, and the relationship between them is represented
by the total probability pθ(rt, rt+1, ft).

According to [14], the total probability model is

pθ(rt, rt+1, ft) = (1 + s)pθ(ft, rt)− s[pθ(ft|ft+1), pθ(rt|rt+1)]. (7)

Based on Theorem 1, pθ(rt, rt+1, ft) is approximately equal to the full prob-
ability noise distribution model ϵ̂θ(ft, rt, t) that is computed by Eq. (8).

Theorem 1. Assuming that pθ(ft, rt), pθ(ft|ft+1) and pθ(rt|rt+1) follow the
noise boundary distribution models ϵθ(ft, rt, t, t), ϵ

f
θ (ft, ϵ

r, t, n) and ϵrθ(ϵ
f , rt, n, t)

respectively. pθ(rt, rt+1, ft) ≈ ϵ̂θ(ft, rt, t), where

ϵ̂θ(ft, rt, t) = (1 + s)ϵθ(ft, rt, t, t)− s

[
ϵfθ (ft, ϵ

r, t, n),
ϵrθ(ϵ

f , rt, n, t)

]
(8)

Proof. The proof is in the Appendix A.

According to [4] and Bayesian formula, there is an approximate relationship
in denoising score matching loss:

ϵθ(ft, rt, t, t) ≈ −
√
β̄t

[
∇ft log q(ft−1|ft, r0)
∇rt log q(rt−1|rt, f0)

]
. (9)

Based on Theorem 2, ϵ̂θ(ft, rt, t) is approximately equal to denoising score
matching loss that be computed by Eq. (10).

Theorem 2. According to Eq. (8), assuming noise model ϵθ(ft, rt, t, t), ϵ
f
θ (ft, ϵ

r,
t, n) and ϵrθ(ϵ

f , rt, n, t) follow the denoising score matching loss and the classifier-
free guidance. So the ϵ̂θ(ft, rt, t) can be approximated by

ϵ̂θ(ft, rt, t) ≈ −
√

β̄t

[
(1 + s)∇ft log q(ft−1|ft, r0)− s∇ft log q(ft),
(1 + s)∇rt log q(rt−1|rt, f0)− s∇rt log q(rt)

]
(10)

where β̄t is equal to
∏n

i=1 βt which stands for hyper-parameter of Gaussian dis-
tribution, q(ft−1|ft, r0) is conditional probability distributions based on the ques-
tion and two consecutive explanation steps respectively, and q(ft) is boundary
probability distributions standing for the state of question f .

Proof. the proof is shown in the Appendix A.

4 VQA-TD

4.1 Model Architecture

The VQA-TD algorithm model framework is divided into three main modules:
the semantic embedding, the semantic alignment, and the reasoning module (as
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shown in Fig. 1). The semantic embedding module uses T5 [34] and DETR [7]
to perform semantic embeddings of Q and I. The semantic alignment module
uses the joint attention model Co-Attention [49] to semantically align Q and I.
Inspired by U-ViT [3] and DiT [31], the reasoning module uses a transformer
decoder that conforms to the Markov diffusion process. Then it gradually re-
stores explanations of the question to the answer. It restores the explanation
of M :< Q, I >→ R1 → R2 → · · · → Rn in R1R2 . . . Rn. And it contains
two diffusion processes: the external diffusion and the internal diffusion. The
external diffusion process is used to describe the logical probability relationship
in reasoning explanations. The internal diffusion process uses the intermediate
explanation Ri for the noise generation and the restoration of < Q, I >. There-
fore, it enables learning the probability distribution of the question to each step
explanation Ri.

4.2 Semantic Embedding Module

The semantic embedding module is used to embed < Q, I >. Since Q and I
are different modal data, this embedding module uses the T5 model [34] and
DETR model [7] to handle Q and I, respectively. It achieves the embedding of
two modal data. Q includes the question, the prompt data, and the option text
content, while I contains the image data about the question itself.

During the semantic embedding process, two types of data can be expressed
as:

Hl = LanguageEncoder(Q) (11)

Hv = Wh · V isionEncoder(Q) (12)

in order to unify the lengths of two latter semantic vectors of embedding, this
method constructs a projection matrix Wh to convert the image visual semantic
embedding vector into a language embedding vector of equal length.

4.3 Semantic Alignment Module

To align the multi-modal data in VQA, this paper adopts the alignment attention
mechanism designed by Yu et al . [49] and divides the alignment process into two
parts: 1) self-attention unit(SA). It simulates the internal semantic connections
of each modality. It learns coarse-grained semantic connections, allowing the
model to understand the internal semantic structure of the modality deeply. 2)
guided-attention(GA) unit. It solves the semantic alignment problem between
modalities. This process helps the model understand the relationship between
image and questions more accurately.

In the SA unit, the query vector Q, the key vector K, and the value vector V
correspond to the language features Hl, visual features Hv, and Hv, respectively.
So the output Hatt

v of the SA unit can be defined as:

Hatt
v = Softmax(

QKT

√
dk

) (13)
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Algorithm 1 Forward noise adding process

1: repeat
2: f0, r0 ∼ q(f0, r0)
3: t ∼ Uniform({1, 2, . . . , n})
4: ϵf , ϵr ∼ N (0, I)

5: ft =
√
ᾱtf0 +

√
1− ᾱtϵ

f

6: rt =
√
ᾱtr0 +

√
1− ᾱtϵ

r

7: Computing gradient descent via BP:
∇θ∥[ϵf , ϵr]− ϵ̂θ(ft, rt, t)∥22

8: until converged

Algorithm 2 Reverse denoising process

1: fn, rn ∼ N (0, I)
2: for t = n, . . . , 1 do
3: zf , zr ∼ N (0, I) if t ≥ 1,

else zf , zr = 0

4: ft−1 = 1√
αt

(ft − βt√
ᾱt

ϵfθ (ft, rt, t)) + σtz
f

5: rt−1 = 1√
αt

(rt − βt√
ᾱt

ϵrθ(ft, rt, t)) + σtz
r

6: end for

7: return f0, r0

the dimension size of dk is equal to the dimension size of Hl.
Since only one head is used in the SA unit to simulate the dense interaction

between modalities, the relationship between the words in the question and the
image area cannot be well mapped. Therefore, this method uses the GA unit to
perform cross-fusion of modalities to generate the fusion vector f :

λ = Sigmoid(WlHl +WvH
att
v ) (14)

f = (1− λ)Hl + λ ·Hatt
v (15)

where Wl and Wv are pre-trained learning parameters. This method fine-tunes
the pre-training parameters in small dimensions to complete the encoding of f .

Finally, the conversion and generation of the deep latent space embedding
vector can be completed by connecting f , r, and their corresponding sampling
time steps t together.

4.4 Reasoning Module

The reasoning module is used to diffuse the chain of thought. It uses the external
diffusion process to describe the transition probability relationship in reasoning
steps so that there is a logical progression ability between the previous and
subsequent reasoning steps. In addition, it uses the internal diffusion process to
generate each reasoning explanation of the steps (as shown in Fig. 1(a)(d)(e)).

In order to fulfill the internal diffusion reduction process, this paper con-
structs VQA-TD based on transformer, as shown in Fig. 1(c). It consists of
1) Noised Latent Layer, 2) Embed Layer, 3) Patchify Layer, 4) Transformer
Block, 5) Layer Normalization (LN), and 6) Linear Layer. Among them, the
noised latent layer, the embed layer and the patchify layer are all fully connected
networks. They are used to reduce the dimensionality of the aligned semantic
vectors. They also introduce the condition information (inference time t and
continuous inference interpretation step r = Ri ⊕ Ri−1) and output semantic
vector tokens f . The transformer block layer is used to calculate the optimal
noise ϵ̂θ(ft, rt, t) and is required to predict the reduction process of VQA-TD in
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internal diffusion. LN and linear layer are used to initialize layer operations. Fi-
nally, the semantic vector f and the continuous interpretation step r are restored
from tokens to the original input dimensions through LN and linear layer.

Transformer block utilizes the multi-head attention mechanism in trans-
former [40] to associate the semantic vector f with the explanation r in q(f0, r0)
(line 2 in Algorithm 1). In addition, transformer block adds Multi-Layer per-
ceptron (MLP), Scale, and Shift layers. Among them, MLP is used for spatial
mapping. The scale is used for spatial alignment. The shift is used to denoise the
continuous interpretation r and the semantic vector f respectively by ϵf and ϵr

(lines 4-6 in Algorithm 1). The L2 loss relationship between the noise ϵ̂θ(ft, rt, t)
obtained by the diffusion chain-of-thought model through the calculation process
of Eq. (10), and the standard noise ϵf and ϵr that actually act on the embedded
semantics f and r can be defined as the training convergence target (line 7 in
Algorithm 1).

Ef0,r0,ϵf ,ϵr,t∥[ϵ
f , ϵr]− ϵ̂θ(ft, rt, t)∥22 (16)

LN performs zero initialization processing on the transmitted semantic vec-
tor f and the residual block inside the transformer block. LN is between the
transformer block and the linear layer. In addition, the linear layer acts as a
decoder to restore the input semantic vector f and continuously interpret r to
the original dimension. That is, each token in the semantic vector is first mapped
to the tensor space, and the reshape operation is performed simultaneously on
the linear layer. The final feature dimension size is twice the original size, which
is used to predict noise and variance in the restoration process.

In order to realize the internal diffusion reduction process, the reasoning
module takes the continuous inference step r as the condition and reducing f
to explain Ri. After completing the training of the total noise model ϵ̂θ process
in Eq. (16), VQA-TD will use the total probability noise model ϵ̂θ(ft, rt, t).
It obtains ϵ̂θ in the forward diffusion and the reverse reduction processes. In
addition, the noise mean µθ and variance σt in both processes corresponding to
ϵfθ (ft, rt, t, t) and ϵrθ(ft, rt, t, t) (as shown in Algorithm 2 lines 4-5) are restored
on f and r respectively. That is, through the correlation calculation relationship
between the noise mean µθ and the variance σt in Appendix A, the Gaussian
white noise is cyclically denoised in lines 4-5 of Algorithm 2.

5 Experiment and Result Analysis

5.1 Settings

This paper compares VQA-TD with the following 9 benchmark methods on
ScienceQA [26], including: VisualBERT [19], UnifiedQABase [16], UnifiedQABase

w/CoT [26], GPT-3.5 [9], GPT-3.5 w/CoT [26], GPT-4 w/CoT [27], Multi-Modal
CoT Base(MCBase) [26], LLaMA-Adapter [50] and LLaMA-SciTune [15].

ScienceQA is a data set of scientific QA. It consists of 21,208 multiple-choice
questions, covering rich domain diversity in 3 disciplines, 26 topics, 127 cate-
gories, and 379 skills. The benchmark data set is divided into the training set,
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Table 1: Comparison accuracy test results % (NAT: natural science; SOC: social sci-
ence; LAN: language science; TXT: text prompt; IMG: image prompt; NO: no prompt;
G1-6: questions for grades 1-6; G7-12: questions for grade 7-12)

Model Size NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Human - 90.2 85.0 87.5 89.6 87.5 88.1 91.6 82.4 88.4
VisiualBERT [19] 111M 59.3 69.2 62.2 62.7 62.2 58.5 63.0 59.9 61.9
UnifiedQABase [16] 223M 68.2 69.2 74.9 63.8 61.4 77.8 73.0 65.0 70.1
UnifiedQABase w/CoT [26] 223M 71.0 76.0 78.9 66.4 66.5 81.8 77.1 68.8 74.1
GPT-3.5 [9] 175B 74.6 69.7 76.0 74.4 67.3 77.4 76.8 68.9 74.0
GPT-3.5 w/CoT [26] 175B 75.4 70.9 78.1 74.7 67.4 79.9 78.2 69.7 75.2
GPT-4 w/CoT [27] - 85.5 72.4 90.3 82.6 71.5 92.9 86.7 79.0 84.0
MCBase [26] 223M 87.5 77.2 85.8 87.9 82.9 86.8 84.7 85.4 84.9
LLaMA-Adapter [50] 6B 84.4 88.3 84.4 83.7 80.3 86.9 85.8 84.1 85.2
LLaMA-SciTune [15] 13B 89.3 95.6 87.0 93.1 86.7 91.8 84.4 91.3 90.0

VQA-TD 583M 83.2 71.8 81.3 82.4 78.2 80.6 79.1 80.5 79.7

validation set, and test set, containing 12726, 4241, and 4241 samples, respec-
tively. These questions, answer prompts and multipart explanations serve as
reasoning steps and explanations from question to answer.

In the process of training the model, the total training network layer is con-
trolled to 26 layers (the number of attention mechanism heads is 18), which
includes 4 transformer blocks, LN and linear layers. In addition, in the patch
operation, this paper sets its parameter to 2 to determine the number of token
magnitudes of the fusion vector f .

This paper completes the internal diffusion calculation process of diffusion
chain-of-thought of Eq. (10) by setting the time steps of f and r to both t. Dur-
ing the training phase, VQA-TD follows the multi-stage pattern of steady-state
diffusion [36]: in the first stage, 250K steps are trained at 256×256 resolution
with a batch size of 4096, and 5K steps of warm-up are performed. In the second
stage, the model is fine-tuned for 200K steps at 512×512 resolution with a batch
size of 1024 and warmed up for 5K steps. At the end of the second phase, this
paper recovers from its last checkpoint (including the model’s weights and the
optimizer’s state). Following by the method of Bao et al . [4], this paper uses
the AdamW optimizer [24] in all stages, with a learning rate of 2e-4, a weight
attenuation of 0.03, and an operating coefficient of (β1, β2)=(0.9, 0.9). When the
validation loss does not decrease, the training process will reduce the learning
rate by 10 times and then continue training. Therefore, this paper uses mixed
precision training. That is, when VQA-TD is trained at 256×256 resolution, the
image-related position embeddings are interpolated via bi-linear interpolation.
During training, this paper uses the DPM-Solver [25] method to accelerate the
diffusion process every 50 steps.

In order to verify the quality of the explanation text generated by each al-
gorithm model, this paper uses the text BLEU [29] and ROUGE [22] evaluation
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indicators as testing tools to evaluate the explanation output of each model. Fi-
nally, BLEU-1, BLEU-4, and ROUGE-L are used as test baselines, respectively.

5.2 Result Analysis

Comparative Results VQA-TD and the other four groups of models are used
to complete eight sub-tasks in the ScienceQA data set. The specific results are
shown in Tab. 1. Among them, the first group is the traditional VQA interpreta-
tion baseline model VisualBERT [19]. The second group includes the text-to-text
language model UnifiedQABase [16], and the language model after adding CoT
UnifiedQABase w/CoT [26]. The third group is GPT-3.5 [26]. The fourth group
is LMMs, including GPT-4 [27], MCBase [26], LLaMA-Adapter [50] and LLaMA-
SciTune [15].

With 1% of the parameters of GPT-3.5, VQA-TD (79.7%) surpasses Visu-
alBERT (61.9%), UnifiedQA (74.1%) and GPT-3.5 (75.2%) respectively; with
LLaMA-SciTune’s 5% parameter, VQA-TD is close to LMMs such as GPT-4
(84.0%), as shown in Tab. 1 and Fig. 1(b).

VQA-TD performs best on the NAT sub-task, with a rate of 83.2%. And
it performs worst on the SOC sub-task, with a rate of 71.8%. Due to most
of the questions in the NAT have text and image prompts, which are related
to reasoning steps and explanations, this makes VQA-TD effectively capture
information through the internal and external diffusion process. The lack of
text prompt information in the SOC reduces VQA-TD’s ability to establish the
connection between images and explanation. It can be seen that the inclusion of
valid text and image data information in the data set is crucial to VQA-TD.

Explain Answer Recall This experiment uses BLEU [29] and ROUGE [22] to
test the recall rate of explanations. VQA-TD, with 583M parameters (1% GPT-
3.5), exceeds BLEU-1 of UnifiedQABase (0.397), GPT-3.5 w/CoT (0.192) and
MCBase (0.406) respectively by getting score of 0.421. It also exceeds BLEU-4 of
UnifiedQABase (0.370), GPT-3.5 w/CoT (0.052) and MCBase (0.384) respectively
by getting score of 0.407. And it surpasses ROUGE-L of UnifiedQABase (0.714),
GPT-3.5 w/CoT (0.323) and MCBase (0.769) respectively by getting score of
0.820. Besides, it is also close to GPT-4 w/CoT (0.839) and LLaMA-Adapter
(0.868) in ROUGE-L, as shown in Tab. 2. Although VQA-TD (79.7%) is worse
than MCBase in accuracy (84.9%), it (BLEU-1: 0.421; BLEU-4: 0.407; ROUGE-L:
0.820) performs better than MCBase (BLEU-1: 0.406; BLEU-4: 0.384; ROUGE-L:
0.769) in BLEU and ROUGE. Due to VQA-TD have the ability to generate long
explanation information. It gradually approximates long explanation information
through multiple diffusion and recovery steps, thereby reducing the semantic
deviation between < Q, I > and the answer.

Compared with LMMs such as GPT-4 w/CoT and LLaMA-Adapter, VQA-
TD performs worse on BLEU-1/4 (BLEU-1: 0.421; BLEU-4: 0.407). Since the
model uses parameters in the multi-modal data alignment process. Co-Attention
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Table 2: Recall comparison

Model BLEU-1 BLEU-4 ROUGE-L

UnifiedQABase 0.397 0.370 0.714
GPT-3.5 w/CoT 0.192 0.052 0.323
GPT-4 w/CoT 0.927 0.894 0.839
MCBase 0.406 0.384 0.769
LLaMA-Adapter 0.944 0.875 0.868

VQA-TD 0.421 0.407 0.820

Table 3: Different prompt recalls

Prompt Type BLEU-1 BLEU-4 ROUGE-L

Img prompt 0.412 0.390 0.779
Txt prompt 0.417 0.393 0.781
No prompt 0.408 0.388 0.759

Both prompts 0.421 0.407 0.820

Table 4: Different prompt accuracy

Prompt Type Accuracy(%)

Img prompt 77.2
Txt prompt 75.6
No prompt 73.3

Both prompts 79.7

[49], rather than a model with a larger parameter and richer semantic relation-
ships between modalities such as CLIP [33]. This leads to poor semantic corre-
lation between different modal data and large numbers of semantic errors.

Ablation This paper conducts experiments on accuracy and recall rates in the
presence of four prompt data. Four prompt data are as follows: image prompt,
text prompt, no prompt, and both prompts. VQA-TD is tested on the four dif-
ferent prompt data on interpretation recall. The experimental results show that
both types of prompts are significantly better than the other three prompts (as
shown in Tab. 3). Because prompts are related to reasoning steps and explana-
tions, and richer prompt data types will make VQA-TD’s internal and external
diffusion process more effective in capturing information. The results of provid-
ing only image prompts and only text prompts show that they have almost the
same impact on the VQA-TD algorithm model.

VQA-TD is also tested on four sets of different prompt data in terms of
answer accuracy. The results are similar to those in the previous set of tests.
That is, the accuracy obtained by both prompt types is significantly better than
the other three types (as shown in Tab. 4). However, the gap between "image
prompt" and "text prompt" is still relatively large. So, the lack of image prompts
will cause the accuracy to decline faster. Compared with text data, the internal
diffusion process can more easily capture the semantic information in the image.

5.3 Limitations and improvements

VQA-TD achieves good results in multi-modal tasks, and the explanation text
is robust. However, VQA-TD also has certain shortcomings. For example, inac-
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Question: Which part of the ocean is highlighted on the map?

Prompt: None

Option:

Reasoning steps: 1) The ocean has a lot of salt water. 2) The 
whole world has five oceans. 3) All oceans are connected as one. 
4) This is the Pacific Ocean.

Answer: C.

(A) Atlantic (B) Indian Ocean

(C) Pacific Ocean (D) Southern Ocean

Prediction reasoning steps: 1) The ocean 
has a lot of salt water. 2) The whole 
world has five oceans. 3) All oceans are 
connected as one. 4) This is Southern 
Ocean.

Prediction Answer: D.

Prediction reasoning steps: 1) The ocean 
has a lot of salt water. 2) The whole world 
has five oceans. 3) All oceans are 
connected as one. 4) This is Pacific Ocean.

Prediction Answer: C.

Prediction reasoning steps: 1) The ocean 
has a lot of salt water. 2) The whole world 
has five oceans. 3) All oceans are 
connected as one. 4) This is Pacific Ocean.

Prediction Answer: C.

Prediction reasoning steps: 1) The ocean 
has a lot of salt water. 2) The whole world 
has five oceans. 3) All oceans are 
connected as one. 4) This is Pacific Ocean.

Prediction Answer: C.

Model PredictionQuestion

GPT-3.5 MC

GPT-4 VQA-TD

Fig. 3: Comparison of four methods

Model Prediction

Question: Improve the text to describe the graph. 
Solute particles can move in both directions across a
permeable membrane. As more solute particles ( ) 
move, the concentrations on both sides of the 
container become equal and the particles achieve 
equilibrium.

Tip: The diagram below shows a solution containing 
only one solute. Each solute particle is represented by a green sphere. The 
solution fills a closed container separated by a semipermeable membrane. 
Semipermeable membranes, represented by dashed lines, are permeable to 
solute particles. This illustration shows the possible changes in a solution over 
time during solid/liquid phase diffusion.

Option：

Reasoning steps：1) In a solution, solute particles move and diffuse into the 
solvent. 2) The figure below shows the evolution of the solution over time. 3)
Solute particles move from an area of high concentration to an area of low 
concentration... 4) Looking again, it shows how the solution changes during 
diffusion. 5) Before the solute particles reach equilibrium, there are three 
particles on the left side of the membrane and five on the right side. 6) At 
equilibrium there should be four particles in each of the two measurements. 7) 
There is one more particle on the left than before. 8) So for the particles to 
equilibrate, more particles must pass through the membrane from the right to 
the left.
 Answer: A.

Question

GPT-3.5
Prediction reasoning steps: 1) Solute particles 
move and diffuse into the solvent. 2) The 
figure below shows the evolution of the 
solution over time. 3) Solute particles move 
from an area of high concentration to an area 
of low concentration... 4) Looking again, it 
shows how the solution changes during 
diffusion. 5) Before the solute particles reach 
equilibrium, there are five particles on the left 
side of the membrane and three on the right 
side. 6) Three particles in each of the two 
measurements at equilibrium. 7) There is one 
more particle on the right than before. 8)
More particles must pass through the 
membrane from the left to the right.
Prediction Answer: B.

MC
Prediction reasoning steps: 1) Solute particles 
move and diffuse into the solvent. 2) The 
figure below shows the evolution of the 
solution over time. 3) Solute particles move 
from an area of high concentration to an area 
of low concentration... 4) Looking again, it 
shows how the solution changes during 
diffusion. 5) Before the solute particles reach 
equilibrium, there are three particles on the 
left side of the membrane and five on the 
right side. 6) Four particles in each of the two 
measurements at equilibrium. 7) There is one 
more particle on the left than before. 8) More 
particles must pass through the membrane 
from the right to the left.
Prediction Answer: A.

GPT-4
Prediction reasoning steps: 1) Solute 
particles move and diffuse into the solvent. 2) 
The figure below shows the evolution of the 
solution over time. 3) Solute particles move 
from an area of high concentration to an area 
of low concentration... 4) Looking again, it 
shows how the solution changes during 
diffusion. 5) Before the solute particles 
reach equilibrium, there are three particles 
on the left side of the membrane and five on 
the right side. 6) Four particles in each of the 
two measurements at equilibrium. 7) There 
is one more particle on the left than before. 8) 
More particles must pass through the 
membrane from the right to the left.
Prediction Answer: A.

Prediction reasoning steps: 1) Solute particles 
move and diffuse into the solvent. 2) The 
figure below shows the evolution of the 
solution over time. 3) Solute particles move 
from an area of high concentration to an area 
of low concentration... 4) Looking again, it 
shows how the solution changes during 
diffusion. 5) Before the solute particles reach 
equilibrium, there are five particles on the left 
side of the membrane and four on the right 
side. 6) Four particles in each of the two 
measurements at equilibrium. 7) There is one 
more particle on the right than before. 8)
More particles must pass through the 
membrane from the left to the right.
Prediction Answer: B.

VQA-TD(A) Move from right to 
left

(B) Move from left to 
right

Fig. 4: Limitations of VQA-TD

curacies in interpretation and interpretation hallucinations still occur on some
test samples. As shown in Fig. 4, VQA-TD has restored and obtained wrong
explanations in the 5th, 7th, and 8th stages of interpretation.

The main reasons can be summarized as follows: Although the diffusion model
can learn the characteristics of data distribution more precisely, it still encoun-
ters problems such as semantic deviation and too-long semantic relationships in
the process of recovering data. This leads to the occurrence of reasoning hallu-
cinations, as shown in Fig. 4.

Another is that the modal alignment module does not process the modal
semantic information enough. In the alignment process, this paper uses the joint
attention model Co-Attention [49] with a smaller number of parameters instead
of a model such as CLIP [33] with a larger number of parameters and richer
semantic relationships between modalities. This will lead to semantic deviation
between different modal data; then the model will frequently suffer from hallu-
cinations.

6 Conclusion

This paper proposes a VQA-TD algorithm model. It fulfills the "step-by-step"
reasoning process from questions to answers, and uses the reasoning content as
an explanation for VQA. VQA-TD consists of two diffusion processes, namely
external diffusion and internal diffusion. It obtains the connections between rea-
soning steps through external diffusion. And it generates explanations through
internal diffusion. Due to its ability to reason and explain "step by step", VQA-
TD can better solve semantic deviation between explanations and answers on
complex questions. Therefore, it has a strong ability to generate answers and
explain when the model is small (1% parameter amount of GPT3.5). It compre-
hensively exceeds GPT-3.5 in answer accuracy and explanation and approaches
LMMs.

Compared with LMMs, VQA-TD still has room for improvement. In the fu-
ture, we will conduct in-depth research on enhancing multi-modal semantic align-
ment, improving the sampling speed of diffusion and restoration, and embedding
knowledge graphs into VQA-TD so that VQA-TD can improve its interpretation
accuracy and generation speed while maintaining a small scale.
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