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Abstract. NeRF (Neural Radiance Fields) has demonstrated tremen-
dous potential in novel view synthesis and 3D reconstruction, but its per-
formance is sensitive to input image quality, which struggles to achieve
high-fidelity rendering when provided with low-quality sparse input view-
points. Previous methods for NeRF restoration are tailored for specific
degradation type, ignoring the generality of restoration. To overcome
this limitation, we propose a generic radiance fields restoration pipeline,
named RaFE, which applies to various types of degradations, such as
low resolution, blurriness, noise, compression artifacts, or their combina-
tions. Our approach leverages the success of off-the-shelf 2D restoration
methods to recover the multi-view images individually. Instead of re-
constructing a blurred NeRF by averaging inconsistencies, we introduce
a novel approach using Generative Adversarial Networks (GANs) for
NeRF generation to better accommodate the geometric and appearance
inconsistencies present in the multi-view images. Specifically, we adopt
a two-level tri-plane architecture, where the coarse level remains fixed
to represent the low-quality NeRF, and a fine-level residual tri-plane to
be added to the coarse level is modeled as a distribution with GAN to
capture potential variations in restoration. We validate RaFE on both
synthetic and real cases for various restoration tasks, demonstrating su-
perior performance in both quantitative and qualitative evaluations, sur-
passing other 3D restoration methods specific to single task. Please see
our project website zkaiwu.github.io/RaFE.

Keywords: Neural Rendering · Generative Model · 3D Restoration ·
Neural Radiance Fields

1 Introduction

Recently, Neural Radiance Fields (NeRFs) [3,4,7,12,31,32,38,41] have achieved
great success in novel view synthesis and 3D reconstruction. However, most
NeRF methods are designed based on well-captured images from multiple views
with calibrated camera parameters. In real-world applications of NeRF, the data
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Fig. 1: High-quality restoration of radiance fields from various types of
degradations. Given only degraded images, our method can restore high-quality
NeRF. It is a generic approach that can be applied to various types of degradations,
resulting in refinement of both geometry and appearance.

capture or transmission process often introduces various forms of image degrada-
tions, such as noise generated during photography in low-light conditions [29,33]
and blur caused by camera motion [27, 44], or JPEG compression and down-
sampling during transmission [2,43]. Simply restoring degraded images frame-by-
frame can result in inconsistencies of geometry and appearance across different
viewpoints. Directly reconstructing 3D models over these per-frame restoration
results can easily induce inferior quality since current NeRF methods heavily
rely on pixel-wise independent ray optimization with local computations, which
are highly susceptible to noise and degradation.

Several NeRF variants have attempted to reconstruct 3D scenes with de-
graded multi-view images by introducing specific strategies or additional con-
straints for the optimization of radiance fields. For example, [19,20,27] deal with
image blur artifacts by modeling the degradation kernel with NeRF, while [2,43]
super-sampling on rays or tri-planes to obtain high-resolution 3D from low-
resolution observations. Additionally, [31] modifies NeRF to reconstruct the
scene in linear HDR space by supervising directly on noisy raw images to ad-
dress the noise generated in low-light conditions. [53] tries to improve the view
synthesis quality by removing NeRF-specific rendering artifacts. Even with great
success, all these approaches are only designed to handle specific types of degra-
dation. To the best of our knowledge, currently there is no generic pipeline which
supports the restoration of radiance fields under various types of degradation.

In this paper, we propose RaFE, a generic NeRF restoration framework that
enables high-quality radiance field reconstruction from captured images contain-
ing various types of degradations in a generative manner. Firstly, we leverage the
success of off-the-shelf image restoration methods to restore multi-view images
with different forms of degradations, such as super-resolution, deblurring, denois-
ing, removing compression artifacts, or a combination thereof. It is important
to note that since the images from different views are independently restored,
there inevitably exist geometric and appearance inconsistencies between them.
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Naively optimizing a radiance field with these refined images would average out
the inconsistencies and result in blurry outputs. To overcome this challenge, our
insight here is, instead of reconstructing a single 3D using inconsistent frames,
we could consider these restored multi-view images as the renderings from mul-
tiple distinct high-quality NeRF models with varied geometry and appearance.
In this case, we abandon the commonly-used pixel-wise reconstruction objective
and propose to leverage the generative adversarial networks (GANs) to model
the distribution of these different high-quality NeRF models, which could effec-
tively capture the inherent variability in ill-posed inverse problem, allowing for
a better accommodation of the inconsistencies present in different views.

Specifically, our pipeline consists of two main stages. In the first stage,
based on the degradation type, we employ the corresponding off-the-shelf image
restoration methods [17, 25, 34, 35, 46, 49] to obtain a set of high-quality multi-
view images. In practice, we prefer choosing restoration methods which have
strong capabilities to recover high-quality and realistic texture details. In the
second stage, we train a 3D generative model based on these restored multi-view
images. Drawing inspirations from recent 3D generation works [6, 9, 37, 40], we
construct a convolutional neural network (CNN) to generate tri-plane features,
which are subsequently sampled and decoded into density and colors using MLP
networks for NeRF rendering. Here, instead of generating single-level tri-plane
features as previous works did, we decompose the tri-planes into two levels. The
coarse-level tri-planes are constructed directly from low-quality images and re-
main fixed during training, representing the coarse structure of the modeled 3D
distribution. Simultaneously, we train a generator to output the diverse fine-
level tri-plane features, which act as residuals to be added to the coarse-level
features for NeRF rendering. By focusing on learning the residual representa-
tions instead of the entire tri-planes for NeRF, we simplify the modeling and
learning of restoration variations since we only need to learn the details while
the coarse structure is provided by coarse-level tri-planes, which makes great im-
provement in rendering quality for more complex regions. To train the generator,
we adopt an adversarial loss defined on rendered 2D images to encourage them
to be indistinguishable from the high-quality restored images. We also incorpo-
rate a perceptual loss between the rendered images and the restored images to
calculate structure constraints. Additionally, we propose patch sampling strate-
gies to stabilize the generator training procedure. Once the generator has been
trained, we can generate restored radiance fields with high quality renderings
and a certain level of diversity by sampling different code in the latent space.

We conducted extensive experiments to validate the effectiveness of our
method, both qualitatively and quantitatively. The experimental results show-
case the superiority of our approach in various restoration tasks, such as super-
resolution (upper row of Figure 1), camera motion blur (a real-world case at
the right part of the lower row of Figure 1) and the restoration of mixed degra-
dation consisting of noise, blur, and compression (left part of the lower row of
Figure 1). Our method not only generates images with richer and enhanced tex-
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ture details but also achieves significant improvements in geometric refinement,
as demonstrated by the mesh visualization in Figure 1.

To summarize, our contributions are three-fold:

– We propose a generic radiance fields restoration pipeline that is applicable
to various types of degradations.

– We introduce a generative method for NeRF restoration that enables bet-
ter accommodation of geometric and appearance inconsistencies present in
the multi-view images, thus allowing us to incorporate the success of image
restoration into 3D restoration.

– We show the restoration method performs well on various degradation sce-
narios with both enhanced appearance and refined geometry.

2 Related Works

2.1 2D image restoration

Image restoration is a long-standing problem in low-level vision domain and
significant progress has been achieved in different specific tasks including image
super-resolution, deblur, denoise and blind restoration. Previously reconstruction-
based methods [11,21,23,52,54] show their success in these tasks. However, those
reconstruction-based methods are struggling to generate abundant high-quality
details. Subsequently, generative restoration methods [10,17,25,34,35,39,42,46,
49], particularly those based on diffusion model, have shown the great capability
to render high-quality details. Deepfloyd [35] proposes a super-resolution model,
which concatenates the low-resolution input with random noise at pixel level
as the condition image. DiffBIR [25] designs a degraded pipeline to simulate
real-world degradation and utilizes the pre-trained diffusion model to generate
photorealistic images. For camera motion blur, HiDiff [10] recovers images by
using diffusion to generate features with abundant detailed information.

2.2 Radiance Fields Restoration

NeRF restoration aims to reconstruct high-quality NeRF given only degraded
images with various artifacts such as blur, noise, or low resolution. Up to now,
several works [2,8,14,19,20,26,27,31,33,43,44,53] have explored this task under
specific types of degradation. [20, 27, 44] deal with blurred input images by de-
signing blur kernel or optimizing camera paths for NeRF rendering process. For
NeRF super-resolution, [43] increased the ray sampling density, forcing multiple
rays to render pixels equal to the same pixel, and applied a 2D refinement model
to get final output images. [14] introduces a CEM [1] refinement model to ad-
just the output of the super-resolution model for better multi-view consistency.
However, the CEM refinement model ruins the structure details of the images
and inconsistencies still exist, leading to a smooth reconstruction result. [31,33]
mainly focus on the noise degradation of the input image. [31] modifies NeRF to
reconstruct the scene in linear HDR color space to address the noise generated
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during image post-processing, while [33] achieve NeRF restoration on noisy im-
ages by using a noise-awarded encoder to aggregate features across views. [53]
considers solving the degradation that occurs in NeRF reconstruction by training
a 2D refinement model using simulated degraded images for typical NeRF-style
artifacts, but they can not achieve refinement on geometry since the restoration
only happens on rendered views. None of the existing approaches can restore
NeRF in 3D space directly with flexible forms of degradation. NVSR [2] archives
3D geometry refinement by upsampling tri-plane representation, but their train-
ing processing requires tremendous amounts of 3D data, which are extremely
hard to obtain in practice. [26] achieves NeRF translation by designing a VAE-
like NeRF to model the distribution of the underlying 3D edits. By contrast, our
method has the ability to handle more flexible forms of degradation and restore
3D geometry and appearance with the only need of an image set for an object
or scene, making the 3D restoration more practical in real-world applications.

3 Method

In this section, we elaborate the details of the proposed RaFE method. We intro-
duce how to refine the degraded views using pretrained 2D restoration model,
to capture the high-quality appearance distribution in Sec. 3.1. Then, we de-
scribe our generative restoration framework including the neural representation,
generator architecture and optimization in Sec. 3.2. The training strategy is
introduced in Sec. 3.3. The overall pipeline could be found in Fig. 2.

3.1 High-quality Image Restoration

The recent success of the 2D image restoration task is dominated by the de-
noising diffusion probabilistic model, benefiting from its powerful appearance
generation capability and extensive prior knowledge. Hence in this paper, we
mainly borrow the recent diffusion-based restoration methods [25, 35] to obtain
the high-quality multi-view images from their low-quality counterparts. It should
be noted that our 3D restoration framework could also work well based on non-
diffusion restoration approaches, which has been verified by our experiments.

To assist in the restoration of image details, we employ powerful image cap-
tion models [5,22] to get an accurate textual prompt for the scene, denoted as P .
Given a set of multi-view low-quality images Il, the textual prompt is produced
by selecting a view that contains as much information of the scene as possible,
e.g. a side view of a synthetic Lego model. The prompt P and low-quality im-
ages Il are then fed into the restoration model [25, 35] to achieve high-quality
per-frame refinement. We denote the restored high-quality images as Ih.

The diffusion model-based image restoration methods can effectively recon-
struct high-quality images from various real-world degradation types. Moreover,
thanks to the powerful generalization ability of diffusion models preserved in
these restoration methods, we can handle the scene restoration in open domain
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Fig. 2: Overview of our pipeline. Given multi-view degraded images, we utilize
the off-the-shelf methods to restore high-quality multi-view images. Then, we train our
Generative Restoration NeRF to generate a high-quality scene.

without the need of re-training. However, though the restored images have bet-
ter quality, more variations among different views occur due to the generative
nature of these restoration models, leading to serious multi-view inconsistencies.
Next, we focus on dealing with this issue with the proposed generative pipeline.

3.2 Generative NeRF Restoration

To deal with geometric and appearance inconsistencies across views, we treat
these restored multi-view images distributed similarly to the rendered images
from multiple slightly different high-quality NeRF models. Consequently, instead
of directly fitting a NeRF model using the refined high-quality views which
usually leads to blurry reconstruction, we are trying to learn the distribution of
these diverse NeRF models by leveraging a generative method, allowing us to
sample distinct restored 3D under the same degraded inputs.
3D Representation. Following the recent 3D generative model [6, 9, 37], we
adopt the hybrid explicit-implicit tri-plane representation for the feature field.
This representation combines both explicit and implicit components to effec-
tively model the density and RGB values. More specifically, to obtain the de-
scriptor for any query location x ∈ R3, we project the point onto three planes
(P xy,P yz,P zx) to retrieve the corresponding features (fxy,fyz,fzx) using in-
terpolation. Then we calculate the mean value of these three sampled features
to obtain the final feature representation.

Once we obtain the features for a point along the ray, we use two MLPs to
decode the density and RGB values. The first MLP, denoted as Mdens, maps the
features to the density value σ ∈ R and a color feature f color. The second MLP,
denoted as Mcolor, takes the color feature and the view direction as inputs and
maps them to the RGB value c ∈ R3. We empirically show that incorporating
the view direction allows us to effectively model view-dependent effects, partic-
ularly when there are non-Lambertian surfaces in the scene. After obtaining the
densities and RGB values for each sampled point along the emitted ray, we can
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apply the classic volumetric rendering to obtain the color value for each pixel:

C(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, Ti = exp(−
i−1∑
j=1

σiδi), (1)

where ci, σi represents RGB and density value of the ith point alone the ray,
respectively. N is the sampled number and δi is the distance between samples.
NeRF Generator. Given restored multi-view images, we regard them as ren-
derings from several diverse high-quality NeRF models with varied geometry and
appearance. The distribution formed by these distinct NeRF models, formulated
as pr(ϕ|Ih), can be modeled by a generator. With the hybrid explicit-implicit
tri-plane representation, we introduce a StyleGAN2 [15]-like CNN-based genera-
tor, which receives a latent code w mapped from random code z to generate fine
tri-planes P f for high-quality NeRF rendering. To fully leverage the degraded
images and make the generator only focus on generating the necessary refine-
ments, we also pre-train a coarse NeRF model with tri-plane features denoted
as Pc using the input low-quality images. Specifically, the coarse NeRF model
consists of a coarse tri-plane P c features and a decoder (where the decoder of
coarse tri-planes is shared with the one of fine tri-planes). To obtain the final
refined tri-planes P , we combine the reconstructed tri-plane representations with
the residual tri-planes generated by the generator via: f = f c+ff . By merging
these components, RaFE effectively captures both the global geometric guid-
ance provided by the coarse NeRF and the local refinements learned from 3D
generator, enabling us to obtain the restored tri-planes that exhibit enhanced
geometric accuracy and appearance fidelity.
Optimization. To supervise the generator and NeRF parameters, we propose
to minimize the distribution discrepancy between the rendered images and the
restored high-quality images. We adopt a saturate GAN [13] loss with an image
level discriminator. Specifically, we treat the high-quality images restored by 2D
model as the real samples while the rendered images as the fake samples, and
utilize adversarial loss with R1 regularization between the real and fake images:

Ladv = Ez∼pz,θ∼pθ
[f(D(G(z, θ))]

+ EIh∼ph
[f(−D(Ih)) + λ∥∇D(Ih)∥2],

(2)

where z,θ represent random code and view point, respectively, and Ih is the
restored high quality image. However, we observed relying solely on a GAN loss
for training can lead to significant geometric mismatches between the restored
images and rendered views. We argue that although the GAN loss helps align the
distribution of 2D renderings, it still lacks geometry-level constraints. Therefore,
we also incorporate a perceptual loss that encourages the rendered images to
resemble the geometry of pre-frame restoration.

Lgeometry = LPIPS(Ih, G(z,θ)), (3)

where LPIPS(·, ·) refer to the learned perceptual image patch similarity pro-
posed in [50]. Ih is the restored high quality image paired with view point θ, and
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G(z,θ) are the rendered image using the same training view θ and a random
sampled latent code z. We also supervise the coarse NeRF branch:

Lrec = Eθ∼pθ
[∥Gc(θ)− Iθl ∥2], (4)

where pθ indicate the view point distribution, and Iθl is the low quality image
corresponding to view point θ. Overall, the complete training objective is:

L = λgeometryLgeometry + λadvLadv + λrecLrec, (5)

where λgeometry, λadv, λrec are trade-off parameters.

3.3 Patch-based Training Strategy

During the training process, fully rendering the entire image, such as 2562 or
5122 pixels, and then feeding it into the discriminator can be computationally
intensive and resource-consuming. This is because volume rendering requires the
computation of density and color values for sampling points along the ray for each
pixel, which can become prohibitively expensive for a whole image. Therefore,
we only render a patch of the view at a time (i.e. 642). The rendered patches
and high-quality image patches are randomly selected, and the discriminator in
Eq. 2 receives patches of rendered images and patches of high-quality images as
fake images and real images respectively. For the perceptual loss in Eq. 3, the
rendered patches and the high-quality patches have the same spacial coordinate
on their original images to guarantee that the cropped patches have the same
semantic and local structure.

One limitation of using patches instead of entire images for training is that it
is challenging to sample the local scenes at the boundary regions of images, par-
ticularly for forward-facing data. The imbalanced training distribution will result
in mode collapse during the training process. To mitigate this issue, we employ
a beta sampling strategy to determine the positions of the sampled patches.
This strategy ensures that patches in the boundary regions of the image are
adequately sampled. More specifically, the beta sampling can be formulated as:

δx, δy ∼ Beta(β(t), β(t)), (6)

where δx and δy denote the position offset in x and y directions respectively,
while β(t) are linearly annealed from β(0) = 1 to some final value β(T ) smaller
than 1. By using the beta sampling strategy, we can maintain a more balanced
distribution of training data that focuses more on the boundary patches, allevi-
ating mode collapse issue and improving the overall training stability.

4 Experiments

4.1 Setup

Datasets. We evaluate our model on the NeRF-Synthetic benchmark dataset [31],
which contains 8 synthetic objects with images taken from different viewpoints
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uniformly distributed in the hemisphere. Following the original setting, We hold
200 viewpoints for generating high-quality training data and 200 viewpoints for
testing. Further, to demonstrate the generalization ability of our method, we also
evaluate our method on complex real-world LLFF scenes [30] which consists of
8 scenes captured with roughly forward-facing images. We also demonstrate the
superior performance of RaFE on real-world blur [27] and noise [29] data.
Evaluation Metrics. Following the common practice of 3D reconstruction,
we try to evaluate each method with two standard image quality metrics: peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM) [47], which how-
ever could not reflect the real 3D restoration performance according to our ob-
servations. Due to the generative characteristic of RaFE, the recovered radiance
field from RaFE is very high-quality, but may not faithfully follow the "ground-
truth" 3D, since inversing a degraded signal is a highly ill-posed problem. More-
over, we also found the baselines with better scores over PSNR and SSIM still
pose a degraded appearance with smooth texture details, as shown in Figure 3b.
Hence, a better way is to leverage perceptual metric: learned perceptual image
patch similarity (LPIPS) [50] which computes the mean squared error (MSE)
between normalized features from all layers of a pre-trained VGG [36] encoder
and is deemed to better correlate with human perception. We also leverage the
latest non-reference-based image quality assessment metrics including LIQE [51]
and MANIQA [48] to demonstrate the superior rendering quality of our method.
Implementation Details. We implement all the experiments by PyTorch. For
the 2D generator and discriminator, we use a convolutional-based generator and
discriminator used in StyleGAN2 [16]. In all experiments, we choose Adam op-
timizer for all the modules in our pipeline, with hyperparameters β1 = 0, β2 =
0.99. We use learning rate 2 × 10−3 for both generator and discriminator. For
loss weights, we use λmimic = 0.5, λadv = 1.0, and λrec = 1.0 for almost all
experiments. We evaluate RaFE framework on 4 different 3D restoration tasks:

– 4× Super-Resolution: On the blender dataset, we resize the image to 64×64
resolutions to get low-resolution images. As for LLFF data, we first center
crop the training image to 188 × 252 to adapt to our 4× super-resolution
task and then resize to 47 × 63 to get low-resolution images. And we use
Deepfloyd [35] for 2D super-resolution.

– Deblur: On the LLFF dataset, we construct camera motion blur by applying
the blur kernel following equation Iblur = A∗Iclear, where A is the blur kernel
and ∗ stands for the convolution operator. Different from the blur dataset
proposed in Deblur-NeRF [27], which contains blurred images with varying
degrees of blur, and even includes a certain amount of high-resolution images,
we apply a large blur kernel size (e.g. 13) and a more complex camera motion
path to all the images in the dataset. We additionally construct consistent
blur datasets by using the same blur kernel to the training image in a scene,
which means the camera motion trajectory is the same for the training image
set. The resolution of images is the same as the super-resolution task. We
use HiDiff [10] to recover high-quality images.
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– Denoise: On the LLFF dataset, we follow the noise model used in [28,
33] and we get the noisy version of a clean image I according to equation
Inoisy(x) = N (I(x), δ2r + δ2sI

2(x)), where σr is the signal-independent read-
noise parameter, σs is the signal-dependent shot-noise. Following [28, 33],
we use the Gain level to represent the noise strength. We use gain levels = 8
to get our noisy image. We use DiffBIR [25] to get high-quality images.

– Mixed degradation: The degradation pipeline consists of three stages: blur,
noise, and JPEG compression. First, we utilize Gaussian blur with a
radius of 7 for the blender dataset and 3 for the LLFF dataset. Second, we
add noise with std 25. And then, we apply JPEG compression. The quality
of JPEG compression is 50. The resolution of images is the same as the
super-resolution task. We use DiffBIR [25] to get high-quality images.

4.2 Results

Baseline Methods. For general tasks, we try a baseline that firstly restores the
degraded images and uses the restored high-quality images to reconstruct a NeRF
directly, denoted as NeRF-Perframe. We also use the 2D-based restoration model
SwinIR [24] to do the per-view refinement for the renderings of NeRF trained
by degraded image, denoted as NeRF-SwinIR. Note that we do not evaluate
NeRF-SwinIR for the deblur task since there are no corresponding checkpoints.

To more thoroughly test the effectiveness of our method, we also select some
task-specific competitors. For super-resolution task, we choose NeRF-SR [43],
Neural Volume Super-Resolution (NVSR) [1] as baselines. For mixed degrada-
tion, since there is no existing method tailored for mixed degradation, we choose
NeRFLiX, which tries to solve the NeRF-like degradation by training a 2D re-
finement model using degradation images constructed by a degradation simu-
lator for typical NeRF-style artifacts. We consider this to be the most relevant
method. For the deblur task, we compare with two state-of-the-art methods
Deblur-NeRF [27] and BAD-NeRF [45]. Deblur-NeRF designs a learnable blur
kernel and applies it to rays to simulate the degrading process and BAD-NeRF
directly models the camera trajectories to solve motion blur. For the denoising
task, we compare with NAN [33], which uses a noise-aware encoder to aggregate
the feature of multi-view images for restoration.
Quantitative Results. We conduct extensive quantitative comparisons with
various baselines across different restoration tasks in Tab. 1a for super-resolution,
Tab. 2b and Tab. 2a for deblurring, Tab. 2c for denoising and Tab. 1b for mixed
degradation. As analyzed before, although most of the time our method falls
slightly behind on the reconstruction metrics like PSNR and SSIM compared
with other baselines, which only measure local pixel-aligned similarity between
the rendered novel views and the ground truth images, are less indicative since
uncertainties naturally exist in generative procedure. Taking the super-resolution
results on Blender data as an example (Tab. 1a), the simplest baseline NeRF-
Perframe has already achieved the best reconstruction metrics, but as shown in
Figure. 3a, its visual quality is vastly inferior compared with our results. Through
the error map, we found the misalignment between the generated 3D and input
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Blender LLFF
Method PSNR↑ SSIM↑ LPIPS↓ LIPE↑ MANIQA ↑ PSNR↑ SSIM↑ LPIPS↓ LIPE↑ MANIQA↑

NeRF-SR 26.85 0.912 0.135 2.372 0.366 22.65 0.702 0.327 1.320 0.220
NVSR 26.13 0.879 0.132 2.301 0.343 21.29 0.606 0.442 2.108 0.177

NeRF-SwinIR 24.07 0.878 0.119 3.06 0.381 21.73 0.655 0.365 1.808 0.267
NeRF-Perframe 27.39 0.922 0.083 3.276 0.386 23.68 0.745 0.261 1.417 0.257

Ours 24.99 0.901 0.062 4.621 0.543 23.85 0.752 0.197 2.397 0.322

(a) Super-resolution

Blender LLFF
Method PSNR↑ SSIM↑ LPIPS↓ LIPE↑ MANIQA ↑ PSNR↑ SSIM↑ LPIPS↓ LIPE↑ MANIQA↑

NeRFLiX W. Ref 27.31 0.933 0.066 2.643 0.358 28.18 0.885 0.145 1.793 0.233
NeRFLiX W/O. Ref 25.78 0.905 0.107 1.102 0.166 26.28 0.821 0.290 1.129 0.183

NeRF-SwinIR 27.42 0.922 0.086 2.441 0.317 25.94 0.813 0.249 2.013 0.193
NeRF-Perframe 26.79 0.927 0.088 2.289 0.355 24.45 0.812 0.267 1.41 0.257

Ours 25.28 0.907 0.076 3.947 0.541 24.81 0.832 0.217 2.210 0.296

(b) Mixed degradation

Table 1: Quantitative comparisons on super-resolution and mixed degradation tasks.
The best result without using reference is highlighted. Our method achieves great
superiorities on perceptual metrics and image quality when compared with others.

LLFF
Method PSNR↑ SSIM↑ LPIPS↓ LIPE↑ MANIQA↑

Deblur-NeRF 23.75 0.799 0.307 1.365 0.157
BAD-NeRF 24.027 0.788 0.313 1.094 0.151

NeRF-Perframe 21.02 0.695 0.362 0.362 0.150

Ours 23.23 0.811 0.294 1.144 0.177

(a) Deblurring

LLFF
Method PSNR↑ SSIM↑ LPIPS↓ LIPE↑ MANIQA↑

Deblur-NeRF 21.71 0.749 0.333 1.104 0.122
BAD-NeRF 25.40 0.836 0.278 1.140 0.173

NeRF-Perframe 21.57 0.771 0.310 1.103 0.199

Ours 22.93 0.789 0.252 1.143 0.224

(b) Deblurring(consistent blur)

LLFF
Method PSNR↑ SSIM↑ LPIPS↓ LIPE↑ MANIQA↑

NAN 25.99 0.822 0.3208 1.3032 0.241
NeRF-SwinIR 24.37 0.778 0.346 1.579 0.210

NeRF-Perframe 23.66 0.786 0.281 1.095 0.214

Ours 23.78 0.791 0.2561 1.607 0.257

(c) Denoising with Gain 8

Table 2: Quantitative comparisons for deblurring and denoising. The best result with-
out using reference is highlighted. Our method performs the best on perceptual metrics.

3D causes the drop of PSNR and SSIM. By contrast, on the perceptual met-
rics like LPIPS and non-reference-based metrics including LIPE and MANIQA,
which could more effectively reflect the restoration performance, our method
consistently achieves better results when compared with other baselines.

For mixed degradation tasks, the best results for LPIPS metrics are achieved
by NeRFLix w. ref [53]. This is because NeRFLiX can see two high-quality
ground-truth images from the nearest two viewpoints when inference, which
leads to information leakage. However, high-quality ground-truth information
is not accessed in our setting or in any real-world cases. After eliminating the
impact of ground truth (NeRFLiX w/o. ref) by replacing the reference ground
truth images with degraded images, our method performs better than NeRFLiX.
Qualitative Results. To further verify the restoration capability, we present
visual results for different degradations in Fig. 4. Our method is able to generate
realistic details while other methods tend to generate smooth results which lack
high-quality details. For example, for the super-resolution task, we show the
drum restoration for each method, as can be seen in Fig. 4, our method generates
high-fidelity drum surfaces with sharp edges, while other methods suffer from
severe blur on the drum surfaces and edges. For mixed degradation tasks, our
method successfully restores the intricate golden textures on the chair surface
while other methods only rendered extremely blurred texture.
Geometry Refinement. Compared with previous NeRF restoration methods,
most of which focus on using 2D refinement to resolve frame-wise defects, our
method firstly leverages the general priors of large foundation models and GAN,
achieving the open-domain 3D-based restoration. Thus, our restoration algo-
rithm could not only recover the high-quality and view-consistent images, but
also refine the 3D geometry. We demonstrate this advantage using the Ficus data
of Blender, as shown in Fig. 5a, through comparing the extracted mesh from the
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Ours

PSNR ↑ : 22.63PSNR ↑ : 26.59

PerframeGT
(a)

PSNR ↑ : 26.28
LPIPS ↓ : 0.0816
LIQE ↑ : 3.889
MANIQA ↑ : 0.371

PSNR ↑ : 28.07
LPIPS ↓ : 0.151
LIQE ↑ : 1.870
MANIQA ↑ : 0.3062

Ours NeRF-SRGT

(b)

Fig. 3: (a) Error map between ground truth and our method/NeRF-Perframe. (b) we
showcase that the visual quality can be much better even with lower PSNR scores.

restored NeRF models, our method effectively learns the restoration in the 3D
tri-plane space and recovers better geometry.

4.3 Ablation Study

Effects of different restoration models. To investigate the influence of using
different 2D restoration models, we tested two additional off-the-shelf restora-
tion models for the super-resolution task, including diffusion-based DiffBIR [25]
and non-diffusion-based SRFormer [54]. As shown in Fig. 5b, the diffusion-based
model DiffBIR shows larger restoration diversity over SRFormer by measuring
the diversity score. When the repaired images exhibit diversity, direct recon-
struction inevitably leads to blurriness to varying degrees due to the existing
multi-view inconsistency. Through modeling the distribution of the potential
high-quality NeRFs, our method accommodates these inconsistencies and con-
sistently achieves better performance over NeRF-Perframe, demonstrating the
great generalization capability of RaFE to different 2D restoration models.
Effects of the generator. In this ablation study, we examine the influence of
the generator by comparing it with the baseline that directly optimizes the NeRF
parameters using GAN loss and LPIPS mentioned above on the Blender dataset.
As we can observe in Fig. 6, the image rendered by generative NeRF exhibits
varied fine-textured details under different random code z. Once the generator
is removed, the rendered images will contain a blurry and smooth appearance,
showing the importance of using the generator to model the distribution, which
can also be demonstrated by the numerical metrics in the right part of Fig. 6.

5 Conclusions

This paper proposes a novel generic NeRF restoration method that applies to
various types of degradations, such as low resolution, blurriness, noise, and mixed
degradation. The proposed method leverages the off-the-shelf image restoration
methods to restore the multi-view input images individually. To tackle the ge-
ometric and appearance inconsistencies presented in multi-view images due to
individual restoration, we propose to train a GAN for NeRF generation, where



RaFE: Generative Radiance Fields Restoration 13

Super-resolution

Mixed Degradation
(a) Input (e) NeRF-Perframe(c) NeRFLiX w.ref

(b) NeRF-SR (e) NeRF-Perframe(a) Input

(d) NeRFLiX w/o.ref(b) NeRF-SwinIR (f) Ours

(f) Ours(c) NVSR

Inconsistent Motion Deblur

(a) Input (b) Deblur-NeRF (c) BAD-NeRF (b)NeRF-Perframe (e) ours

Consistent Motion Deblur
(a) Input (b) Deblur-NeRF (c) BAD-NeRF (b)NeRF-Perframe (e) ours

Denoise Gain8
(a) Input (c) NeRF-Perframe (d) ours(b) NAN (b) NeRF-SwinIR

(d) NeRF-SwinIR

Fig. 4: Visual results for super-resolution and mixed-degradation tasks. We
show that our method is capable of generating detailed geometry and texture while
other methods tend to be smooth in both geometry and texture. We recommend zoom-
ing in for better visualization.
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OursNeRF-SwinIR / NeRFLiX

(a)

OursNeRF-Perframe OursNeRF-Perframe

SRFormer DiffBIR

LPIPS: 0.155 LPIPS: 0.107LPIPS: 0.110 LPIPS: 0.094

Diversity Score ↑: 0.161 Diversity Score ↑: 0.252 

(b)

Fig. 5: (a)Geometry comparisons between NeRF-SWINIR/NeRFLIX and our method.
(b)Comparisons between using different 2D restoration models.

GT w/o Generator Full Full Full

𝑧𝑧 = 𝑧𝑧0 𝑧𝑧 = 𝑧𝑧1 𝑧𝑧 = 𝑧𝑧2

Generator % "

LPIPS↓ 0.071 0.062
LIPE↑ 3.370 4.621

MANIQA↑ 0.383 0.543

Fig. 6: Effectiveness of the tri-plane generator.Left: image rendered by NeRF
without generator and images rendered by generative NeRF under different random
codes z(z0,z1,z2). Right: numerical metrics to evaluate the efficacy of the generator.
The results show the effectiveness of using the generator to model the distribution.

a two-level tri-plane structure is adopted. The coarse-level tri-plane pre-trained
by low-quality images remains fixed, while the fine-level residual tri-plane to be
added to the coarse level is modeled by a GAN-based generator to capture varia-
tions in restoration. Extensive experiments on various restoration tasks with both
synthetic and real cases demonstrate the superior performance of our method.
Limitations and Future Work: One limitation of our method is instability
when performing the restoration at extremely high resolutions, such as 4k, due
to the patch-rendering strategy. Moreover, due to the inherent slow efficiency of
NeRF rendering, currently the long training time also needs to be optimized.
To overcome these limitations, a potential solution would be to integrate more
efficient rendering techniques like Gaussian splatting [18] into RaFE, enabling
the rendering of entire images. We plan to resolve these issues in the future work.
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