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Abstract. We propose the first comprehensive approach for modeling
and analyzing the spatiotemporal shape variability in tree-like 4D ob-
jects, i.e., 3D objects whose shapes bend, stretch and change in their
branching structure over time as they deform, grow, and interact with
their environment. Our key contribution is the representation of tree-like
3D shapes using Square Root Velocity Function Trees (SRVFT) [21]. By
solving the spatial registration in the SRVFT space, which is equipped
with an L2 metric, 4D tree-shaped structures become time-parameterized
trajectories in this space. This reduces the problem of modeling and an-
alyzing 4D tree-like shapes to that of modeling and analyzing elastic tra-
jectories in the SRVFT space, where elasticity refers to time warping. In
this paper, we propose a novel mathematical representation of the shape
space of such trajectories, a Riemannian metric on that space, and com-
putational tools for fast and accurate spatiotemporal registration and
geodesics computation between 4D tree-shaped structures. Leveraging
these building blocks, we develop a full framework for modelling the spa-
tiotemporal variability using statistical models and generating novel 4D
tree-like structures from a set of exemplars. We demonstrate and validate
the proposed framework using real 4D plant data.

Keywords: 4D registration · Statistical analysis · 4D tree generation

1 Introduction

We propose a novel framework for the statistical analysis of the spatiotemporal
shape variability in tree-like 3D objects that deform over time, hereinafter re-
ferred to as 4D (or 3D + time) tree-like structures. Such objects, which undergo
complex non-rigid and topological deformations, are abundant in nature. Un-
derstanding and modelling the deformation patterns of their shapes can benefit
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Fig. 1: The 4D skeleton of Fig. 1 in the Supplementary Material, structured it into
layers of branches. The red branch is the main branch, blue corresponds to the 2nd

layer of branches, yellow to the 3rd layer, and purple to the 4th layer.

many applications, from plant biology and medicine to 4D content generation
in computer graphics and virtual reality. For example, plants and blood ves-
sels deform over time due to either normal growth or the progression of diseases.
Modeling the spatiotemporal variability can help distinguish shape deformations
that are due to normal growth from those due to disease progression.

This problem has received growing attention. However, most of the work fo-
cused on the 4D reconstruction of dynamic objects [9, 10] and on the statistical
analysis of 4D shapes that bend and stretch while preserving their topology [12].
In contrast, this paper focuses, for the first time, on 4D shapes that bend, stretch,
and change in topology. Given a set of such 4D objects, our goal is to learn sta-
tistical summaries, such as the mean and modes of variation, characterize the
spatiotemporal shape variability in the set using statistical models, and learn a
generative model capable of synthesizing and generating novel 4D tree-shaped
structures. Achieving these goals requires accurate spatiotemporal registration
of the 4D tree-like shapes. Spatial registration refers to the problem of finding
one-to-one branchwise and pointwise correspondences across 3D shapes. This
is very challenging in our setup since tree-like 3D shapes such as plants and
botanical trees exhibit not only large elastic deformations, i.e., the bending and
stretching of their branches, but also topological differences, i.e., differences in
the branching structures, within and across shape classes. Temporal registration
refers to the problem of temporally aligning 4D shapes. For example, two botan-
ical plants can grow at different rates even if they are of the same species. This
adds another level of complexity, which is the high temporal variability due to
differences in the execution rates (speeds) between 4D tree-shaped objects.

Our key contribution is the representation of tree-like 3D objects using Square
Root Velocity Functions (SRVF) [17]. By solving the spatial registration problem
in the SRVF space, tree-like 4D shapes become trajectories in this space. This
reduces the problem of modeling and analyzing 4D tree-like shapes to that of
modeling and analyzing elastic trajectories in the SRVF space, where elasticity
refers to time warping. Building on [21], which developed tools for the spatial
registration of tree-like 3D shapes in the extended SRVF space, we propose
(1) a set of computational tools for the spatiotemporal registration of 4D tree-
like shapes, (2) a mechanism for computing geodesics between 4D trees, (3) a
framework for the statistical analysis of the spatiotemporal shape variability, and
(4) a mechanism for learning, from a set of exemplars, generative models capable
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of synthesizing novel 4D tree-like structures. We demonstrate the efficiency of
the proposed tools using real 4D shapes of growing tomato and maize plants.

The paper is organized as follows. Sec. 2 summarizes the related work. Sec. 3
presents the proposed SRVF representation of tree-like 3D shapes. Sec. 4 presents
the proposed computational tools for the spatiotemporal registration and geodesics
computation between 4D tree-shaped structures. Sec. 5 demonstrates how these
tools can be used to compute summary statistics and synthesize novel 4D tree-
shapes. Sec. 6 presents the results while Sec. 7 concludes the paper.

2 Related Work

We refer to [11,12,21] for a detailed survey. Here, we focus on 4D shape analysis
and related topics. Studying and modelling the spatio-temporal shape variabil-
ity in 4D shapes requires defining a proper shape space and metrics on this
space, performing spatiotemporal registration under the metric, and computing
geodesics between 4D shapes. The bulk of the work is focused on the spatial
registration problem, which is traditionally solved using hand-crafted feature
matching and the Iterated Closest Point [1,18,23]. These methods are well suited
for 3D objects that bend and stretch, e.g., human/animal body shapes. Tree-like
3D objects such as plants and blood vessels have complex structures and exhibit
topological variability, which makes their spatial registration challenging.

To address these issues, Feragen et al . [5–8] treat a tree-shaped object as
a point in a tree shape space equipped with the Quotient Euclidean Distance
(QED) as a metric. The problem of registering two tree-shaped objects is then
reduced to that of finding the optimal deformation path, or geodesic with respect
to the metric, that deforms one tree onto the other. These deformations include
branch bending, stretching, and topological changes. Under the QED, bending
and stretching are measured using the L2 metric while topological changes are
measured using graph edit distance. This results in a significant shrinkage along
the geodesic paths when the deformations are large. Wang et al . [20, 22] alle-
viated this issue by representing the shape of the edges in the tree shapes of
Feragen et al . [5–8] using the Square Root Velocity Functions (SRVF) [17] and
then using the QED in the SRVF space, which is equivalent to the full elastic
metric in the original space. This still suffers from the shrinkage that is due to
the edge collapses used by the QED metric. Duncan et al . [4] addressed these
issues by representing trees using sliding branches, instead of collapsing edges.
Guan et al . [21] extended this representation to tree-like 3D shapes such as
complex botanical trees, plant roots, and neuronal structures. It has also been
used to build a full generative model of tree-like 3D shapes by fitting Gaussian
distributions to tree-like 3D shapes represented as points in the tree-shape space.

This paper builds upon and generalizes the representation of [21] to 4D tree-
shaped objects, i.e., sequences of tree-like 3D shapes that deform time. The key
idea is to represent 4D shapes as trajectories in the tree-shape space reducing the
problem to that of analyzing elastic trajectories in the tree-shape space. This idea
has been introduced by Laga et al . [12] for objects that have a manifold structure
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and only bend and stretch, but do not change in topology. This paper focuses, for
the first time, on 3D shapes that also change in topology. Several recent papers
in plant biology focused on the registration of 4D plants [2,3,13–15,19,24]. They,
however, define registration of 4D plants as the spatial registration of 3D plants
within plant sequences. This is spatial registration. In this paper, we focus, for
the first time, on spatial and temporal registration and develop a comprehensive
suite of computational tools that enable the computation of geodesics, summary
statistics, and generative models for 4D tree-shaped objects.

3 The Space of 3D tree-shaped structures

We first present the mathematical framework we use to represent tree-structured
3D shapes (Sec. 3.1), the elastic metric for quantifying their bending, stretching,
and topological changes (Sec. 3.2), and the computational tools for their spatial
registration and geodesics computation (Sec. 3.3). Throughout the paper, we use
the Pheno4D dataset [16], which consists of multiple 4D plants. Each 4D plant is
a sequence of 3D plants, in the form of point clouds, captured at different times
during its growth. We extract the skeleton of the plants using [15] and partition
it into branches; see Fig. 1 and also Fig. 1 in the Supplementary Material.

3.1 Representation

We represent a branch of a 3D tree structure T as an arc length-parameterized
curve β : [0, 1] → R3 where β(s) = (x(s), y(s), z(s)). We structure a 3D tree
into layers; see Fig. 1. The first layer β0 is the main branch with k0 sub-
trees T 1

i attached to it at the bifurcation points s0i , i = 1, . . . , k0. That is,
T = (β0, {T 1

i , s
0
i }k

0

i=1). A 3D subtree T l at level l of the hierarchy can be rep-
resented recursively as T l = (βl, {T l+1

i , sli}k
l

i=1), for l = 1, . . . , L − 1. Here, L
is the total number of layers, βl is the main branch of T l, kl is the number of
subtrees attached to the branch βl, and sli ∈ [0, 1] is a bifurcation point on βl of
T l. The branches at different levels can have any arbitrary number of subtrees
attached to them. A good representation needs to be invariant to similarity-
preserving transformations (translation, scale, rotation, reparameterization). To
achieve translation invariance, we translate each tree so that the start point of
its main branch is located at the origin. Invariance to scale is optional as it may
not be required for some applications such as growth analysis. The space of all
such normalized trees is referred to as the pre-tree-shape space and is denoted by
CT . The invariance to rotation and reparameterization will be dealt with at the
metric level (Sec. 3.2). With this representation, a 3D tree becomes a point in the
pre-tree shape space CT . A 4D tree H can then be seen as a time-parameterized
curve H : [0, 1]→ CT where [0, 1] is the time domain.

3.2 The elastic metric for comparing tree-shaped structures

If two 3D tree structures have the same number of branches, then one can quan-
tify the dissimilarity between the two trees by measuring the amount of bending,
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argmin 𝑑𝐶𝑄
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Before spatial registration After spatial registration

Fig. 2: The proposed spatial registration. We also show four 3D tree shapes before and
after their spatial registration using the proposed framework. Our spatial registration
took on average 235s to align two tomato and 17s to align two maize 4D plants.

stretching, and branch sliding that one needs to apply to the branches of one
tree to align it onto the other. However, instead of explicitly using these metrics,
which are non-linear and thus computationally expensive to evaluate and opti-
mize, we use the SRVF representation [17] of 3D curves. Mathematically, the
SRVF q of a curve β is defined as:

q(β)(s) =
β′(s)√
||β′(s)||

, if ∥β′(s)∥ ̸= 0, and 0 otherwise. (1)

Its main property is that the L2 metric in the SRVF space is equivalent to a
weighted sum of bending and stretching in the original space. It is also invert-
ible, up to translation. In other words, given an SRVF, one can retrieve, up to
translation, its corresponding original 3D curve. This significantly simplifies the
analysis tasks: instead of measuring the similarity between two 3D curves with a
complex elastic metric, one can map them to the SRVF space, perform the analy-
sis there using the L2 metric and then map the results back to the original space.
Let Q be the SRVF Tree (SRVFT) of an entire 3D tree T defined by computing
the SRVF of each of its branches and appending their location with respect to
their parent branch, and CQ the pre-shape space of SRVFTs. A proper metric on
that space needs to be invariant to the global rotation O ∈ SO(3), reparameteri-
zation γ of the branches, and permutations σ of the orders of the lateral subtrees
attached to a branch. We define γ and σ recursively, i.e., γ = (γ0, {γi}k0

i=1) is
the reparameterization of the main branch and its subtrees. Specifically, γ0 ∈ Γ
is a diffeomorphism that applies to the main branch of q and γi is the reparame-
terization, defined recursively, of the i−th subtree attached to the main branch.
σ = (σ0, {σi}k0

i=1) where σ0 ∈ σ is the permutation of the orders of the lat-
eral subtrees on their corresponding main branch q0, and σi defines recursively
these permutations for the i−th subtree. Following [4, 21], we define a rotation,
reparameterization, and index permutation-invariant distance between two 3D
trees, represented by their SRVFTs Q1 and Q2, as the infimum over all possible
rotations, branch reparameterizations, and branch index permutations:

d (Q1, Q2) = inf
O, γ,σ

dCQ (Q1, (Q2, O,γ,σ)), and (2)

dCQ
(Q1, (Q2, O,γ,σ)) = λm ∥ q01 −O(q02 , γ0) ∥2 +λp

n∑
i=1

(
si1 − s

σ(i)
2

)2

+ λs

n∑
i=1

d
(
Qi

1, Q
σ(i)
2

)
. (3)

Here, (Q,O,γ,σ) denotes the result of applying these transformations to Q.
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3.3 Spatial registration and geodesics

Fig. 2 summarizes the spatial registration process. With this representation, the
optimal rotation, diffeomorphism, and permutations that align Q2 onto Q1 can
be found by solving the following optimization problem; see Section 2 in the
Supplementary Material for the detailed algorithm:

(O∗,γ∗,σ∗) = argmin
O,γ,σ

dCQ
(Q1, (Q2, O,γ,σ)) . (4)

In practice, the input trees have different numbers of branches, thus they are
elements of different subspaces. We address this by adding null branches at the
different levels of the trees. This way, trees become elements of the same pre-
tree shape space. The location of each additional null branch, i.e., the value of
its parameter s, is initialized to the s value of its initial corresponding branch.
These will get updated during the branchwise correspondences.

Eq. (4) registers onto each other a pair of tree-like 3D shapes. To analyze 4D
trees, we need to jointly register and align all the 3D instances within a 4D tree.
We perform this sequentially: each 3D tree-shape within a sequence is aligned
to the next 3D tree-shape in the sequence, using Eq. (4). With this formulation,
computing a geodesic, or the optimal deformation that aligns Q2 onto Q1 is
straighforward. Let Q∗

2 = (Q2, O
∗,γ∗,σ∗). Since the metric is a weighted norm

of L2 distances, the geodesic α∗ between Q1 and Q2 is the straight line that
connects Q1 to Q∗

2, i.e., α∗(t) = (1− t)Q1 + tQ2, t ∈ [0, 1]. For visualization, we
map α∗(t) back to the non-linear space of 3D tree-shaped structures CT using
the inverse SRVF mapping, which has a closed analytical form; see [17].

4 The proposed space of 4D trees-shaped structures

With this setup, a 4D tree-like shape becomes a time-parameterized 1D curve, or
trajectory, α : [0, 1] → CQ. Thus, analyzing 4D tree-shaped structures becomes
the problem of analyzing 1D curves in CQ. Here, we mathematically define the
shape space Cα of such curves and equip it with a proper metric (Sec. 4.1) that
will allow us to temporally register and compare such trajectories (Sec. 4.2).

4.1 The shape space of 4D tree-shaped structures

Let α : [0, 1]→ CQ be a curve in CQ representing the SRVFT of a 4D tree-shaped
object. Let Cα be the space of all such curves. To temporally register, compare,
and summarize samples of such curves, we need to define an appropriate metric
on Cα that is invariant to the execution rate of the curves. Mathematically,
variations in the execution rate correspond to time-warping and thus can be
represented using diffeomorphisms ξ : [0, 1] → [0, 1] that map the temporal
domain to itself. Two curves α and α ◦ ξ only differ in their execution rates
and thus should be deemed equivalent. With this, the temporal registration
of two 4D trees α1 and α2 becomes the problem of finding the optimal time
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warping ξ∗ that brings the two curves as close as possible to each other, with
closeness measured using a metric d(·, ·): ξ∗ = argminξ∈Ξ d(α1, α2 ◦ ξ), where
Ξ is the space of all diffeomorphisms ξ : [0, 1] → [0, 1]. We are left with the
problem of defining the metric, or measure of closeness, d(·, ·). As time-warping of
trajectories corresponds to the elasticity of curves, we follow the same approach
used to compare branches (Sec. 3.2 and Eq. (1)), i.e., instead of using a complex
non-linear metric to measure the dissimilarity between two trajectories α1 and
α2, we first map them to their SRVF space, denoted by q1 and q2, and perform
the analysis there. Working in the SRVF space has many benefits. (First), the
elastic metric in the original space reduces to the L2 metric in the SRVF space.
Second, under the L2 metric, the action of the diffeomorphism group Ξ is by
isometries, i.e., ∥q1, q2∥ = ∥q1 ◦ ξ, q2 ◦ ξ∥. Third, the SRVF is invertible, up
to translation. Thus, one can perform all the analysis tasks in the SRVF space,
which has an L2 structure, and then map the results back to the original space for
visualization without loss of information. Thus, temporal registration becomes:

ξ∗ = argmin
ξ∈Ξ

∥q1, q2 ◦ ξ∥2 and d(q1, q2) = inf
ξ∈Ξ
∥q1, q2 ◦ ξ∥2. (5)

Here, d(·, ·) defines the rate-invariant distance between two trajectories (and thus
two 4D shapes). Directly working with Eq. (5) to solve the temporal registration
problem is computationally very expensive since α, which is a function, is of
infinite dimension and when discretized, it will be of a very high dimension.
Thus, we propose to learn a low dimensional subspace CPCA of 3D trees, similar
to PCA but on CQ. Then, we can treat 4D tree-shapes as trajectories in CPCA,
instead of the original space CQ, and perform their registration (Sec. 4.2) and
statistical analysis (Sec. 5) using the elastic metric of Eq. (5).

The fact that CQ is equipped with (1) a proper metric that measures bend-
ing, stretching, and topological changes, and (2) a mechanism for computing
geodesics (Sec. 3) allows us to learn a subspace, of finite dimension, that cap-
tures variability in collections of tree-shaped objects, similar to PCA in standard
Euclidean spaces. Let {Ti}mi=1 be a set of tree-shaped 3D objects and {Qi} their
corresponding SRVFTs. To compute the mean tree µ, we first compute the mean
SRVFT µq and then map it back to the space of tree shapes. Mathematically,
µq is the point in CQ that is as close as possible to all tree shapes in {Qi}mi=1.
The closeness is defined with respect to the metric of Eq. (2). In other words,

µq = argmin
(Oi,γi,σi)

m
i=1

m∑
i=1

d2CQ
(Q, (Qi, Oi, γi,σi)). (6)

Solving Eq. (6) involves finding µq, known as the Karcher mean, while registering
every Qi onto µq. This can be efficiently done via a gradient descent approach:

1. Set µq = Q1.
2. For i = 1 : m, Find (Õi, γ̃i, σ̃i) that optimally register Qi onto µq (Eq. (4)).
3. Set µq = 1

m

∑m
i=1(Qi, Õi, γ̃i, σ̃i).

4. Repeat steps 2 and 3 until convergence, and return µq and (Õi, γ̃i, σ̃i)
m
i=1.
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𝛼1 = SR𝑉𝐹𝑇(𝐻1)

𝛼 = SR𝑉𝐹𝑇(𝐻2)

SRVFT space 𝒞𝑄
𝑤1 Space 𝒞𝑤

𝛼1

𝛼2 ∘ ξ∗

ξ∗ =  argmin
ξ∈Γ

SRVF(𝛼1
𝑃𝐶𝐴) − SRVF(𝛼2

𝑃𝐶𝐴) ∘ ξ  (Sec. 4.3)

SRVF map

w = SRVF(𝛼𝑃𝐶𝐴)Dimensionality reduction 

using PCA

𝛼1
𝑃𝐶𝐴

𝒞𝑃𝐶𝐴 = ℝ𝑘

𝛼2
𝑃𝐶𝐴 𝑤2

𝑤2 ∘ ξ
𝑤2 ∘ ξ∗

SRVFT space 𝒞𝑄

Inverse SRVF map followed by 

a mapping back to SRVFT space

(Sec. 4.1)

Source 𝐻1 𝑡 ∈ 𝒞𝑇  before spatio-temporal registration

Target 𝐻2 𝑡 ∈ 𝒞𝑇  before spatio-temporal registration

Target 𝐻2 𝑡 ∈ 𝒞𝑇  after spatio-temporal registration

Fig. 3: The proposed framework for the analysis of 4D tree-shaped structures. The
key idea is to represent 4D trees H1 and H2 as curves in the SRVFT space CQ, which
is Euclidean but of infinite dimension. By learning a PCA subspace CPCA, 4D tree-
shaped structures become curves in Rk. However, instead of using the nonlinear elastic
metric in CT to model temporal variability, we further map the curves to the SRVF
space where the L2 metric is equivalent to the full elastic metric. All the analysis can be
performed in this space using standard vector calculus and mapped back to the original
space for visualization. The computation time of the proposed temporal registration
between two 4D plants is on average 0.037s for tomato and 0.006s for maize 4D plants.

One can map µq back to the original tree shape to obtain the mean tree µ, which
can be used for visualization. Let Qi = (Qi, Õi, γ̃i, σ̃i) be the SRVFT represen-
tation of Qi but optimally registered onto the mean µq, and vi = Qi −µq. The

leading eigenvectors Λi of the covariance matrix C =
1

m− 1

m∑
i=1

viv
⊤
i define the

principal directions of variations while the corresponding eigenvalues λi define
the variance along the i−th eigenvector. Thus, each SRVFT Q can be modeled
as a linear combination of the k leading eigenvectors: Q = µq +

∑k
i=1 ai

√
λiΛi.

The coefficients ai ∈ R are obtained by projecting Q onto eigenvectors Λi. Thus,
every tree shape Q in the SRVFT space can now be represented as a point
p = (a1, . . . , ak)

⊤ in CQ = Rk, which is Euclidean and has a finite dimension.

4.2 Temporal registration and geodesics between 4D trees

With this representation, a 4D tree-shaped structure α : [0, 1] → CQ becomes a
trajectory αpca in CPCA = Rk. Thus, the analysis framework presented in Sec. 4.1
for the pre-tree shape space can now be performed on Rk. Fig. 3 summarizes the
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entire process. To temporally register two trajectories αpca
1 and αpca

2 , we first
represent them using their SRVFs and then formulate the temporal registration
problem as the one of finding an optimal diffeomorphism ξ : [0, 1] → [0, 1]
that is a solution to Eq. (5). We initialize ξ to be the identity diffeomorphism:
ξ : [0, 1] → [0, 1] such that ξ(t) = t. During the optimization of Eq. (5), only
the target domain is updated. In other words, a point t in [0, 1] will be mapped
into another point u in [0, 1] such that Eq. (5) is minimized. Since u ∈ [0, 1],
the search for the optimal match is over the entire continuous domain. Also, ξ is
enforced to be a diffeomorphism, i.e., ξ(t1) = u1, ξ(t2) = u2, and t1 < t2, then
u1 < u2. The spatio-temporal registration process is as follows;

– Let S = {Hi}ni=1 be a set of n 4D tree-shaped structures where Hi(t) ∈ CT ,
for t ∈ [0, 1], is a 3D tree-structured shape after normalization for scale.

– Step 1: Spatial registration.
• Map every 4D tree Hi ∈ S to its SRVFT representation αi. Thus, we

obtain a new set {αi}ni=1 such that αi(t) = SRVFT(Hi(t)).
• Within-sequence registration (Stage 1 of the spatial registration, Sec. 3.3):

∗ For i = 1 to n, spatially register every 3D tree-shape αi(t) in the i−th
sequence αi to its next 3D tree-shape in the sequence (Sec. 3.3).

∗ For simplicity of notation, let from now on {αi} denote the new set.
• Cross sequence registration (Stage 2 of the spatial registration): to spa-

tially align α1 onto α2,
∗ Map αi, i ∈ {1, 2} to the PCA space CPCA = Rk to obtain {αpca

i }.
∗ Interpolate, linearly, the samples of αpca

1 and αpca
2 and then discretize

them at equidistances.
∗ ∀t, spatially register αpca

1 (t) onto αpca
2 (t) (Sec. 3.3).

– Step 2: Temporal registration.
• Map the spatially registered αpca

i to their SRVF representation wi. Let
Cw be the space of such SRVFs. For any two curves w1 and w2:

∗ Find ξ∗ that optimally aligns w2 onto w1

by solving ξ∗ = argminξ∈Ξ ∥w1, w2 ◦ ξ∥2.
∗ Set w2 ← w2 ◦ ξ∗ and map it back to CT for visualization.

4D geodesics: The advantage of the proposed representation is that the L2

metric in the SRVF space Cw of curves is equivalent to the full elastic metric.
Thus, geodesics under the complex metric become straight lines in this space,
i.e., the geodesic Λw between w and w̃2 is the linear interpolation:Λw(τ) =
(1 − τ)w + τw̃2, τ ∈ [0, 1]. To visualize it, we map all 4D trees in Λw to the
original space of trees. Fig. 4 shows an example of a geodesic between two 4D
trees where each row corresponds to one 4D tree along the geodesic. The first
row corresponds to Λw(0) = w1 and the last row corresponds to Λw(1) = w̃2.
The middle row, i.e., τ = 0.5, is the mean 4D tree shape between w1 and w̃2.

5 Statistical Analysis of 4D Tree Shapes

The ability to compute spatio-temporal correspondences and geodesics between
4D tree-shaped structures enables a wide range of 4D shape analysis tasks. In
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this section, we show how these fundamental tools can be used to compute a
4D atlas, which includes the mean and modes of variability, of a collection of
tree-shaped 4D structures. Let {H1, . . . ,Hn} be a set of n 4D tree shapes and
{w1, . . . , wn} their corresponding trajectories in Cw. To simplify the notation,
we assume that these 4D shapes are all spatially registered using the procedure
described in Sec. 3.3 and Sec. 4.2. Thus, one can compute the mean, the modes
of variations, and fit generative models for 4D tree-structured shape generation.
Mean of 4D tree-like shapes. It is the 4D tree that is as close as possible to
all of the 4D trees in the dataset under the specified metric. This is the Karcher
mean µq and is mathematically defined as w̄ = argminw

∑n
i=1 minξi∈Ξ ∥w− qi ◦

wi∥2, which we solve via a gradient descent approach:

1. Set w̄ = w1.
2. For i = 1 : n

– Optimally register wi onto w̄ using Step 2 of the algorithm of Sec. 4.2.
– Let ξi be the reparameterization that temporally aligns wi onto w.

3. Set w = 1
n

∑n
i=1 wi ◦ ξi.

4. Repeat steps 2 and 3 until convergence, and return w̄, {ξi, w̃i = wi ◦ ξi}ni=1.

Finally, the mean curve w̄ can be mapped back to a 4D tree, H̄, which represents
the mean of the 4D tree-shaped structures in the dataset. The inverse mapping
is performed following the procedure presented in Sec. 4.2.
Modes of variations of 4D tree-shaped structures. Since the SRVF space
is Euclidean, we compute the principal directions of variation using linear PCA.
Let {w̃i}ni=1 be the spatio-temporally registered 4D tree structures in Cw. We
first compute their covariance matrix and then take its k-leading eigenvalues
ui, i = 1, . . . , k and their corresponding eigenvectors δi, i = 1, . . . , k. This allows
us to represent any curve (i.e., 4D trees) in the ith principal direction as wτ = w̄+
τ
√
uiδi, τ ∈ R. For visualization, we map wτ back to the original representation

of 4D tree shapes, using the one-to-one inversion discussed in Sec. 4.2.
4D tree-like shape generation: Now that we have the mean w̄ and k principal
directions of variation, δi, i = 1, . . . , k, we can generate a 4D tree-like shape by
sampling k real values τi ∈ R and then computing w = w̄+

∑k
i=1 τi

√
uiδi, τi ∈ R.

Next, w can be mapped back to the original tree-shape space for visualization
using the one-to-one inversion discussed in Sec. 4.2. Note that this generation
process is random since the real values τi are randomly picked. However, one
can control the generation process, e.g., by restricting these values to be within
a specific range to ensure the plausibility of the generated samples.

6 Results and discussions

We demonstrate the proposed framework and evaluate its performance on the
Pheno4D dataset [16], which contains 4D models of seven tomato and seven
maize plants. All the models are not registered onto each other, neither spatially
nor temporally; see the Supplementary Material for further details and results
with ablation studies.
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Before reg. After reg. (ours) After reg. [3] After reg. [15]
Mean Median Std. Mean Median Std. Mean Median Std. Mean Median Std.

Tomato 325 347 52 136 136 27 416 430 85 261 245 56

Maize 35 30 8 10 9 2.5 554 496 216 19 18 5

Table 1: Statistics of the error between pairs of source and target 4D plants before
spatial registration and after registration using our method, [3], and [15].

6.1 Spatiotemporal Registration

(1) Spatial registration. Fig. 2 shows an example of the spatial registration
of four complex 3D tree-shaped structures of tomato plants. For clarity, we only
show the branch-wise correspondences up to the second layer. Figs. 2, 3, and
4 in the Supplementary Material show, respectively, an example of the spatial
registration within and across two 4D tomato plants as well as a zoom-in onto
individual trees. This result shows that our framework is efficient in finding
correct branch-wise correspondences between complex tree-shaped structures.
We evaluate the quality of the proposed spatial registration method and compare
it with state-of-the-art techniques such as [3, 15] on eight pairs of 4D tomato
plants and nine pairs of 4D maize plants. We use three quantitative measures:

Our method Pan et al . [15]
ϵ Mean Median Std. Mean Median Std.
0.1 0.94% 0.08% 2.01% 10.33% 7.09% 10.6%
0.05 2.00% 0.15% 3.62% 15.89% 17.88% 10.79%
0.02 2.87% 0.65% 4.17% 20.39% 22.22% 9.83%
0.01 5.45% 2.76% 6.15% 21.95% 22.22% 8.64%

Table 2: Cycle consistency errors (↓).

- Geodesic length between 4D tree-
shapes. Tab. 1 reports the mean,
median, and standard deviation
of the geodesic distances before
and after spatial registration of
our method. We can see that the
geodesic distance becomes much
smaller after spatial registration
with our method, compared to [3]
and [15] as branches get correctly
aligned across 3D trees. The resid-
ual error is due to differences in structure and growth rates between 4D plants.

(a) Between a source and a target 4D tree.
Before reg. After reg.

Mean Median Std. Mean Median Std.
Tomato 382 384 69 279 282 47

Maize 59 60 12 34 37 11
(b) Between a 4D tree and its randomly

warped version.
Before reg. After reg.

Mean Median Std. Mean Median Std.
Tomato 356 375 138 26 27 5

Maize 71 70 8 15 16 3

Table 3: Statistics of the error between
pairs of 4D source and target plants before
and after their temporal registration.

- Cycle consistency error. To demon-
strate further the quality of our regis-
tration, we have measured the cycle
consistency error of the spatial reg-
istration. Given a source and a tar-
get 3D trees, the registration maps a
point x on the source to a point y on
the target. We then map y, using the
registration procedure, back onto the
source tree to lead to a point x′. The
registration procedure is accurate if x′

and x are very close to each other.
Thus, we define the registration error
as the percentage of points x whose
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cycle consistency distance ∥x− x′∥ is
higher than a threshold ϵ. Tab. 2 summarizes the mean, median, and standard
deviation of this error for our method and [15] (the lower the error, the better) for
different values of ϵ. Our method significantly outperforms the state-of-the-art.
- Computation time. On average, [3] requires 30s, [15] requires 20.1s, while our
method requires only 2.3s to register two 3D trees. This shows that the proposed
method is significantly faster than [3] and [15].
(2) Temporal registration. To demonstrate the proposed temporal registra-
tion, we first randomly resample the 4D sequences to simulate unsynchronised
4D plants and then take pairs of these re-sampled 4D sequences and realign
them, temporally, using the proposed temporal registration tools. Fig. 3 shows
an example of a temporal registration between complex 4D tree-shaped struc-
tures that grow at different rates. We can see that, after the temporal regis-
tration, the growth rate becomes closer to the groundtruth (see also Fig. 6 of
the Supplementary Material). The Supplementary Material also provides more
visual results. Similar to the spatial registration, we use the geodesic distance
between 4D trees, before and after temporal registration, as a measure of the
quality of registration (the smaller the better). Tab. 3 reports the mean, me-
dian, and standard deviation of those errors for three different cases. For all of
the cases, our proposed temporal registration significantly reduces the geodesic
distances between 4D plants: In Tab. 3-(a), we randomly choose six pairs of 4D
tomato plants and four pairs of maize plants. Then, we compute errors between
each pair before and after temporal registration. We observe that the proposed
temporal registration makes the target closer to the source 4D plant. Note that
there is a residual error which is due to the differences in the branching struc-
tures. In Tab. 3-(b), we register randomly warped 4D plants to their ground
truth. Since both 4D plants have the same branching structures and are only
temporarily warped, temporal registration significantly reduces the error, which
demonstrates that the proposed temporal registration can align two 4D shapes
with minimal error.

Overall, the temporal registration takes 6 to 37ms; see Table 1 in the Sup-
plementary Material, which also provides an ablation study that analyzes the
spatio-temporal registration of 4D tree-shaped objects.

6.2 Geodesics between 4D Trees

Fig. 8 in the Supplementary Material shows a geodesic path, before spatiotem-
poral registration, between a source 4D plant (top row) and a target 4D plant
(bottom row). The in-between rows correspond to 4D plants sampled at equidis-
tances along the geodesic path between the source and target. In this example,
the target has a different growth rate than the source. It also has missing samples.
Thus, we interpolate it and sample it at the same time intervals as the source
but we do not perform spatiotemporal registration. Consequently, the target fol-
lows a different growth pattern than the source. As we can see in this figure,
since the two 4D plants are not spatio-temporally registered, the 4D geodesic
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Fig. 4: The 4D geodesic between the two 4D tree shapes of Fig. 8 in the Supplementary
Material after spatiotemporal registration. The highlighted row is the mean 4D tree.
This geodesic computation requires on average 0.025s for 4D tomato plants.

Fig. 5: The mean 4D plant shape of the seven registered 4D tomato plants in Fig. 10-b
in the Supplementary Material. The computation time is in the order of 0.0006s.

does not look realistic as the intermediate 4D plants along the geodesic exhibit
significant shrinkage. Fig. 4 shows the geodesic between the same 4D plants but
after spatiotemporal registration using the proposed framework. We can clearly
see that the target 4D plant (last row) is temporally well aligned with the source
4D plant (first row). Also, we can also see that the branches of the intermediate
plants along the geodesic path do not suffer from the shrinkage observed in Fig.
8 in the Supplementary Material prior to the registration.

6.3 Summary statistics and 4D tree-shae synthesis and generation

We took seven unregistered 4D tomato plants from the Pheno4D dataset and
computed their mean and modes of variations using the proposed framework.
Fig. 10 in the Supplementary Material shows the seven 4D tomato plants before
(Fig. 10-a) and after (Fig. 10-b) co-registering them onto each other using the
proposed spatiotemporal registration. Fig. 5 shows the mean 4D plant of these
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Fig. 6: Randomly generated 4D tomato plants (one 4D plant per row). The model
requires on average 0.0001s to generate a 4D tomato plant.

seven 4D plants computed using the proposed framework. We can see that the
mean captures the main characteristics of these seven 4D plants. Fig. 12 in
the Supplementary Material shows the first and second principal directions of
variation that represent the spatiotemporal shape variability in the seven 4D
tomato plants. The Supplementary Material provides more results.

Fig. 6 shows four randomly generated 4D tomato plants. In this experiment,
the generative model is learned from seven 4D tomato plants. To obtain plausi-
ble random 4D plants, we restricted the randomization within −3 to +3 times
the standard deviation along each principal direction of variation. The Sup-
plementary Material provides additional examples of 4D tree-shaped structures
randomly generated from the learned generative model.

7 Conclusion

We have proposed a novel theoretical framework and a set of new computational
tools for analyzing tree-shaped 4D structures, i.e., 3D objects that have a tree
structure and grow and deform over time. These tools include mechanisms for the
spatiotemporal registration of and geodesics computation between tree-shaped
4D structures. These are the key building blocks for learning statistical mod-
els and generative models from collections of tree-shaped 4D structures such as
growing plants. Our key contribution is to model the spatiotemporal variability
in 4D tree shapes as trajectories in the SRVF space, reducing the problem to
that of analyzing curves in an Euclidean space. As demonstrated in the exper-
iments, the proposed computational tools can handle complex tree-shaped 4D
objects that undergo complex non-rigid and topological deformations. Although
we evaluated the framework on 4D plants, it is general and can be used for other
types of tree-shaped structures such as neuronal structures in the brain, blood
vessels, and airway trees. The current framework is limited to the skeleton struc-
ture of tree-shaped 4D objects. In the future, we plan to extend the framework to
handle the full 3D geometry of the branches in tree-shaped 3D and 4D objects.
Potential negative impact. To the best of our knowledge, this work may not
have any negative impact on society.
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