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Abstract. In recent years, many deep neural architectures have been
developed for image classification. Whether they are similar or dissimi-
lar and what factors contribute to their (dis)similarities remains curious.
To address this question, we aim to design a quantitative and scalable
similarity measure between neural architectures. We propose Similarity
by Attack Transferability (SAT) from the observation that adversarial
attack transferability contains information related to input gradients and
decision boundaries widely used to understand model behaviors. We con-
duct a large-scale analysis on 69 state-of-the-art ImageNet classifiers us-
ing our SAT to answer the question. In addition, we provide interesting
insights into ML applications using multiple models, such as model en-
semble and knowledge distillation. Our results show that using diverse
neural architectures with distinct components can benefit such scenarios.
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Fig. 1: t-SNE plot showing 10 clus-
ters of 69 neural networks using
our similarity function, SAT.

The advances in deep neural networks
(DNN) architecture design have taken a
key role in their success by making the
learning process easier (e.g ., normaliza-
tion [2, 49, 106] or skip connection [39]),
enforcing human inductive bias [56], or in-
creasing model capability with the self-
attention mechanism [98]. With different
architectural components containing ar-
chitectural design principles and elements,
a number of different neural architectures
have been proposed. They have differ-
ent accuracies, but several researches have
pointed out that their predictions are not
significantly different [33, 66, 67].
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By this, can we say that recently developed DNN models with different archi-
tectural components are similar or the same? The answer is no. It is because
a model prediction is not the only characteristic to compare their similarities.
Existing studies have found differences by focusing on different features, such
as layer-by-layer network component [55, 75], a high-level understanding by vi-
sualization of loss surface [26], input gradient [82, 84], and decision boundary
[83]. Researchers could understand the similarity between models through these
trials; however, the similarity comparison methods from previous studies are in-
sufficient for facilitating comprehensive studies because they do not satisfy two
criteria that practical metrics should meet: (1) providing a quantitative similarity
score and (2) being compatible with different base architectures (e.g ., CNN and
Transformer). Recently, Tramèr et al. [95] and Somepalli et al. [83] suggested a
quantitative similarity metric based on measuring differences in decision bound-
aries. However, these methods have limitations due to the non-tractable decision
boundaries and limited computations as shown in Sec. 3.

We propose a quantitative similarity that is scalable and easily applicable
to diverse architectures, named Similarity by Attack Transferability (SAT). We
focus on adversarial attack transferability (AT), which indicates how generated
adversarial perturbation is transferable between two different architectures. It is
widely studied that the vulnerability of DNNs depends on their own architectural
property or how models capture the features from inputs, such as the usage
of self-attention [31], the stem layer [47], and the dependency on high or low-
frequency components of input [3, 54]. Thus, if two different models are similar,
the AT between the models is high because they share similar vulnerability
[77]. Furthermore, AT can be a reliable approximation for comparing the input
gradients [65], decision boundary [53], and loss landscape [25]. All of them are
widely-used frameworks to understand model behavior and differences between
models and used to measure the similarity of models in previous works [5, 17, 26,
59, 82, 83, 84, 87, 95, 104]; namely, SAT can capture various model properties.

We quantitatively measure pairwise SATs of 69 different ImageNet-trained
neural architectures from [105]. We analyze what components among 13 archi-
tectural components (e.g ., normalization, activation, . . . ) that consist of neural
architectures largely affect model diversity. Furthermore, we observe relation-
ships between SAT and practical applications, such as ensemble and distillation.

2 Related Work

Similarity between DNNs has been actively explored recently. Several studies
focused on comparing intermediate features to understand the behavior of DNNs.
Raghu et al. [75] observed the difference between layers, training methods, and
architectures (e.g ., CNN and ViT) based on layer-by-layer comparison [55].
Some studies have focused on loss landscapes by visualizing the loss of models
on the parameter space [26, 59, 73]. Although these methods show a visual
inspection, they cannot support quantitative measurements. On the other hand,
our goal is to support a quantitative similarity by SAT.
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Another line of research has been focused on prediction-based statistics,
e.g ., comparing wrong and correct predictions [32, 33, 57, 79]. However, as recent
complex DNNs are getting almost perfect, just focusing on prediction values can
be misleading; Meding et al. [67] observed that recent DNNs show highly similar
predictions. In this case, prediction-based methods will be no more informative.
Meanwhile, our SAT can provide meaningful findings for 69 recent NNs.

Input gradient is another popular framework to understand model behavior
by observing how a model will change predictions by local pixel changes [5,
81, 82, 84, 87]. If two models are similar, their input gradients will also be
similar. These methods are computationally efficient, and no additional training
is required; they can provide a visual understanding of the given input. However,
input gradients are inherently noisy; thus, these methods will need additional
pre-processing, such as smoothing, for a stable computation [17]. Also, these
methods usually measure how the input gradient matches the actual foreground,
i.e., we need ground-truth foreground masks for measuring such scores. On the
contrary, SAT needs no additional pre-processing and mask annotations.

Comparing the decision boundaries will provide a high-level understand-
ing of how models behave differently for input changes and how models extract
features from complicated data dimensions. Recent works [95, 104] suggested
measuring similarity by comparing distances between predictions and decision
boundaries. Meanwhile, Somepalli et al. [83] analyzed models by comparing
their decision boundaries on the on-manifold plane constructed by three ran-
dom images. However, these approaches suffer from inaccurate approximation,
non-tractable decision boundaries, and finite pairs of inputs and predictions.

Finally, different behaviors of CNNs and Transformers have been studied in
specific tasks, such as robustness [4, 69], layer-by-layer comparison [73, 75] or
decision-making process [50]. Our work aims to quantify the similarity between
general NNs, not only focusing on limited groups of architecture.

3 Similarity by Attack Transferability (SAT)

Here, we propose a quantitative similarity between two architectures using ad-
versarial attack transferability, which indicates whether an adversarial sample
from a model can fool another model. The concept of adversarial attack has ef-
fectively pointed out the vulnerabilities of DNNs by input gradient [34, 65, 88].

Interestingly, these vulnerabilities have been observed to be intricately linked
to architectural properties. For example, Fu et al. [31] demonstrated the effect
of the attention modules in architecture on attack success rate. Hwang et al. [47]
analyzed that the stem layer structure causes models to have different adver-
sarial vulnerable points in the input space, e.g ., video models periodically have
vulnerable frames, such as every four frames. Namely, an adversarial sample to
a model highly depends on the inherent architectural property of the model.

Another perspective emphasized the dissimilarities in dependencies on high-
frequency and low-frequency components between CNN-based and transformer-
based models, showing different vulnerabilities to different adversarial attacks
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[3, 54]. Different architectural choices behave as different frequency filters (e.g .,
the self-attention works as a low-pass filter, while the convolution works as a
high-pass filter) [73]; thus, we can expect that the different architectural com-
ponent choices will affect the model vulnerability, e.g ., vulnerability to high-
frequency perturbations. If we can measure how the adversarial vulnerabilities
of the models are different, we also can measure how the networks are dissimilar.

To measure how model vulnerabilities differ, we employ adversarial at-
tack transferability (AT), where it indicates whether an adversarial sample
from a model can fool another model. If two models are more similar, their
AT gets higher [25, 60, 77]. On the other hand, because the adversarial at-
tack targets vulnerable points varying by architectural components of DNNs
[31, 46, 47, 54], if two different models are dissimilar, the AT between them
gets lower. Furthermore, attack transferability can be a good approximation for
measuring the differences in input gradients [65], decision boundaries [53], and
loss landscape [25], where they are widely used techniques for understanding
model behavior and similarity between models as discussed in the related work
section. While previous approaches are limited to non-quantitative analysis, in-
herent noisy property, and computational costs, adversarial transferability can
provide quantitative measures with low variances and low computational costs.

We propose a new similarity function that utilizes attack transferability,
named Similarity by Attack Transferability (SAT), providing a reliable,
easy-to-conduct, and scalable method for measuring the similarity between neu-
ral architectures. Formally, we generate adversarial samples xA and xB of model
A and B for the given input x. Then, we measure the accuracy of model A
using the adversarial sample for model B (called accB→A). If A and B are the
same, then accB→A will be zero if the adversary can fool model B perfectly. On
the other hand, if the input gradients of A and B differ significantly, then the
performance drop will be neglectable because the adversarial sample is almost
similar to the original image (i.e., ∥x− xB∥ ≤ ε). Let XAB be the set of inputs
where both A and B predict correctly, y be the ground truth label, and I(·) be
the indicator function. We measure SAT between two different models by:

SAT(A,B) = log
[
max

{
εs, 100×

1

2|XAB |
∑

x∈XAB

{I(A(xB) ̸= y) + I(B(xA) ̸= y)}
}]

,

(1)
where εs is a small scalar value. If A = B and we have an oracle adversary, then
SAT(A,A) = log 100. In practice, a strong adversary (e.g ., PGD [65] or Au-
toAttack [22]) can easily achieve a nearly-zero accuracy if a model is not trained
by an adversarial attack-aware strategy [21, 65]. Meanwhile, if the adversarial
attacks on A are not transferable to B and vice versa, then SAT(A,B) = log εs.

Ideally, we aim to define a similarity d between two models with the following
properties: (1) n = argminm d(n,m), (2) d(n,m) = d(m,n) and (3) d(n,m) >
d(n, n) if n ̸= m. If the adversary is perfect, then accA→A will be zero, and it
will be the minimum because accuracy is non-negative. “accA→B + accB→A” is
symmetric thereby SAT is symmetric. Finally, SAT satisfies d(n,m) ≥ d(n, n) if
n ̸= m where it is a weaker condition than (3).
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Fig. 2: How SAT works? Conceptual figure to understand SAT by the lens of the
decision boundary. Each line denotes the decision boundary of a binary classification
model, and each dot denotes individual prediction for given inputs.

Comparison with other methods. Here, we compare SAT with prediction-based
measurements [32, 33, 57, 79] and similarity measurements by comparing decision
boundaries (Tramèr et al. [95] and Somepalli et al. [83]). We first define two
binary classifiers f and g and their predicted values fp(x) and gp(x) for input x
(See Fig. 2). f classifies x as positive if fp(x) > fd(x) where fd(x) is a decision
boundary of f . We aim to measure the difference between decision boundaries,
namely

∫
x
|fd(x) − gd(x)|dx to measure differences between models. However,

DNNs have a non-tractable decision boundary function, thus, fd and gd are not
tractable. Furthermore, the space of x is too large to compute explicitly. Instead,
we may assume that we only have finite and sparingly sampled x.

In this scenario, we can choose three strategies. First, we can count the
number of samples whose predicted labels are different for given x, which is
prediction-based measurements or Somepalli et al. [83]. As we assumed sparsity
of x, this approach cannot measure the area of uncovered x domain, hence,
its approximation will be incorrect (purple box in Fig. 2) or needs too many
perturbations to search uncovered x. In Appendix A.1, we empirically show that
Somepalli et al. [83] suffers from the high variance even with a large number of
samples while SAT shows a low variance with a small number of samples.

Second, we can measure the minimum distance between fp(x) and fd as
Tramèr et al. [95]. This only measures the distance to its closest decision bound-
ary without considering the other model. As shown in the yellow box of Fig. 2, if
two predictions are similar at x, it would compute an approximation of |fd(x)−
gd(x)| for x. However, if two predictions are different, it will compute a wrong
approximation. Moreover, in practice, searching ϵ is unstable and expensive.

Lastly, we can count the number of non-transferred adversarial samples (red
box in Fig. 2), which is our method, SAT. If we have an oracle attack method
that exactly moves the point right beyond the decision boundary, our SAT will
measure the ℓ0 approximation of min(|fd(x) − gd(x)|, ϵ) for given x. Namely,
SAT can measure whether two decision boundaries are different by more than ϵ
for each x. If we assume that the difference between decision boundaries is not
significantly large and ϵ is properly chosen, SAT will compute an approximated
decision boundary difference. We also compare SAT and other methods from the
viewpoint of stability and practical usability in Sec. 5.1 and Appendix A.
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Discussions. In practice, we do not have an oracle attack method. Instead, we
employ the PGD attack [65] as the adversarial attack method. In Appendix B.1,
we investigate the robustness of SAT to the choice of the attack methods. In
summary, SAT measured by PGD shows a high correlation with SAT measured
by various attacks, e.g ., AutoAttack [22], attacks designed for enhancing attack
transferability, such as MIFGSM [27] and VMIFGSM [103], low-frequency tar-
geted attacks, such as low-frequency PGD [36], method-specific attacks, such as
PatchPool [31], or generative model-based attacks, such as BIA [116].

Also, SAT assumes an optimal attack with proper ϵ. However, this assump-
tion can be broken under the adversarial training setting when we use a practical
attacker. Also, as shown by Tsipras et al. [97] and Ilyas et al. [48], adversarial
training will lead to a different decision boundary from the original model. In Ap-
pendix B.2, we empirically investigate the effect of adversarial training to SAT.
We observe that different adversarial training methods make as a difference as
different training techniques, which we will discuss in Sec. 4.2.

Analyzing 69 models. Now, we analyze 69 recent ImageNet classifiers using SAT
by focusing on two questions. (1) Which network component contributes to the
diversity between models? (2) Why do we need to develop various neural archi-
tectures? The full list of the architectures can be found in Appendix C. We use
the PGD attack [65] for the adversary. We set the iteration to 50, the learning
rate to 0.1, and ε to 8/255. As we discussed earlier, we show that SAT is robust
to the choice of the adversarial attack method. We select 69 neural architec-
tures trained on ImageNet [78] from the PyTorch Image Models library [105].
To reduce the unexpected effect of a significant accuracy gap, the chosen model
candidates are limited to the models whose top-1 accuracy is between 79% and
83%. We also ignore the models with unusual training techniques, such as train-
ing on extra training datasets, using a small or large input resolution (e.g ., less
than 200 or larger than 300), or knowledge distillation. When A and B take
different input resolutions, then we resize the attacked image from the source
network for the target network. We also sub-sample 10% ImageNet validation
images (i.e., 5,000 images) to measure the similarity. This strategy makes our
similarity score more computationally efficient.

4 Model Analysis by Network Similarity

4.1 Which Architectural Component Causes the Difference?

Settings. We list 13 key architecture components: normalization (e.g ., BN [49]
and LN [2]), activations (e.g ., ReLU [56] and GeLU [76]), the existence of depth-
wise convolution, or stem layer (e.g ., 7×7 conv, 3×3 conv, or 16×16 conv with
stride 16 – a.k.a. “patchify” stem [64]). The list of the entire components is
shown in the Appendix. We then convert each architecture as a feature vector
based on the listed sub-modules. For example, we convert ResNet as fResNet =
[Base arch = CNN,Norm = BN,Activation = ReLU, . . .]. The full list of com-
ponents of 69 architectures can be found in Appendix C.
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Table 1: Clusters by SAT. All the architectures here are denoted by the aliases
defined in their respective papers. We show the top-5 keywords for each cluster based on
TF-IDF. InRes, SA, and CWA denote input resolution, self-attention, and channel-wise
attention, respectively. The customized model details are described in the footnote†.

No. Top-5 Keywords Architecture

1 Stem layer: 16×16 conv w/ s16, ConViT-B [29], CrossViT-B [12],DeiT-B [93], DeiT-S [93],
No Hierarchical, GeLU, LN, Final GAP ViT-S (patch size 16) [28],ResMLP-S24 [94], gMLP-S [62]

2
Stem layer: 4×4 conv w/ s4, LN, GeLU, Twins-PCPVT-B [19], Twins-SVT-S [19], CoaT-Lite Small [24],
Transformer, No pooling at stem NesT-T [118], Swin-T [63], S3 (Swin-T) [13], ConvNeXt-T [64],ResMLP-B24 [94]

3 Transformer, Final GAP, GeLU, XCiT-M24 [1], XCiT-T12 [1], HaloRegNetZ-B⋆⋆, TNT-S [38],
Pooling at stem, InRes: 224 Visformer-S [16], PiT-S [43], PiT-B [43]

4 Stem layer: stack of 3×3 conv, 2D SA, HaloNet-50 [99], LambdaResNet-50 [6], BoTNeT-26 [85],
InRes: 256, Pooling at stem, SiLU GC-ResNeXt-50 [11], ECAHaloNeXt-50⋆⋆, ECA-BoTNeXt-26⋆⋆

5 Stem layer: stack of 3×3 convs, InRes: 256, LamHaloBoTNet-50⋆⋆, SE-BoTNet-33⋆⋆, SE-HaloNet-33⋆⋆,
2D SA, CWA: middle of blocks, CNN Halo2BoTNet-50⋆⋆, GC-ResNet-50 [11], ECA-Net-33 [102]

6

Stem layer: 7×7 conv w/ s2, ReLU, ResNet-50 [39], ResNet-101 [39], ResNeXt-50 [107],
Pooling at stem, CNN, BN Wide ResNet-50 [112], SE-ResNet-50 [45], SE-ResNeXt-50 [45],

ResNet-V2-50 [40], ResNet-V2-101 [40], ResNet-50 (GN) [106],
ResNet-50 (BlurPool) [117], DPN-107 [15], Xception-65 [18]

7 NAS, Stem layer: 3×3 conv w/ s2 EfficientNet-B2 [90], FBNetV3-G [23], ReXNet (×1.5) [37],
CWA: middle of blocks, CWA, DW Conv RegNetY-32 [74], MixNet-XL [91], NF-RegNet-B1 [9]

8
Input resolution: 224, Stem layer: stack of 3×3 convs, NFNet-L0⋆⋆, ECA-NFNet-L0⋆⋆, PoolFormer-M48 [110],
Group Conv, Final GAP, 2D SA ResNeSt-50 [114], ResNet-V2-50-D-EVOS⋆⋆,

ConvMixer-1536/20 [96]

9
ReLU, Input resolution: 224, DW Conv, BN, ViT-B (patch size 32) [28], R26+ViT-S [86], DLA-X-102 [109],
2D self-attention eSE-VoVNet-39 [58], ResNet-101-C [42], RegNetX-320 [74],

HRNet-W32 [101]

10 ReLU + Leaky ReLU, InRes: 256, CSPResNet-50 [100], CSPResNeXt-50 [100], CSPDarkNet-53 [7],
Stem layer: 7×7 conv, CNN, Pooling at stem NF-ResNet-50 [9]

Feature important analysis. Now, we measure the feature importance by fitting
a gradient boosting regressor [30] on the feature difference (e.g ., fResNet-50 −
fDeiT-base) measured by Hamming distance and the corresponding similarity.
The details of the regressor are described in Appendix. We use the permutation
importance [8] that indicates how the trained regression model changes the pre-
diction according to randomly changing each feature. The feature importance
of each architectural component is shown in Fig. 3. We first observe that the
choice of base architecture (e.g ., CNN [56], Transformer [98], and MLP-Mixer
[92]) contributes to the similarity most significantly. Fig. 3 also shows that the
design choice of the input layer (i.e., stem layer design choice or input resolu-
tion) affects the similarity as much as the choice of basic components such as
normalization layers, activation functions, and the existence of attention layers.
On the other hand, we observe that the modified efficiency-aware convolution
operations, such as depth-wise convolution [18], are ineffective for diversity.

Clustering analysis. We additionally provide a clustering analysis based on the
architectural similarities. We construct a pairwise similarity graph with adja-
cency matrix A between all 69 architectures where its vertex denotes an archi-
tecture, and its edge denotes the similarity between two networks. We perform

⋆⋆ Customized models by [105]: HaloRegNetZ = HaloNet + RegNetZ; ECA-BoTNeXt = ECA-Net + HaloNet
+ ResNeXt; ECA-BoTNeXt = ECA-Net + BoTNet + ResNeXt; LamHaloBoTNet = LambdaNet + HaloNet
+ BoTNet; SE-BoTNet = SENet + BoTNet; SE-HaloNet = SENet + HaloNet; Halo2BoTNet = HaloNet
+ BoTNet; NFNet-L0 = an efficient variant of NFNet-F0 [10]; ECA-NFNet-L0 = ECA-Net + NFNet-L0;
ResNet-V2-D-EVOS = ResNet-V2 + EvoNorms [61].
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Fig. 3: Importance of architectural compo-
nents to network similarity. 13 components are
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larger feature importance means the component con-
tributes more to the network similarity.
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Fig. 4: Pairwise distances
of spectral features. Rows
and columns are sorted by the
clustering index. More details
are described in Appendix.

the spectral clustering [70] on A where the number of clusters K is set to 10:
We compute the Laplacian matrix of A, L = D − A where D is the diagonal
matrix and its i-th component is

∑
j Aij . Then, we perform K-means clustering

on the K-largest eigenvectors of L. The pairwise distances of spectral features
(i.e., 10-largest eigenvectors of L) of 69 neural architectures are shown in Fig. 4.
The rows and columns of Fig. 4 are sorted by the clustering index (Tab. 1).
More details with model names are described in Appendix D.2. We can see the
block-diagonal patterns, i.e., in-clusters similarities are more significant than
between-clusters similarities. More details are in Appendix D.3.

Tab. 1 shows the clustering results on 69 networks and the top-5 keywords
for each cluster based on term frequency-inverse document frequency (TF-IDF)
analysis. Specifically, we treat each model feature as a word and compute TF
and IDF by treating each architecture as a document. Then we compute the
average TF-IDF for each cluster and report top-5 keywords. Similar to Fig. 3,
the base architecture (e.g ., CNN in Cluster 5, 6, 10 and Transformer in Cluster
2, 3) and the design choice for the stem layer (e.g ., Cluster 1, 2, 4, 5, 6, 7, 8,
10) repeatedly appear at the top keywords. Especially, we can observe that the
differences in base architecture significantly cause the diversity in model sim-
ilarities, e.g ., non-hierarchical Transformers (Cluster 1), hierarchical networks
with the patchification stem (Cluster 2), hierarchical Transformers (Cluster 3),
CNNs with 2D self-attention (Cluster 4, 5), ResNet-based architectures (Cluster
6), and NAS-based architectures (Cluster 7).

4.2 The Relationship between Training Strategy and SAT

The architectural difference is not the only cause of the model diversity. We com-
pare the impact by different architecture choices (e.g ., ResNet and ViT) and by
different training strategies while fixing the model architecture, as follows: Dif-
ferent initializations can affect the model training by the nature of the stochas-



Similarity of Neural Architectures using Adversarial Attack Transferability 9

Table 2: SAT within the same
architecture. We compare the av-
erage similarity within the same ar-
chitecture but trained with different
procedures, “All” denotes the average
similarity of 69 architectures.

Architecture ResNet-50 ViT-S

Init 4.23 4.21
Hparam 4.05 4.22
Tr. Reg. 3.27 3.44

All 2.73

Table 3: Ensemble performance with di-
verse architectures. We report the error re-
duction rate by varying the number of ensem-
bled models and the diversity of the ensemble
models (related to Fig. 7a). “rand” indicates the
random choice of models.

less diverse ← # of clusters → more diverse

1 2 3 4 5 rand

#
of

m
od

el
s 2 7.13 7.84 7.78

3 10.17 10.84 11.20 11.11
4 11.70 12.45 12.80 13.00 12.90
5 12.58 13.41 13.79 13.99 14.11 14.01

ticity of the training procedure. For example, Somepalli et al. [83] showed that
the decision boundary of each architecture could vary by different initializations.
We also consider different optimization hyper-parameters (e.g ., learning
rate, weight decay). Finally, we study the effect of different training regimes
(e.g ., augmentations, type of supervision). For example, the choice of data aug-
mentation [111, 113] or label smoothing [89] can theoretically or empirically
affect adversarial robustness [20, 72, 80, 115]. We also investigate the effect of
supervision, such as self-supervision [14, 35, 41] or semi-weakly supervised learn-
ing [108]. Note that the training strategies inevitably contain the former ones.
For example, when we train models with different training regimes, models have
different initialization seeds and different optimization hyper-parameters. Com-
paring 69 different architectures also contains the effect of different initialization
and optimization hyper-parameters and parts of different training regimes. This
is necessary for achieving high classification performance.

Tab. 2 shows the comparison of similarity scores between the same architec-
ture but different learning methods (a smaller similarity means more diversity).
We report two architectures, ResNet-50 and ViT-S, and their training settings
are in Appendix E. We also show the average SAT between all 69 architectures.
In the table, we first observe that using different random initialization or dif-
ferent optimization hyper-parameters shows high correlations with each other
(almost ≥ 4.2) while the average similarity score between various neural archi-
tectures is 2.73. In other words, the difference in initializations or optimization
hyper-parameters does not significantly contribute to the model diversity.

Second, we observe that using different learning techniques remarkably af-
fects SAT (3.27 for ResNet and 3.44 for ViT), but is not as significant as the
architectural difference (2.73). Furthermore, the change of SAT caused by dif-
ferent initializations or hyper-parameters is less marked than the change caused
by different architecture (Fig. 5). These observations provide two insights. First,
the diversity resulting from various training strategies is not significant enough
compared to the diversity of architecture. Second, designing new architecture is
more efficient in achieving diverse models rather than re-training the same one.
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5 SAT Applications with Multiple Models

Here, we analyze how SAT is related to downstream tasks involving more than
one model. First, we show that using more diverse models will lead to better
ensemble performance. Second, we study the relationship between knowledge
distillation and SAT. Furthermore, we can suggest a similarity-based guideline
for choosing a teacher model when distilling to a specific architecture. Through
these observations, we can provide insights into the necessity of diverse models.

5.1 Model Diversity and Ensemble

Settings. The model ensemble is a practical technique for achieving high per-
formance. However, only few works have studied the relationship between en-
semble performance and model similarity, particularly for large-scale complex
models. Previous studies are mainly conducted on tiny datasets and linear mod-
els [57]. We investigate the change of ensemble performance by the change of
similarity based on the unweighted average method [52] (i.e., averaging the logit
values of the ensembled models). Because the ensemble performance is sensitive
to the original model performances, we define Error Reduction Rate (ERR) as
1− Errens(M)

1
|M|

∑
m∈M Err(m)

, where M is the set of the ensembled models, ERR(m) de-

notes the top-1 ImageNet validation error of model m, and Errens(·) denotes the
top-1 error of the model ensemble results.

Results. We first measure the 2-ensemble performances among the 69 architec-
tures (i.e., the number of ensembles is

(
69
2

)
= 2346). We plot the relationship

between SAT and ERR in Fig. 6. We observe that there exists a strong negative
correlation between the model similarity and the ensemble performance (Pearson
correlation coefficient −0.32 with p-value ≈ 0 and Spearman correlation −0.32
with p-value ≈ 0, i.e., more diversity leads to better ensemble performance.

We also conduct N -ensemble experiments with N ≥ 2 based on our clustering
results in Tab. 1. We evaluate the average ERR of the ensemble of models from
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Fig. 7: Model diversity and ensemble performance. We report ensemble per-
formances by varying the number of ensembled models (N) and the diversity of the
models. The diversity is controlled by choosing the models from k different clusters.
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Fig. 8: Diversity by training techniques and ensemble. We report the the same
metrics as Fig. 7 for various ResNet-50 and ViT-S models in Tab. 2.

k clusters, i.e., if N = 5 and k = 3, the ensembled models are only sampled
from the selected 3 clusters while ignoring the other 7 clusters. We investigate
the effect of model diversity and ensemble performance by examining k = 1 . . . N
(i.e., larger k denotes more diverse ensembled models). We report the result with
ImageNet top-1 error and ERR in Fig. 7a and Fig. 7b.

In all metrics, we observe that the ensemble of more diverse models shows
better performance. Interestingly, Fig. 7b shows that when the number of clusters
for the model selection (k) is decreased, the ensemble performance by the number
of ensembled models (N) quickly reaches saturation. Tab. 3 shows that the
ensemble performances by choosing the most diverse models via SAT always
outperform the random ensemble. Similarly, Fig. 7c shows that the number of
wrong samples by all models is decreased by selecting more diverse models.

Training Strategy vs. Architecture in the ensemble scenario? Remark that Tab. 2
showed that the different training strategies are not as effective as different ar-
chitectures for diversity. To examine this on the ensemble scenario, we report
the ensemble results of different training strategies, i.e., the same ResNet-50
and ViT-S in Tab. 2. For comparison with different architectures, we also report
the ensemble of different architectures where all ensembled models are from dif-
ferent clusters (i.e., N=k in Fig. 7). Fig. 8 shows that although using diverse
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Fig. 9: Cross-dataset SAT results. SAT measured on ImageNet also has a positive
correlation with ensemble performances on Flowers-102 [71].
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Fig. 10: Empircial comparison. Relationship between the model similarity, includ-
ing SAT, Somepalli et al. [83] and Tramèr et al. [95], and 2-ensemble performance.

training regimes (blue lines) improves ensemble performance compared to other
techniques (red and green lines), the improvements by using different architec-
tures (yellow lines) are more significant than the improvements by using different
training regimes (blue lines) with large gaps.

Generalizability to other datasets. We examine whether more diverse architec-
tures in ImageNet SAT also lead to better ensemble performances on the other
datasets. We fine-tuned all 69 architectures to the Flowers-102 dataset [71], and
filter out low performing models (< 95% top-1 accuracy). After the filtering, we
have 16 fine-tuned models. Using the fine-tuned models, we plot the relation-
ship between the Flowers-102 ensemble performance and SAT score measured in
ImageNet. Fig. 9 shows that SAT also highly correlates with Flowers ensemble
performances, despite that SAT is measured on ImageNet. This experimental
result supports that SAT similarity can be applied in a cross-domain manner.

Comparison of different similarity functions in the ensemble scenario. Finally,
we compare the impact of the choice of the similarity function and the ensemble
performance when following our setting. We compare SAT with Somepalli et al.
[83] and Tramèr et al. [95] on the 2-ensemble scenario with 8 out of 69 models due
to the stability issue of Tramèr et al. [95]. Fig. 10 shows the relationship between
various similarity functions and the 2-ensemble performance. We observe that
SAT only shows a strong positive correlation (blue line), while the others show
an almost random or slightly negative correlation. Finally, in Appendix A.2, we
compare SAT with Somepalli et al. [83] and a naive architecture-based clustering
using our features under the same setting of Fig. 7 and 8. Similarly, SAT shows
the best ensemble performance against the comparison methods.
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5.2 Model Diversity and Knowledge Distillation

Knowledge distillation (KD) [44] is a training method for transferring rich knowl-
edge of a well-trained teacher network. Intuitively, KD performance affects a lot
by choice of the teacher network; however, the relationship between similarity
and KD performance has not yet been explored enough, especially for ViT. This
subsection investigates how the similarity between teacher and student networks
contributes to the distillation performance. There are several studies showing
two contradictory conclusions; Jin et al . [51] and Mirzadeh et al . [68] showed
that a similar teacher leads to better KD performance; Touvron et al . [93] reports
that distillation from a substantially different teacher is beneficial for ViT.

We train 25 ViT-Ti models with different teacher networks from 69 mod-
els that we used by the hard distillation strategy [44]. Experimental details are
described in Appendix. Fig. 11a illustrates the relationship between the teacher-
student similarity and the distillation performance. Fig. 11a tends to show a
not significant negative correlation between teacher-student similarity and dis-
tillation performance (−0.32 Pearson correlation coefficient with 0.12 p-value).
However, if we only focus on when the teacher and student networks are based
on the same architecture (i.e., Transformer), we can observe a strong positive
correlation (Fig. 11b) – 0.70 Pearson correlation coefficient with 0.078 p-value.
In this case, our observation is aligned with [51, 68]: a teacher similar to the
student improves distillation performance. However, when the teacher and stu-
dent networks are based on different architectures (e.g ., CNN), then we can
observe a stronger negative correlation (Fig. 11c) with −0.51 Pearson correla-
tion coefficient and 0.030 p-value. In this case, a more dissimilar teacher leads
to better distillation performance. We also test other factors that can affect dis-
tillation performance in Appendix; We observe that distillation performance is
not correlated to teacher accuracy in our experiments.

Why do we observe contradictory results for Transformer teachers (Fig. 11b)
and other teachers (Fig. 11c)? Here, we conjecture that when the teacher and
student networks differ significantly, distillation works as a strong regularizer. In
this case, using a more dissimilar teacher can be considered a stronger regularizer
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(b) Transformer teachers
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Fig. 11: Model diversity and distillation performance. (a) We show the rela-
tionship between teacher-student similarity and distillation performance of 25 DeiT-S
models distilled by various teacher networks. We show the relationship when the teacher
and student networks are based on (b) Transformer and (c) otherwise.
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(Fig. 11c). On the other hand, we conjecture that if two networks are similar,
then distillation works as easy-to-follow supervision for the student network. In
this case, a more similar teacher will work better because a more similar teacher
will provide more easy-to-follow supervision for the student network (Fig. 11b).
Our experiments show that the regularization effect improves distillation perfor-
mance better than easy-to-follow supervision (i.e., the best-performing distilla-
tion result is by a CNN teacher). Therefore, in practice, we recommend using
a significantly different teacher network for achieving better distillation perfor-
mance (e.g ., using RegNet [74] teacher for ViT student as [93]).

6 Discussion

In Appendix G, we describe more discussions related to SAT. We first propose an
efficient approximation of SAT when we have a new model; instead of generating
adversarial samples from all models, only generating adversarial samples from
the new model can an efficient approximation of SAT (Appendix G.1). We also
show that SAT and the same misclassified samples have a positive correlation in
Appendix G.2. Appendix G.3 demonstrates that we can estimate the similarity
with a not fully trained model (e.g ., a model in an early stage). Finally, we
describe more possible applications requiring diverse models (Appendix G.4).

7 Conclusion

We have explored similarities between image classification models to investi-
gate what makes the model similar or diverse and whether developing and using
diverse models is required. For quantitative and model-agnostic similarity as-
sessment, we have suggested a new similarity function, named SAT, based on
attack transferability demonstrating differences in input gradients and decision
boundaries. Using SAT, we conduct a large-scale and extensive analysis using
69 state-of-the-art ImageNet models. We have shown that macroscopic architec-
tural properties, such as base architecture and stem architecture, have a more
significant impact on similarity than microscopic operations, such as types of
convolution, with numerical analysis. Finally, we have provided insight into the
ML applications using multiple models based on SAT, e.g ., model ensemble or
knowledge distillation. Overall, we suggest using SAT to improve methods with
multiple models in a practical scenario with a large-scale training dataset and a
highly complex architecture.
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