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Abstract. Semi-supervised learning has emerged as a widely adopted
technique in the field of medical image segmentation. The existing works
either focuses on the construction of consistency constraints or the gener-
ation of pseudo labels to provide high-quality supervisory signals, whose
main challenge mainly comes from how to keep the continuous improve-
ment of model capabilities. In this paper, we propose a simple yet ef-
fective semi-supervised learning framework, termed Progressive Mean
Teachers (PMT), for medical image segmentation, whose goal is to gen-
erate high-fidelity pseudo labels by learning robust and diverse features
in the training process. Specifically, our PMT employs a standard mean
teacher to penalize the consistency of the current state and utilizes two
sets of MT architectures for co-training. The two sets of MT architec-
tures are individually updated for prolonged periods to maintain stable
model diversity established through performance gaps generated by itera-
tion differences. Additionally, a difference-driven alignment regularizer is
employed to expedite the alignment of lagging models with the represen-
tation capabilities of leading models. Furthermore, a simple yet effective
pseudo-label filtering algorithm is employed for facile evaluation of mod-
els and selection of high-fidelity pseudo-labels outputted when models
are operating at high performance for co-training purposes. Experimen-
tal results on two datasets with different modalities, i.e., CT and MRI,
demonstrate that our method outperforms the state-of-the-art medical
image segmentation approaches across various dimensions. The code is
available at https://github.com/Axi404/PMT.

Keywords: Semi-supervised learning · Medical image segmentation ·
Temporal consistency regularization

1 Introduction

Semi-supervised learning is an important field in deep learning, which offers
an effective way to tackle problems with limited labeled data [16, 25, 27, 32, 33].
With the continuous emergence of large-scale data, semi-supervised learning has
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Fig. 1: Motivation of our PMT. In particular, the standard MT helps to learn robust
features by keeping the consistency between teacher and student networks at the cur-
rent iteration, while our PMT further helps to learn diverse features by maintaining
the difference between student networks at different iterations. As a result, more and
more high-fidelity pseudo labels will be generated for semi-supervised medical image
segmentation.

become a hot topic in both machine learning and computer vision communities.
It has gained particular attention in the medical image segmentation [21], due to
the need for expert annotation in determining the accurate boundaries of targets.
As a result, the labeled data is very lacking in medical image segmentation, which
makes the semi-supervised learning very popular in this domain.

Most of the semi-supervised learning methods involve seeking a guidance
mechanism using limited annotated data, so as to maximize the usage of un-
labeled data to train the models on different downstream tasks. In general,
two technologies, i.e., consistency regularization [9, 10] and pseudo label gen-
eration [10, 19], are commonly used in semi-supervised medical segmentation.
The former ones aim at enhancing the representation capability of networks by
exploring the consistency based on different prior assumptions [5], while the
latter ones focus on improving the performance on downstream tasks by gen-
erating the pseudo labels based on current model capability. For example, the
well-known Mean Teacher (MT) [19] utilizes an ingenious Exponential Moving
Average (EMA) that is equivalent to data augmentation and enforces consistency
regularization between the outputs of teacher and student models. Besides, the
representative Noisy Student [26] designs a teacher model to generate pseudo
labels, so as to train a larger student model.

Even though the above methods have achieved significant improvements in
semi-supervised medical image segmentation, we still argue that they are weak
in exploring high-quality supervisory signals to consistently enhance the model’s
capability. To address this issue, an iterative unified optimization framework has
been introduced to semi-supervised medical image segmentation [20, 23, 24], in
which the consistency regularization strategy is taken to enhance the model’s
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representation capability and the pseudo label generation algorithm is applied
to generate high-fidelity pseudo labels. For example, the recent MCF [23] takes
VNet and 3D ResNet for representation learning, and heterogeneous networks
for dynamic pseudo label generation. The challenges to these methods lies on
how to continuously generate diverse pseudo labels in the forward propagation,
and enhance model’s capability in the backward propagation.

In this paper, we design a novel semi-supervised learning framework, termed
Progressive Mean Teachers (PMT), for medical image segmentation, whose main
idea focuses on how to obtain a diverse set of accurate pseudo labels. Inspired by
the positive relationship between iteration and performance, we try to maintain
the diversity of networks by exploring their states at different training epochs.
Specifically, the standard MT is first taken as basic architecture to learn the
parameters of network at each iteration, which can enhance the network’s repre-
sentation capability by using the EMA data augmentation. Our PMT further ex-
plores network diversity during training, alternating between two homogeneous
MT architectures trained on the same dataset, a process we term progressive
design. These models exhibit significant iteration leads due to alternating con-
tinuous individual updates, establishing performance gaps between networks at
different epochs, as shown in Fig. 1. Consequently, the student network can
acquire robust yet diverse features for medical image segmentation. Then, the
Discrepancy Driven Alignment (DDA) regularizer is further designed to exam-
ine disparities between predictions obtained by the student network at different
training epochs, facilitating rapid alignment to high-fidelity generated images.
Finally, we design a simple Pseudo Label Filtering (PLF) algorithm to refine the
basic interaction process, enabling the retention of high-fidelity pseudo-labels
for training by comparing student network performance across different training
epochs. As a result, more and more high-fidelity pseudo labels can be fed to
train the other student networks, which will in turn to generate more accurate
predictions for pseudo label generation.

In summary, the main contributions of this work are as follows: (1) We de-
sign a novel Progressive Mean Teacher framework for semi-supervised medical
image segmentation. (2) We design a novel Discrepancy Driven Alignment reg-
ularizer to rapidly align the representational capacity gap between lagging and
leading networks. (3) We design a simple yet effective Pseudo Label Filtering
algorithm to select high-fidelity pseudo labels. Extensive experiments in both
Left Atrial [28] and Pancreas-NIH [17] datasets show that our PMT can achieve
the state-of-the-art results in semi-supervised medical image segmentation.

2 Related Work

2.1 Consistency Regularization

Consistency regularization is often employed in semi-supervised learning, so
as to enhance the stable representational capacity of model. The behind idea is
to preserve the invariance of predictions made by the same model when facing
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perturbations applied in different regions, by constraining the consistency be-
tween output results under different perturbations. For example, Π model [9]
introduces image-level regularization by adding perturbations to images. The
well-known MT [19] introduces parameter-level regularization by using EMA to
constrain the outputs between teacher and student models. Thanks to its simplic-
ity and effectiveness, more and more works are paying attention to improve the
generalization ability by formulating different consistency regularizers. For exam-
ple, SASSnet [11] focuses on the regularity of geometric shapes for target object
classes within consistency regularization. Besides, CPCL [29] establishes regu-
larization between supervised and unsupervised training within a cyclic frame-
work. Furthermore, some later works have made progress in regularization at
different task and model levels. For example, DTC [12] introduces task-level reg-
ularization, presenting a novel dual-task consistency semi-supervised framework.
Besides, MCF [23] introduces model-level regularization by using heterogeneous
models to constrain output consistency. Compared to previous work, our PMT
seeks the cross-temporal regularization between different training periods, which
can help learn diverse yet robust features for subsequent pseudo label generation.

2.2 Pseudo Label Generation

Pseudo label generation is often employed in semi-supervised learning, so
as to enhance the discriminative ability of model. The behind idea is to train
a prior model with the labeled data and then apply it to generate the pseudo
labels for unlabeled data. It is widely accepted to categorize pseudo-label gener-
ation into two methods [7], direct generation focuses on selecting pseudo labels
with higher confidence, while indirect generation explores methods to generate
high-fidelity pseudo labels. For direct generation, work [10] uses a fixed thresh-
old to choose high-confidence pseudo labels. SsaNet [22] employs a trust module
to reevaluate pseudo labels. UA-MT [30] introduces uncertainty estimation to
filter out unreliable pseudo labels. Co-BioNet [15] introduces a feedback network
to measure the uncertainty and choose high-confidence predictions of different
models. For indirect generation, Tri-Net [6] is proposed to use two subnetworks
to generate pseudo labels for a third subnetwork. Work [1] improves pseudo label
generation using Simple Linear Iterative Clustering (SLIC) algorithm. MCF [23]
dynamically generates pseudo labels using a heterogeneous network and effec-
tively addresses cognitive bias, while DeSCO [3] focuses on the spatial correlation
of medical images and generates pseudo labels using orthogonal slices. Compared
to previous work, our PMT emphasizes the enhancement of pseudo label quality
in the temporal domain and generates diverse and robust pseudo labels across
different training periods, significantly improving performance.

2.3 Multi-Model Framework

The multi-model framework is often employed in semi-supervised learning,
so as to enhance the model representation by acquiring multiple views or di-
versity. Its development aligns closely with consistency regularization. Here, we
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Fig. 2: An overview of PMT. We employed a progressive design and utilized the ar-
chitecture of MT. The PMT framework maintains a data buffer of length B for cross-
temporal training. The total loss function Ltotal for each network includes supervised
losses LCE,LDICE,Laln, and unsupervised loss LU, LT.

focus on the evolution of model structures. For example, MT [19] introduces a
Teacher model with significantly improved representation capabilities at a lower
cost using EMA, establishing the MT architecture. Besides, CPC [8] utilizes
the confidence vector of multi-model outputs as pseudo-labels for co-training,
while CPS [4] employs one-hot labels, both considered as starting points for co-
training. In recent years, efforts have been made to combine these approaches.
For example, UCMT [18] employs two student models for co-training, simulta-
neously updating the same Mean Teacher using EMA, while Dual Teacher [14]
alternates updates between two Teacher models using EMA with a single stu-
dent model, thereby fostering diversity among Teacher models. Compared to
previous work, our PMT utilizes two sets of Mean Teachers in a progressive
training framework, and employ two student models to update teacher models
independently. This enables our model to rapidly establish robust performance
disparities across iteration gap and maintain stable diversity among models.

3 Method

3.1 The Overall Process of PMT

The training process of PMT is illustrated in Fig. 2. As previously men-
tioned, PMT can consist of multiple networks. For ease of explanation, the num-
ber of networks is assumed to be two by default in our work. In our approach,
these networks share the same structure and can be denoted as fi(·) ∈ F , where
F stands for the function space within which these networks reside. In a semi-
supervised process, the training data includes a small number of labeled data
denoted as DL = {(xL

i , y
L
i )}Ni=1, and a large amount of unlabeled data denoted
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as DU = {(xU
i )}

N+M
i=N+1, where N ≪ M , xi ∈ RH×W×D represents medical vol-

umes, and yi ∈ {0, 1}H×W×D represents ground truth labels. Batches of input
data X consist of an equal proportion of labeled data (XL,YL) and unlabeled
data XU . These volumes are fed into fi(·) and fi+1(·):

Ŷi = fi(X), Ŷi+1 = fi+1(X). (1)

The output consists of volume predictions for both labeled and unlabeled data:
Ŷ = ŶL ∪ ŶU . For the sake of simplicity, the network index subscripts are
omitted here.

We have ingeniously reintroduced MT architecture into the framework of
semi-supervised learning. The introduction serves the purpose that, while pro-
viding high-fidelity pseudo labels to the model, the model’s architecture needs
to support the stable improvement of its representational capacity, aiming for
better performance, while maintaining stable diversity. The teacher network is
structurally identical to the student network but does not actively participate
in the training process. Instead, it updates all of its parameters through EMA
and applies consistency regularization to the student model through its output.
The parameter is updated as follows:

θteacher = αθteacher + (1− α)θstudent, (2)

where θteacher represents the parameters of teacher network, θstudent represents
the parameters of student network, and α is the EMA decay rate.

In practice, we propose a cross-temporal training approach, which involves
introducing a phase shift among different models during iterations and training
the most lagging model in terms of iterations. To ensure that each model can
train across temporal, the number of iterations for the model recorded in the
sequence of iterations is denoted as Ii. Our model maintains a static iteration
gap through the data buffer length B:

∀i ∈ [1, n− 1],Lar(I, i)− Lar(I, i+ 1) =
B

(n− 1)
, (3)

where, Lar(I, i) represents the i-th largest number in I.
During each training iteration, the model with the least advanced iteration

progress, referred to as the Current Progressive Model (CPM), sequentially uti-
lizes data from the buffer for training until it has advanced ahead of the model
with the most advanced iteration progress B/n times. Throughout the training
process, the PLF screens out pseudo-labels generated by models whose perfor-
mance is inferior to that of the CPM by measuring the performance gap between
the CPM and other models, and learns from the remaining pseudo-labels. Simul-
taneously, the model computes the DDA with respect to a given input X and,
along with all other models, examines regions of inconsistent predictions among
different networks. When the performance of the CPM lags behind that of other
models, the DDA corrects the CPM, enabling it to quickly align its performance
with models that outperform it. It is worth noting that if the CPM is the best-
performing model for that iteration, it will not guide other models in reverse. It
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Fig. 3: Illustration of PLF and DDA. PLF is utilized for comparing the representational
capacity of models, while DDA aligns model outputs by examining differences.

receives guidance during the training process and only guides others once they
have completed training.

3.2 Pseudo Label Filtering

To guide the learning of the current progressive model effectively, we intro-
duce PLF, as shown in Fig. 3 (a). PLF involves a naive approximation where we
consider the representational capacity of models during the supervised learning
phase as a criterion for judging the representational capacity during the unsu-
pervised learning phase to some extent. During the supervised learning phase,
PLF entails inference by all models, and through combining labels, calculates
the representational capacity of each model in the current iteration. The metrics
for evaluating representational capacity vary with tasks; in this task, the Dice
loss is regarded as a statistical measure of model performance. We utilize the
representational capacity of the CPM as a threshold and filter out pseudo-labels
generated by models with representational capacities below that of the CPM.
The pseudo label’s passage through the PLF is recorded as P(fi, fi+1), where
a value of 1 denotes passage and 0 denotes exclusion. This aids in the model’s
better learning of pseudo-labels with high fidelity. Furthermore, to ensure that
the pseudo-labels are accurate and well-defined, we apply a sharpening function
to high-fidelity pseudo-labels:

YU =
Ps

1/T

Ps
1/T + (1−Ps)1/T

, (4)

where Ps represents the output of the good student, and T is a hyperparameter.
The resulting loss function LU is computed as MSE between the pseudo labels

YU and the model’s predictions of CPM ŶU
c :

LU = MSE(ŶU
c ,Y

U ). (5)
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3.3 Discrepancy Driven Alignment

We propose DDA to compare the outputs of multiple models and achieve
rapid alignment between models, as shown in Fig. 3 (b). During the alternating
process of progressive Learning, the performance of two groups of models alter-
nately improves, providing stable pseudo-labels to each other. However, concerns
often arise due to the disappearance of the performance gap between models
caused by random factors. While the expectation is for alternating performance
leadership between models, in practice, it may turn into one model consistently
leading. Therefore, a fast and high-confidence alignment module is needed. In
traditional consistency regularization, contrastive algorithms enforce consistency
among the outputs of different models. However, this approach often raises con-
cerns because we are uncertain whether this consistency regularization guides
the models in the right direction. DDA focuses on the different parts of pre-
dictions among models, which often reflect the differences in representational
capabilities between models. We aim to enhance the consistency regularization
specifically on these parts to achieve alignment of representational capabilities
between models. It is worth noting that we expect the models aligned by DDA
to have representation capabilities surpassing CPM. Therefore, DDA will only
take effect when PLF allows other models to provide pseudo-labels. The mask
of different parts of predictions among different models can be obtained by tak-
ing the difference between the union and intersection of the binary outputs of
softmax outputs ŶL of multiple networks:

Mdiff =

n⋃
i=1

BINA(ŶL
i )−

N⋂
i=1

BINA(ŶL
i ). (6)

Subsequently, MSE of the model’s predictions is computedand denoted as
Mdist:

Mdist = MSE
(
ŶL

i ,Y
L
)
. (7)

Next, the total count of elements in Mdiff is calculated, and Mdiff is used
to mask Mdist. The ratio of the sum of the masked Mdist to the total count of
elements in Mdiff is denoted as Laln, which characterizes the gap to the ground
truth within the prediction differences between two models:

Laln =

∑
(Mdiff · Mdist)∑

(Mdiff)
. (8)

3.4 Loss Function

In general, during an iteration cycle, CPM conducts the process of backward
propagation concerning its loss function, which is defined as follow:

Ltotal = Ls + λ1P(fi, fi+1)LU + λ2LT, (9)



Progressive Mean Teacher 9

where λ1 and λ2 increase as the number of iterations grows, up to a point where
they stop growing after a fixed iterations.

We employed two independent Gaussian warm-up function to control the loss
function weights, λ1 and λ2, using different parameters:

λ1(t) =

{
λ̂1 · e−5(1− 2t

tmax
)
2

, t < tmax

2

λ̂1, t ≥ tmax

2

λ2(t) =

{
λ̂2 · e−5(1− 2t

tmax
)
2

, t < tmax

2

λ̂2, t ≥ tmax

2

(10)

where t represents the current iteration number, and tmax represents the total
number of training iterations. The hyperparameter λ̂1 and λ̂2 were empirically
set to 20.0 and 10.0.

Loss function Ls represents the loss during supervised learning and consists
of the following components:

Ls = CE+DICE+βP(fi, fi+1)Laln(Mdiff,Mdist), (11)

where β, a constant set to 0.5, is used to balance alignment loss and other losses.
Loss function LT is the consistency loss generated by the MT, which is de-

rived by the teacher through the sharpen function to convert the model outputs
into pseudo-labels, and subsequently generated by computing the MSE with the
student model:

LT = MSE

(
fi
(
XU
)
,

Pt
1/T

Pt
1/T + (1−Pt)1/T

)
. (12)

4 Experiments

4.1 Implementation Details

We selected the VNet [13] model as a baseline network, which performs well
in conditions with limited data and is essentially a 3D convolutional version of
UNet. During inference, we use the average of the outputs from two networks
as the final prediction. Specifically, the SGD optimizer was used to update the
network parameters with weight decay of 0.0001 and a momentum of 0.9. The
initial learning rate was set to 0.01, divided by 10 every 2500 iterations, for a
total of 6000 iterations.

Following the practice in comparative literature [11, 12, 23, 30], our methods
are trained for a fixed number of 6,000 iterations to obtain the final model.
Additionally, our models all use a batch size of 4, with a labeled data quantity of
2. We tested the performance of the models, and all experiments were conducted
on NVIDIA® GeForce A40 48GB running Ubuntu 20.04 and PyTorch 1.11.0.
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4.2 Datasets and Metrics

In the experiment, we selected two datasets with different modalities and
utilized four distinct metrics to assess the performance of the model. For each
dataset, 80% of the data was used as the training set and 20% as the test set.
The proportion of supervised data was determined based on the training set.

LA Dataset. It [28] includes 100 3D gadolinium-enhanced MR imaging
volumes of left atrial with an isotropic resolution of 0.625 × 0.625 × 0.625mm3

and the corresponding ground truth labels. For pre-processing, we first normalize
all volumes to zero mean and unit variance, then crop each 3D MRI volume with
enlarged margins according to the targets. During training, the training volumes
are randomly cropped to 112 × 112 × 80 as the model input. During inference,
a sliding window of the same size is used to obtain segmentation results with a
stride of 18× 18× 4.

Pancreas-NIH Dataset. It [17] provides 82 contrast-enhanced abdominal
3D CT volumes of pancreas with manual annotation. The size of each CT volume
is 512×512×D, where D ∈ [181, 466]. In pre-processing, we use the soft tissue CT
window of [−120, 240] HU, and we crop the CT scans centering at the pancreas
region, and enlarge margins with 25 voxels. The training volumes are randomly
cropped to 96×96×96 as the model input. During inference, a sliding window of
the same size is used to obtain segmentation results with a stride of 16×16×16.

Metrics. Following [2, 11, 12, 23, 29, 30], we use four metrics to evaluate
model performance, including regional sensitive metrics: Dice similarity coef-
ficient (Dice) [30], Jaccard similarity coefficient (Jaccard) [12], and edge sensi-
tive metrics: 95% Hausdorff Distance (95HD) [29] and Average Surface Distance
(ASD) [2].

4.3 Ablation Study

For simplicity, we conducted ablation experiments on LA dataset to evaluate
our design choices for each component. For a reliable assessment, all other parts
were kept consistent except for the component under investigation.

Analysis of PMT Framework. The PMT architecture under progressive
design is at the core of our work, wherein progressive design ensures the continu-
ous generation of diverse pseudo-labels during the forward propagation process.
Within the PMT architecture, PLF and DDA respectively denote the pseudo-
label filtering and model alignment methods proposed in our paper, while MT
ensures stable enhancement of model capability. We employ a non-progressive
design co-training framework consisting of two VNet components as the base-
line model. When adding PLF and DDA methods to the baseline model, the
progressive design is simultaneously incorporated into the baseline model. Fi-
nally, we evaluate the impact of the MT architecture on model representation
capability, with results presented in Table 1. Overall, compared to the base-
line model, which already possesses good representation capability, the PMT
framework greatly enhances the model’s representation capability.
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Table 1: Ablation results about PMT framework on LA dataset

Method Labeled Metrics

PLF DDA MT Dice↑ Jaccard↑ 95HD↓ ASD↓

- - - 8(10%) 88.28 79.31 7.59 2.34
✓ - - 8(10%) 89.90 81.73 6.14 1.72
- ✓ - 8(10%) 90.43 82.60 5.98 1.66
✓ ✓ - 8(10%) 90.43 82.60 5.49 1.49
✓ ✓ ✓ 8(10%) 90.81 83.23 5.61 1.50

Analysis of Regularization Strength. The hyperparameters λ̂1 and λ̂2

respectively characterize the regularization strength of the progressive methods
and MT architecture on the model. We use a tenfold scale and scale λ̂1 and λ̂2

based on the hyperparameter specifications we use, as shown in Table 2. The
results indicate that variations in the two parameters within a certain range do
not significantly affect the model’s performance, demonstrating a certain level
of robustness of our model to parameter variations. Within a certain range, on
the LA dataset with 10% labeled data, our model achieves the best performance
when λ̂1 and λ̂2 are 20.0 and 10.0 respectively.

Table 2: Ablation results about regularization strength on LA dataset

λ Labeled Metrics

λ1max λ2max Dice↑ Jaccard↑ 95HD↓ ASD↓

2.0 1.0 8(10%) 89.66 81.33 6.35 1.84
2.0 10.0 8(10%) 90.47 82.66 5.58 1.64
2.0 100.0 8(10%) 87.74 78.28 9.33 2.84
20.0 1.0 8(10%) 90.67 82.98 6.31 1.77
20.0 10.0 8(10%) 90.81 83.23 5.61 1.50
20.0 100.0 8(10%) 88.00 78.73 9.05 2.78
200.0 1.0 8(10%) 89.08 80.42 11.40 3.07
200.0 10.0 8(10%) 89.75 81.47 7.08 2.22
200.0 100.0 8(10%) 83.80 72.55 16.44 5.11

4.4 Comparison with Other Methods

We compared our approach with previous state-of-the-art methods on LA
dataset and Pancreas-NIH dataset.

We chose VNet as baseline models for comparison. For the selected alterna-
tive models, we opted for UA-MT [30] with uncertainty estimation, SASSNet [11]
focusing on the regularity of geometric shapes, DTC [12] with task-level regular-
ization, BCP [2] using bidirectional CutMix [31], and MCF [23] with model-level
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regularization, with BCP and MCF being state-of-the-art results. Noting that,
for BCP, we follow its parameter settings for pre-training 2,000 times and self-
training 15,000 times.

Comparison on LA Dataset. We conducted a cross-model comparison
on the classic LA dataset. We tested with 5% and 10% of labeled data. Re-
sults of the experiments are presented in Table 3. To provide a more intuitive
demonstration of the performance of various models on the LA dataset, we have
selected some representative results for visualization, as illustrated in Fig. 4.
Areas with inaccurate segmentation have been annotated accordingly.

Table 3: Comparison results on LA dataset with 5% and 10% labeled data

Method Labeled Metrics

Dice↑ Jaccard↑ 95HD↓ ASD↓

VNet 4(5%) 52.55 39.60 47.05 9.87
UA-MT 4(5%) 82.26 70.98 13.71 3.82
SASSNet 4(5%) 81.60 69.63 16.16 3.58

DTC 4(5%) 81.25 69.33 14.90 3.99
MCFSOTA 4(5%) - - - -
BCPSOTA 4(5%) 88.02 78.72 7.90 2.15

PMT(Ours) 4(5%) 89.47 81.04 6.45 1.86

VNet 8(10%) 82.74 71.72 13.35 3.26
UA-MT 8(10%) 86.28 76.11 18.71 4.63
SASSNet 8(10%) 85.22 75.09 11.18 2.89
MCFSOTA 8(10%) 88.71 80.41 6.32 1.90
BCPSOTA 8(10%) 89.62 81.31 6.81 1.76

PMT(Ours) 8(10%) 90.81 83.23 5.61 1.50

Our model outperformed previous models on all four metrics across 5% and
10% labeled data. At 5% of the data, compared to the best results from previous
work, our PMT showed a 1.45% improvement in Dice, a 2.32% improvement in
Jaccard, a reduction of 1.45 in 95HD, and a reduction of 0.29 in ASD. Our PMT
also showed a 1.19% improvement in Dice, a 1.92% improvement in Jaccard, a
reduction of 1.20 in 95HD, and a reduction of 0.26 in ASD at 10% of the data.
It is noteworthy that our model maintains good performance even with a small
amount of data. In comparison with state-of-the-art results, our model achieves
a leading performance in the majority of metrics using only half of their data.
For instance, we surpass MCF’s performance at 10% labeled data using only
5% labeled data. The above indicates that our model achieves superior results
compared to existing methods on differently proportioned annotated data in the
task of segmenting the left atrium.

Comparison on Pancreas-NIH Dataset. We conducted a cross-model
comparison on the classic Pancreas dataset. Detailed results of the experiments
are presented in Table 4. We tested with 10% and 20% of labeled data. To
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(g) Ours (h) GT(b) UA-MT (d) DTC(c) SASSNet  (a) VNet (e) BCP (f) MCF

Fig. 4: 2D & 3D segmentation visualization of different semi-supervised methods under
10% labeled on LA (upper) and pancreas (bottom) dataset.

provide a more intuitive demonstration of the performance of various models
on the Pancreas-NIH dataset, we have selected some representative results for
visualization, as illustrated in Fig. 4. Areas with inaccurate segmentation have
been annotated accordingly. It is worth noting that the results in the table clearly
indicate that Pancreas-NIH dataset is significantly more challenging than LA
dataset. Therefore, we increased λ̂1 by a factor of two, resulting in improved
performance.

Our model outperformed previous models on all four metrics across 10% and
20% labeled data. At 10% of the data, compared to the best results from previous
work, our PMT showed a 7.17% improvement in Dice, a 9.09% improvement in
Jaccard, a reduction of 6.35 in 95HD, and a reduction of 2.10 in ASD. Our PMT
also showed a 0.31% improvement in Dice, a 0.55% improvement in Jaccard,
and a reduction of 0.36 in ASD at 20% of the data. The above indicates that
our model achieves superior results compared to existing methods on differently
proportioned annotated data in the task of segmenting the pancreas.

5 Conclusion

In this paper, we propose a semi-supervised medical image segmentation
framework named Progress Mean Teacher (PMT). PMT adopts a progressive
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Table 4: Comparison results on Pancreas-NIH dataset with 10% and 20% labeled data

Method Labeled Metrics

Dice↑ Jaccard↑ 95HD↓ ASD↓

VNet 6(10%) 55.60 41.74 45.33 18.63
UA-MT 6(10%) 66.34 53.21 17.21 4.57
SASSNet 6(10%) 68.78 53.86 19.02 6.26

DTC 6(10%) 69.21 54.06 17.21 5.95
BCPSOTA 6(10%) 73.83 59.24 12.71 3.72
MCFSOTA 6(10%) - - - -

PMT(Ours) 6(10%) 81.00 68.33 6.36 1.62

VNet 12(20%) 72.38 58.26 19.35 5.89
UA-MT 12(20%) 76.10 62.62 10.84 2.43
SASSNet 12(20%) 77.66 64.08 10.93 3.05

DTC 12(20%) 78.27 64.75 8.36 2.25
BCPSOTA 12(20%) 82.91 70.97 6.43 2.25
MCFSOTA 12(20%) 75.00 61.27 11.59 3.27

PMT(Ours) 12(20%) 83.22 71.52 7.60 1.89

design training process, establishing temporal-level model alignment and pseudo-
label filtering while leveraging a network architecture based on MT. The core idea
of this model framework is to generate diverse pseudo-labels consistently during
the backpropagation process by establishing representation capability differences
caused by iteration gaps, thereby stabilizing and enhancing the model’s repre-
sentation capability. In addition to the progressive architecture, PMT employs
two simple yet effective methods, Pseudo Label Filtering (PLF) and Discrep-
ancy Driven Alignment (DDA). PLF utilizes the representation capability of
the model to filter pseudo-labels, discarding low-fidelity ones detrimental to co-
training, while DDA aligns the differences in model predictions, allowing lagging
models to catch up with leading models rapidly. Results from ablation exper-
iments demonstrate that each component of the PMT framework significantly
enhances the model’s performance. In comparative experiments with other meth-
ods, PMT achieves state-of-the-art performance in terms of accuracy , surpassing
previous methods significantly, and maintains this advantage compared to other
methods in situations with more limited data and more challenging tasks.

Limitation and Future Work. Despite the outstanding performance of
PMT, there is still room for further exploration of semi-supervised training archi-
tectures established through temporal consistency. Investigating more advanced
and stable strategies under a progressive design paradigm, and assessing whether
they can further enhance performance, are topics worthy of further research in
the future.
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