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change in Google's
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last one month
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Washington

Using the popup
opened, scroll over
to find weather in
Chicago on 18th

September 

import pyautogui

pyautogui.moveTo(210,
179)
pyautogui.dragTo(243,
179, button="left")

import pyautogui

pyautogui.click(398, 167)
pyautogui.write
("Seattle, WA")
pyautogui.press
("enter")

import pyautogui

pyautogui.moveTo(410,
207)
pyautogui.hscroll(10)
pyautogui.click(410, 207)

Fig. 1: OmniACT dataset and benchmark for enabling autonomous human-computer
interaction agents. The left shows an image paired with a natural language task de-
scription as the input, the right shows the resulting action script to be executed on the
screen. Examples are presented from Stocks, Apartments, and Weather application.

Abstract. For decades, human-computer interaction has fundamentally
been manual. Even today, almost all productive work done on the com-
puter necessitates human input at every step. Autonomous virtual agents
represent an exciting step in automating many of these menial tasks.
Virtual agents would empower users with limited technical proficiency
to harness the full possibilities of computer systems. They could also en-
able the efficient streamlining of numerous computer tasks, ranging from
calendar management to complex travel bookings, with minimal human
intervention. In this paper, we introduce OmniACT, the first-of-a-kind
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dataset and benchmark for assessing an agent’s capability to generate
executable programs to accomplish computer tasks. Our scope extends
beyond traditional web automation, covering a diverse range of desktop
applications. The dataset consists of fundamental tasks such as “Play the
next song", as well as longer horizon tasks such as “Send an email to John
Doe mentioning the time and place to meet". Specifically, given a pair of
screen image and a visually-grounded natural language task, the goal is
to generate a script capable of fully executing the task. We run several
strong baseline language model agents on our benchmark. The strongest
baseline, GPT-4, performs the best on our benchmark However, its per-
formance level still reaches only 15% of the human proficiency in gener-
ating executable scripts capable of completing the task, demonstrating
the challenge of our task for conventional web agents. Our benchmark
provides a platform to measure and evaluate the progress of language
model agents in automating computer tasks and motivates future work
towards building multimodal models that bridge large language models
and the visual grounding of computer screens.

Keywords: Generalist Agent · Multimodal Machine Learning · Dataset
and Benchmark · Vision Language Understanding · UI grounding · Human-
computer interaction

1 Introduction

Performing computer tasks based on natural language instructions has been a
long-standing goal of artificial intelligence [49]. One concrete objective in the
line of research is to develop generalist agents that can assist humans in doing
computer tasks [21], such as “Order a pizza from Domino’s" or “Write a message
to John." The agent should be able to open the application and perform the
task. Executing these actions on a personal computer involves a sequence of
interactions with a mouse and keyboard. For example, the simple task of writing
an email involves hovering over the application icon, clicking it, clicking the ‘New
Email’ button, writing the content of the email, and clicking send. Successfully
sending an email requires accurately predicting the correct action at each step
and accurately executing it, which is a herculean task even for the best agents
today [14].

A generalist agent for computer tasks must understand natural language
instructions, process visual screenshots, and produce the correct sequence of
actions to be performed to achieve the intended task. Several existing approaches
focus on building agents based on the HTML model [9, 40, 62]. However, this
approach introduces several challenges and constraints. These agents are limited
to web applications and often struggle with complex or long-context HTML
code. They cannot interact with native desktop applications or perform tasks
that span multiple applications, like drafting an email using text from a code
editor, without significant alterations. Furthermore, HTML-based agents, which
are inherently powered by text-only language models, typically underperform
in tasks requiring visual cues, such as identifying and clicking a blue button
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on a desktop’s top-right corner. In contrast, humans can easily understand UI
elements like dropdown menus, typable areas, redirections, and options with just
a glance.

Towards the goal of developing a generalist autonomous agent with robust vi-
sual and user interface (UI) understanding capabilities, we introduce a new task
and dataset, OmniACT, containing over 9.8K pairs of images and instructions
(Figure 1) across different operating systems and the web. This dataset includes
screenshots of various UI screens and corresponding natural language instruc-
tions. The objective of these instructions is to generate executable commands
using the PyAutoGUI Python library [1]. PyAutoGUI enables the automation of
the mouse and keyboard operations, which helps to facilitate interactions with
various native applications across macOS, Windows, and Linux. This simpli-
fies completing specified tasks across different web domains and native desktop
applications.

We evaluate several language model-based agent baselines on this dataset, in-
cluding LLaMA [47], Vicuna [7], Palmyra-X (43B) [2], InstructPalmyra-30B [45],
GPT 3.5, and GPT-4 [32]. We experiment with fine-tuning Vicuna-13B and
LLaMA-13B models using QLoRA [10]. We also benchmark multimodal base-
line LLaVa-v1.5-7B, LLaVa-v1.5-13B [47], Gemini-Pro [44] and GPT-4-vision-
preview [55] for the task. Our findings highlight the necessity for a multimodal
model capable of executing these tasks, and our analysis provides insights into
promising future work in the space. Our key contributions are outlined as follows:

1. We release a novel dataset of desktop and website applications consisting of
over 9.8K natural language tasks, UI screens, and corresponding code snip-
pets collected through human annotation. We introduce custom performance
metrics tailored for computer tasks.

2. We propose DetACT, a module for creating textual representations of the
screen using signals from OCR, color, and icon-template matching.

3. We conduct a comprehensive benchmark and analysis of state-of-the-art
LLMs and multimodal models on our benchmark. Our results show that
OmniACT is a challenging task for even the best LLM agents today, and
existing models are far below human performance.

2 Related Work

2.1 UI Understanding

User interface (UI) understanding has garnered interest from researchers in
the machine learning and human-computer interaction communities, evolving
with various models focusing on understanding the semantics of mobile and
web user interfaces. UIBert [3], PixelBERT [16], ActionBert [15], VUT [25],
Screen2Words [48], WidgetCaptioning [24] and Pix2Act [39] are notable models
in this area. They propose approaches for learning the user-interface semantics of
the mobile screen using the image and view hierarchy. These models have demon-
strated effectiveness in tasks like capability prediction, screen segmentation and



4 R. Kapoor, Y. Butala et al.

Table 1: Comparison of OmniACT with other related benchmarks.

Datasets Size Env Type Task
Heterogeneity

Real-World
Portayal

Executional
Correctness

Supports
Desktop
Apps

Continuous Scale
Adaptive

Evaluation
Task

VisualWebArena [20] 910 Web Yes Yes Yes No No Web Navigation
WebArena [62] 812 Web Yes Yes Yes No No Web Navigation
Mind2Web [9] 2350 Web Yes Yes No No No Web Navigation
WebShop [56] 12000 Products Web No No Yes No No Web Navigation

RUSS [53] 80 Web Yes Yes No No No Web Navigation
WebSRC [6] 2735 Web Yes Yes - No No QA

MiniWoB++ [17] 100 Mobile
Websites No No Yes No No Web Navigation

PixelHelp [23] 187 Mobile Yes Yes No No No UI Grounding
MetaGUI [42] 1125 Mobile Yes Yes Yes No No Mobile Navigation

MoTIF [5] 756 Mobile Yes Yes Yes No No Mobile Navigation

AITW [35] 715142 Mobile and Web Yes Yes Yes No No Mobile/Web
Navigation

OmniACT (Ours) 9802 Desktop and Web Yes Yes Yes Yes Yes Code Generation

understanding, and screen caption generation. Lexi [4] and Spotlight [22] pro-
pose models that use vision-only inputs to minimize the reliance on metadata
such as view hierarchy. Furata et al. [11] demonstrates the use of fine-tuning for
multimodal web navigation. The majority of machine learning models trained
for UI understanding leverage the Rico dataset [8] and its extensions, which con-
tain 64,462 unique Android screens and metadata. In addition, [4] released the
UICaptions dataset, which consists of diverse image-captions pairs across a wide
range of applications. PixelHelp [23] also released a corpus to train models that
can interpret natural language instructions and map them to mobile UI actions.

2.2 Autonomous Computer Agents

The advent of large language models (LLMs) has been pivotal in the rapid
advancement of agents that operate on web pages. Recent research such as
ViperGPT [43] Chameleon [29], RCI Agent [18], VisProg [12], and [31] em-
ploy LLMs for planning or action prediction in developing autonomous agents.
Benchmark datasets, such as MiniWoB [40], WebShop [56], Macaw-LLM [30],
ASH-Prompting [41] Mind2Web [9], WebArena [62], AgentBench [28] and Visu-
alWebArena [20] have also been proposed to measure the ability of LLM-based
agents to automate web tasks. These methods mainly involve agents that op-
erate on a text-based Document Object Model (DOM) of HTML scripts. This
limits their understanding of screen context, which is crucial for the model’s
decision-making and action-taking processes. To address this limitation, [35]
released Android in the Wild, a dataset comprising screens, natural language
instructions, and corresponding actions. Following this, [59] proposed a multi-
modal model, AutoUI, which is designed to build an agent on the Android in the
Wild dataset confined to the Android ecosystem. WebAgent [13] utilized Flan-U-
PaLM, for grounded code generation, and HTML-T5 and showed improvement
on real-world websites.

Current benchmarks for autonomous agents focus mainly on the Web or An-
droid environments, posing challenges for tasks involving desktop applications
or spanning multiple applications beyond the web domain. The absence of es-
tablished benchmarks and datasets in this area, coupled with basic methods
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for extracting user interface (UI) elements, underscores the need for significant
progress in developing more versatile autonomous agents capable of handling
diverse tasks beyond the current scope. To highlight the unique features that
OmniACT introduces in the assessment of capable autonomous agents, we pro-
vide a comparison between the existing benchmarks and our proposed bench-
mark, OmniACT, in Table 1.

Application/Website Selection Functionality Tagging Reverse Mapping and Filtering
1 3 5

2 4

UI Screen Segmentation Task Creation

Task 1: 
pyautogui.click("book_1")
pyautogui.press("enter")

...
Task 10:

Label:
Book_Code_Red

Label:
Browse_Romance

_Books

Task 1: 
pyautogui.click("book_1")

pyautogui.press("enter")

Task 1: 
pyautogui.click(324, 236)
pyautogui.press("enter")

Incorrect Syntax
or Action Sequence 

Executable TasksShopping
Government

Health

Information
Travel

Entertainment

Fig. 2: Data Collection Pipeline. (1) We select over 60 applications and websites to
ensure diversity, (2) segment the screen through human-annotated bounding boxes, (3)
label the bounding boxes based on functionality, (4) ask student volunteers to come up
with tasks, given a screen image, and (5) reverse map the textual labels to coordinates
and filter the scripts based on execution and syntax.

3 OmniACT

We introduce a novel dataset and benchmark, OmniACT, which measures the
performance of autonomous agents on both web and desktop applications. Com-
pared to previous benchmarks which focus on text-based reasoning [9,17,40,56,
62], our benchmark aims to measure multimodal agents that bridge large lan-
guage model planners and UI understanding vision models. OmniACT can be
accomplished as a standalone task as it is not under a mock environment.

All actions that a human can execute on the computer can be encoded in
the PyAutoGUI [1] Python framework. This framework allows a user to execute
keyboard and mouse operations by running Python code. The PyAutoGUI code
to execute these tasks is shown in the third column of Figure 1. For other com-
puter tasks, the PyAutoGUI library provides functions such as ‘press’, ‘write’,
and ‘scroll’ which can be used to execute the task. Our dataset consists of paral-
lel data of natural language tasks, UI screenshots, and ground truth PyAutoGUI
scripts that achieve successful execution.
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3.1 Task Formulation

Given an input state of a computer defined by the screen S and the task de-
scription T in natural language, the goal of the task is to output a sequence
of actions A that can successfully accomplish the task T within a screenshot
S ∈ {Linux, Windows, MacOS, Webpage}. Formally, the task can be defined
as learning the transition function f : T × S → A. During dataset collec-
tion, we ensure that all task descriptions T are feasible and can be accom-
plished in the current screenshot S. To reduce ambiguity and facilitate bet-
ter evaluation, we ensure that task descriptions are detailed and unambigu-
ous. Tasks can also be visually grounded (e.g., ‘Click the red button to start
recording’) or natural language based (e.g., ‘Click the My Account button’).
We define the action space using the functionalities in the PyAutoGUI library:
A ∈ {‘click’, ‘dragTo’, ‘scroll’, ‘write’, . . .}. The exhaustive list of actions is
provided in Table 2. Our action space is much larger than other benchmarks
[9, 40, 62] that resort to two or three interaction options. Mouse actions such as
‘moveTo’, ‘click’, ‘rightClick’, ‘doubleClick’, and ‘dragTo’, additionally require
screen coordinates as arguments, which indicate the pixel location of the action.

Figure 1 illustrates sample tasks and corresponding outputs for three appli-
cations within OmniACT: (1) Stocks (MacOS), (2) Apartments.com (web page),
and (3) Weather (MacOS). The first column depicts the input image, and the
second column shows the natural language task that is to be executed on the
current screen. To execute these tasks, a user must accurately perform a series
of operations using the mouse and keyboard. Eg: to check the rate of change in
Google’s stock price over the last month, the mouse has to be moved to the last
month and dragged while holding the left-click button to the current month.

3.2 Dataset Preparation

To prepare our dataset, we followed a pipelined approach, as summarized in
Figure 2. We first selected a variety of applications and websites. For each appli-
cation or website, we created bounding boxes around key UI elements and labeled
them according to their functionality, which is crucial for assisting human an-
notators in writing accurate PyAutoGUI scripts. After each script is written,
we converted the labels back into numeric coordinates, allowing us to align the
scripts precisely with the locations of the UI elements. Finally, we thoroughly
reviewed each script, focusing on its executability and adherence to syntax stan-
dards. This ensured the high quality and functionality of our dataset, making it
a valuable resource for training and evaluating autonomous agents.

Application/Website Selection To test the computer agents’ generalization
ability across different tasks, we collect tasks across multiple domains on both
desktop and web applications. In total, we collect and annotate 9802 data points
(Table 3), with the split between desktop and web applications approximately
3:1. The emphasis on desktop applications, which do not contain Document Ob-
ject Model (DOM) hierarchies unlike HTML-based web pages, presents a more
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complex multimodal challenge where visual cues are crucial. We collect tasks
from applications within the three most popular operating systems. We select
22 native applications from MacOS, and 8 each from Linux and Windows. We
annotate roughly 3 to 4 screens for every application. The full list of applications
is provided in the Appendix.

Table 2: Action types supported by
OmniACT and the number of instances
for each action in the dataset.

Type Action %

Click 63.73
Double Click 0.58
Right Click 0.77
Move/Hover 1.85

Drag 0.29
Scroll 1.68

Mouse

Horizontal Scroll 0.17

Press 16.28
Hotkey 3.00Keyboard
Write 11.65

Many common computer tasks today
are still performed through web applica-
tions, so we also collect 3-4 screenshots
from 27 different web applications. To en-
sure diversity in task intents, we catego-
rize these tasks into one of the follow-
ing 6 categories: (1) Shopping, (2) En-
tertainment, (3) Service, (4) Government,
(5) Travel, (6) Health. Inspired by the
methodology of [9], these categories were
selected to cover a wide range of user in-
tents and functionalities.

UI Screen Segmentation To collect
gold-standard data, we first annotate and
segment the screen by identifying the
bounding boxes present on the screen. We employ slightly different techniques
for web and desktop applications to create the bounding boxes:

1. Desktop Applications: We build a custom annotation interface based on
PyQt53 to create bounding boxes manually over a screen image using a sim-
ple drag-and-click mechanism. This custom interface expedites the process
and allows us to get highly accurate gold-label data for desktop images.

2. Websites: For webpages, we write JavaScript code to extract all interactable
(click, type, etc.) regions from HTML source code. We also extract banners,
dropdowns, submit, and radio buttons from the screen. We filter the elements
to retain only those that are visible and interactable within the screen.

Functionality Tagging To map each bounding box to its correct functional
description, we leverage Amazon MTurk workers (see details in Appendix), who
are given an image with a bounding box and are required to write the correct
description or label of the bounding box’s function. For example, given an image
of an Amazon webpage with a search bar, the annotator labels it as “find-product-
search-bar". The logical descriptions are used to create tasks in a structured
manner without the need to identify individual bounding box coordinates.

Task Creation Our approach for each screen involves utilizing all human-
annotated bounding boxes and their labels to create tasks that can be executed
3 https://pypi.org/project/PyQt5/

https://pypi.org/project/PyQt5/
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Fig. 3: DetACT Module. Given an initial image and a natural language task descrip-
tion, we use a pipelined approach to run OCR and SAM on the screen. The outputs
from SAM are then used by icon and color-matching modules to obtain an exhaustive
set of useful UI elements. The list of elements is passed through LLM based filter to
select only the elements related to the given task.

within the confines of a single screen. These tasks are designed to be visually
grounded in order to measure the capabilities of multimodal agents. We plan
to release the bounding box and their corresponding labels as the metadata for
evaluation purposes.

For dataset compilation, college students with basic Python programming
skills served as annotators, accessing API references for PyAutoGUI and exam-
ples of potential tasks. Each student generated multiple tasks, each accompa-
nied by three alternative natural language reformulations. For instance, “What
is 3+2?" might be reformulated as “Calculate the sum of 2 and 3" or “Add two
to three". To avoid train-test leakage, rephrased tasks were consistently placed
in the same dataset split. Further details on the annotation process are available
in the Appendix.

Table 3: Dataset distribution across
splits and platforms.

Domain Train Validation Test Total

Mac OS 3028 444 786 4258
Linux 761 126 247 1134Desktop

Windows 1573 216 458 2247
Web - 1427 206 530 2163

Total 6789 992 2,021 9802

Reverse Mapping and Filtering To
ensure high-quality data, we incorporate
an additional step into the data collection
pipeline. We build scripts to map the text-
based labels of each bounding box back
to their numeric coordinates, and then
match the syntax and verify if the task
will be executed on the screen. Using this
filter, we remove all the non-working or
syntactically incorrect data points and fi-
nally manually review the set of tasks.

After filtering, we obtain 9802 human-
annotated, gold-label data points across more than 200 desktop and web screens
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(Table 3), split into train, validation, and test sets in a 7:1:2 ratio. All collected
data will be publicly released to encourage future work on multimodal agents.

4 Evaluation Metrics

In this section, we detail various evaluation metrics for benchmarking model
performance on the OmniACT dataset. UI screens have additional constraints
such as spatial relevance which are not factored in most conventional similarity-
based metrics such as BLEU [34], CodeBLEU [36], BERTScore [58] and Code-
BERTScore [61]. For example, a valid click action is usually not constrained
to a single coordinate but can be any coordinate within a specified region. In
the event of invalid coordinate predictions, an agent that predicts coordinates
further away from the valid region should invoke a higher penalty compared to
an agent that predicted coordinates close to the region. We propose two new
metrics adapted: Sequence Score (Section 4.1) and Action Score (Section 4.2)
aimed at utilizing UI information.

4.1 Sequence Score

The sequence score measures whether the predicted action sequence (e.g., ‘click’,
‘write’, ‘press’) exactly matches the gold sequence. Since predicting the first
action in the sequence is relatively straightforward and later actions are more
difficult, we define sequence score as follows:

SeqScorei =

{
β1 + β2 ∗ (s− 1) if all actions match
0 otherwise

(1)

where s is the action sequence length, β1 is set to 0.1 and β2 is set to 1.

4.2 Action Score

The action score measures how well a code snippet containing the correct action
sequence can perform the task. Specifically, for a script with a correct action
sequence, we introduce penalties for inaccurate behavior. The penalties are de-
scribed below:

1. Click penalty (M): For actions ‘click’, ‘rightClick’, ‘doubleClick’, ‘moveTo’,
and ‘dragTo’, we penalize code snippets where predicted coordinates lie out-
side of the bounding box of the UI element. The click penalty for the jth

action of the ith example is defined as:

M j
i = αi ×

1− µ

µ+ L2
if SeqScorei > 0

1 otherwise
(2)

Here L2 corresponds to the smallest Euclidean distance between the pre-
dicted coordinate and bounding box. L2 is zero when the predicted coor-
dinate lies within the target bounding box. µ is the Dirichlet smoothing
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coefficient which we dynamically set to the inverse of the length of the diag-
onal of the bounding box. This ensures that the penalty for points outside
the bounding box varies based on the size of the bounding box. For two
predicted points with the same L2, the metric penalizes more heavily if the
box is larger. This is sound with the intuition that the chances of clicking on
a larger box are higher and should be penalized more in case of a mistake.

2. Key penalty (K): For actions ‘press’ and ‘hotkey’, we check whether the
set of keys in the target code (represented as GKj

i ) and predicted code
(represented as PKj

i ) are the same. It is formally defined as:

Kj
i = αi ×

{
0 if GKj

i = PKj
i and SeqScorei > 0

1 otherwise
(3)

3. Write penalty (Wp): For action type ‘write’, we penalize the output for
the sentence to be typed. Specifically, we the employ BLEU score [34], and
compute:

W j
i = αi ×

{
1 −BLEU(GSj

i , PSj
i ) if SeqScorei > 1

1 otherwise
(4)

Here, GSj
i represents the actual sentence to be typed, and PSj

i represents
the sentence predicted by the model in the jth action of example i.

In the above equations, (αi) is the weighting factor:
αi = SeqScorei/ length of sequence i (5)

This ensures that the action score ∈ [0, 1]. The mean action score is calculated
as follows:

Action Score =

∑
i max

(
SeqScorei −

∑
j(M

j
i +Kj

i +W j
i ), 0

)
∑

i SeqScorei
(6)

5 DetACT: DETecting ACTions from UI

Understanding UI screens is crucial for multimodal computer tasks. Web-based
agents typically use language-only inputs from the HTML DOM. This is insuffi-
cient for comprehending the full extent of an application UI, as many components
may not be easily described with HTML code. To address this, we propose De-
tACT, which allows us to convert images of UI layouts into structured code and
text outputs for a downstream LLM. DetACT is a system comprised of three
distinct modules: the text module, the icon module, and the color module.

1. Text Extraction: We use the EasyOCR model4 to parse over the UI screens
and collect all text-based elements. Along with the text, we also note the
locations of each of these elements. This is depicted in Figure 3, along with
a list of text elements found on the screen using the OCR Module. We
segment and classify the different regions within the screenshot using the

4 https://github.com/JaidedAI/EasyOCR

https://github.com/JaidedAI/EasyOCR
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Task: Right Click to copy link for
"See Deals" in the Expedia email

DetACT
Module

Text:
"See deals": <x: 412, y: 826>

Icon:
Mail Icon: <x: 21, y:654> 

Color:
Blue <x: 412, y:826>
Pink [<x: 43, y: 545>,

x: 307, y: 100]

Role: You are an excellent robotic process
automation agent ....

Below is the API Reference to use for the
process
def click(x: float, y: float):
    """takes the mouse to location (X, Y) and

does a left click""" 
    pass

def write(text: str):
    """Types the text, which is a string""" 
    pass
....

Here are a few examples for reference
Example 1: 
Task: Open the email from Google
Output Script:
pyautogui.click(410, 578)
...
 
Here are UI elements relevant for the task
"Search Icon": <x: 412, y:826>
"Blue": <x:412, y: 826>
...

Given the task below, complete the output
script:
Task: Right click to copy link for "See Deals" in
the Expedia email

Python Script

pyautogui.rightClick(412, 826)
pyautogui.write("Copy")
pyautogui.press("enter")

Role

API
Reference

Examples

UI
Elements

Task

LLM 
Output ScriptTask and Image Input

Input Prompt

Fig. 4: Baseline Model Architecture. Image and task descriptions are sent to De-
tACT module, which gives a filtered list of UI elements relevant to feed into the prompt
along with the task. We also show the prompt structure used for action script genera-
tion. This structure is passed through the LLM (along with the image for multimodal
LLM) to generate the automation script.

Segment Anything Model (SAM) [19]. From the outputs, we filter out the
non-textual segments for our icon and color detection.

2. Icon Module: For matching with the appropriate icon, we use a pack of
1600 icons5 as templates. Each of these icons is labeled with their appropri-
ate functionality and is matched with the filtered outputs SAM [19]. For the
similarity of the two images, we resize the reference icons and segmented re-
gion of interest (ROI) to the same size, and convert both images to grayscale.
After this, we use the Structural Similarity Index (SSIM) [52], to find the
closest match of the ROI to the icons in our set, and select the ones above
the SSIM threshold of 0.95. As seen in Figure 3, a few icons matched on the
screen are Globe icon, Calendar icon, Person icon, and Location icon; each
depicting a different use case.

3. Color Module: Finally, to place all segments of interest into appropriate
buckets of colors, we average the RGB pixel values over the ROI and, based
on that value, bucket them into different color categories. We categorize
colors differently based on the human perspective of the ranges of each color.
To avoid ambiguity, we consider eleven major colors, namely yellow, blue,
green, red, pink, violet, white, black, orange, brown, and grey. We record the
center of the element along with the color.

5 https://icomoon.io/

https://icomoon.io/
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Once all the elements of each category are extracted with their coordinates,
we then filter these UI elements by prompting GPT-4 [32]. We ensure that the
elements selected are suited only for our task, for which we also provide the
task description in our prompts along with the list of elements. Full details of
the prompt are provided in the appendix section of the paper. As we observe in
Figure 3, given an image from the Expedia application, and a task (“Click on the
Black Location icon and enter the destination as Paris."), the LLM filters out
the elements to retain only “Going To", “Location Icon", and the Black colored
elements from the screen. This is passed as input to the LLM or VLM backbone.

6 Baselines

To evaluate the performance of existing language model-based agents, we con-
duct experiments with both language-based and multimodal baselines. The De-
tACT module takes in image and text descriptions of the task and outputs the
color, icon, and text-based signals. This is concatenated to the prompt for the
LLM prompt-based baselines (see Figure 4). Every prompt starts with a role
assignment [60], followed by the detailed API reference of the PyAutoGUI func-
tion set, along with a textual description of their function. We then add five in-
context examples from the training set that most closely match the task (based
on the cosine similarity of the MiniLM [50] embeddings of the reference task
and the train examples). We add a list of UI elements filtered by the DetACT
module to the prompt. Finally, we provide the rules with the task description.
For multimodal baselines, we also pass the image pixels to the vision encoder.
We choose coordinate-based UI elements in the prompt as recent techniques like
the Set-of-Mark (SOM) [54] prompting does not work for desktop settings since
it is difficult to obtain interactive elements from the desktop screen images. We
report the results of several baselines:

– Few-shot Generative LLM: We experiment with models from LLaMA-
2 [47], Vicuna-1.5 [7], CodeLLaMA-34B [37], Palmyra [46], and GPT [32]
series. We use the prompts structure as shown in Figure 4 to prompt the
model. For LLaMA and CodeLLaMa, we reduce the prompt length to 2000
tokens by removing outputs from the DetACT module with lower confidence,
as we observed poor performance on longer prompts. For the other models,
we allow prompts with up to 4000 token sizes.

– Finetuned Generative LLM: We fine-tuned the LLaMA-13B model and
Vicuna-13B using QLoRa [10] with rank 64 and scaling factor 16 for 300 steps
to generate the code given screen description from the DetACT module and
the instruction.

– Few-shot Generative Multimodal Models: As OmniACT is predomi-
nantly multimodal, with a majority of tasks being visually grounded, we con-
duct experiments with large multimodal models. Given the limited research
in this domain [51, 57], there is a scarcity of available multimodal models
with significant size adept for this task. Here, we experiment with [26, 27],
providing a similar prompt as well as the screen image.
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7 Results and Analysis

Table 4: Baseline Performance. (A)
Prompt-only LLMs, (B) Fine Tuned
LLMs, (C) Prompt-only Multimodal
Models. The table represents the Se-
quence score (SS), click penalty (Mp),
Key penalty (Kp), Write Penalty (Wp),
and Action Score (AS). The best results
for the (SS) and (AS) are highlighted.
Model SS(↑) Mp Kp Wp AS(↑)

Prompt based LLMs
LLaMA-7B [47] 4.12 1.24 1.83 0.57 0.48
Vicuna-7B [7] 3.88 1.17 1.51 0.43 0.77
LLaMA-13B [47] 4.80 1.32 0.93 0.93 1.62
Vicuna-13B [7] 5.44 1.65 0.94 1.06 1.78
Palmyra-Instruct-30B [45] 7.51 5.68 0.12 0.40 1.31
CodeLLaMA-34B [38] 10.09 2.99 2.71 0.66 3.72
Palmyra-X 43B [2] 11.20 3.12 3.02 2.12 2.94
GPT-3.5-turbo-0613 [33] 22.85 8.13 4.51 2.31 7.89
GPT-4 [32] 32.75 10.27 6.99 3.89 11.60

Finetuned LLMs
LLaMA-13B FT 8.92 4.61 1.43 0.74 2.14
Vicuna-13B FT 8.78 4.12 1.31 0.63 2.72

Multimodal LLMs
LLaVA-v1.5-7B [27] 13.23 4.73 1.24 1.44 5.82
LLaVA-v1.5-13B [26] 20.56 6.07 3.44 2.85 8.19
Gemini-Pro [44] 30.98 9.05 6.81 3.66 11.46
GPT-4V [26] 38.72 10.53 7.14 4.03 17.02

Human Performance 82.23 0.12 0.36 1.61 80.14

As shown in Table 4, we experiment
with three different categories of models,
namely Prompt-based LLMs, Fine-tuned
LLMs, and Prompt-based Multimodal
Models. GPT-4 is the best-performing ap-
proach, scoring higher on the sequence
score and invoking lower penalties on co-
ordinate predicting and text input. For
prompt-only LLMs, the GPT-3.5-turbo
and GPT-4 models outperform the other
LLM baselines, including the LLaMA [47]
and Vicuna [7] models. We observe that
CodeLLaMA-34B [38], which is trained
for code generation, also achieves a higher
performance than other models of the
same size at predicting the action se-
quences.

Fine-tuned models also perform much
better than their few-shot prompt-only
counterparts. Fine-tuning substantially
improves LLaMA-13B’s sequence score
(4.80 to 8.92) and action score (1.62 to
2.14), as well as the other metrics. De-
spite this, we observed that both, prompt-
based LLMs and finetuned LLMs face se-
vere mouse penalties, especially on click
coordinates. This is because they rely
solely on text-based signals.

To address this, we experiment with multimodal language models (Table 4).
We observe that the coordinate prediction improves significantly when we pro-
vide the entire image as input to the multimodal LLM, as this enables it to fully
utilize the screen representation. In addition to open sourced models, we also
experiment with the GPT-4-vision API [55] which shows that GPT-4 Vision [55]
outperforms GPT-4 significantly on the Action Score along with improving the
sequence score, which we attribute to the strong reasoning abilities of GPT-4
coupled with the improved visual understanding capabilities of the GPT-4-vision
model [55]. These findings pave the way towards exciting new research directions
on building multimodal models for long-horizon planning and code generation.

Human performance over the task: OmniACT consists of visually com-
plicated tasks, and tests various types of computer skills. In order to get a gauge
of how well humans perform, we collect evaluation data from human evaluators.
We split the test set uniformly amongst 10 human evaluators, and provided them
with the screenshot and task instruction. We record the actions taken by the an-
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notators, and measure their performance on our predefined metrics (Table 4). We
find that users generally exhibit a high level of proficiency when attempting most
tasks for the first time. However, there are instances where users face difficulties
in successfully completing certain tasks. These are due to factors including the
user’s inability to fully comprehend the task, difficulties in grounding the task
to the provided screenshot, or a lack of familiarity with the UI.

8 Conclusion and Future Work

Autonomous virtual agents offer the potential to automate routine tasks, ben-
efiting users with limited technical expertise. To solve this task, we introduce
OmniACT, a unique dataset of 9.8K human-labeled data points. OmniACT
benchmarks autonomous agents across a range of tasks on web and desktop
applications. LLM-based agents, like GPT-4, achieve a respectable action score
of 11.6 on our dataset. However, OmniACT presents a challenge for the cur-
rent state-of-the-art language and multimodal models. It provides a direction
for future research on foundational multimodal models that seamlessly integrate
language and visual understanding of computer screens and stands poised to
drive the next wave of advancements in generalist autonomous agents offering
omnipotent assistance to humans.

9 Limitations

This work introduces a valuable dataset, yet we recognize a few limitations that
exist. State-of-the-art models like GPT-4, may exhibit susceptibility to hallu-
cinations and bias towards specific data types, hindering broad applicability.
Reliance on closed models like GPT-4V poses integration challenges due to high
costs and time constraints. Despite efforts for equal representation and data col-
lection without personal information, biases may be introduced as the dataset
is exclusively in English, and human-curated content may have temporal biases.

10 Ethics Statement

As a part of the dataset creation process, we carefully review the pipeline at every
stage, ensuring there is no personally identifiable information or offensive con-
tent, either during data collection or through the use of LLMs. For all purposes,
we create dummy accounts that mimic real-like user content. To get the gold la-
bels scripts we seek help from well-qualified student workers, approved through
the institution, and get the bounding box data annotated through MTurk work-
ers, both of whom are paid $25 per hour, which is greater than the minimum
wage rate (We detail this process in the supplementary material). Human studies
are also done with the help of student workers approved by the institution at the
above-mentioned payscale. We also ensure that all groups have equitable rep-
resentation and that no personal opinions are reflected in the dataset, avoiding
bias during the collection as well as the annotation process.
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