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In this supplemental document, we present more details about our implemen-
tation & experiments (Sec. A), show more results and additional experiments
(Sec. B), and discuss several potential social impacts (Sec. C). More visual results
are demonstrated in the supplemental video.

A Implementation Details

Our learning objective
L = Limg + Lreg (1)

consists of the photometric loss between rendered image Î/normal map N̂ and
the input image I/estimated normal N, plus the regularization terms for our
implicit SDFs, pose-dependent vertex offsets, materials and lighting.
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Lreg = λSDFLSDF + λoffsetLoffset + λmatLmat + λlightLlight, (3)

where LLPIPS is the perceptual loss [12], γtone is the tone mapping function
to map the rendered image from linear color space to sRGB color space, and
λLPIPS, λSDF, λmat, λoffset, λlight are balancing coefficients,

LSDF =
∑
x∈R3

∥∇xS(x)− 1∥2, Loffset =
1

Nc

Nc∑
n=1

∥∆vn∥2 (4)

encourages the base mesh to be smooth [2] and fit the clothed human as much
as possible, and
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are used to regularize spatially-smooth material and low-frequency lighting [7].
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Table A: Comparisons on training/inference time with other SOTA methods on neural
avatars.

Ours PoseVocab
[4]

AvatarReX
[14]

Animatable
Gaussians [5]

Xu et al.
[10]

Lin et al.
[6]

Wang et al.
[9]

Relightable? ✓ ✓ ✓ ✓

Training Time
(∼100 frames) ∼3h 2.5 days 4h

(monocular)
Training Time
(∼1000 frames) ∼16h 1.5∼2 days 2 days 2 days

(RTX 4090) 30h

Inference Time
(per image) 180ms 3s 30s 100ms

(1024×1024) 5s 40s 20s

Besides dataset preprocessing like SMPL-X registration and stereo-based nor-
mal estimation, our avatar modeling pipeline is completely end-to-end, with the
supervision signal from Equation 1. To ensure that the geometric details can be
generated, the resolution of our tetrahedral grid is set 256 (Every edge in the grid
has length 1/128 m). The tetrahedral grid is mainly defined around the SMPL-X
body shape to avoid SDF queries in unnecessary regions. The extracted human
mesh has ∼ 35k vertices and ∼ 70k triangles. The SDF field is implemented
and initialized the same as in VolSDF [11]. During training, the balancing loss
coefficients are set λLPIPS = 0.1, λSDF = 0.01, λmat = 0.3 for diffuse albedo and
0.05 for surface roughness. λoffset decreases linearly from 1000 to 10 to learn a
meaningful base mesh at the early steps.

Our model is trained on single NVIDIA RTX 3090 GPU using Adam [3] op-
timizer. It takes 100k steps and around 16 hours to converge. At the inference
time, we sample 64 reflective rays without denoiser for more realistic and ac-
curate rendering. It takes only 180ms (35ms to generate posed mesh + 145ms
to render) to render an image of 512 × 512 resolution, in contrast to 40s in [6],
∼20s in [9], 5s in [10] and 50s in [1], proving the effectiveness of our mesh-based
representation. More comparisons with other SOTA neural avatars are shown in
Table A. Existing works using 3DGS [5] could not produce accurate dynamic
geometries nor support relighting under novel environments. Note that the for-
mer 35ms is inevitable to produce pose-dependent dynamic details using neural
networks (even if using 3DGS), and the latter 145ms was measured using the
same differentiable Monte-Carlo renderer as in training. Given that the textured
mesh has been obtained in the former step, the rendering time can be signifi-
cantly reduced by advanced rendering techniques (e.g. NIVIDIA RTX), making
real-time rendering feasible in the future.

B More Validations on Inverse Rendering and Relighting

B.1 Evaluations on Synthetic Data

For the task of intrinsic decomposition, we further evaluate our method on a syn-
thetic dataset SyntheticHuman++ [8] and compare with state-of-the-art meth-
ods [1, 10, 13]. This dataset consists of 100 frames × 20 camera views, from
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Table B: Quantitative Comparisons on SyntheticHuman++ dataset. Following [10],
Normal degree and PSNR are computed only in the pixels with foreground mask acti-
vated, while SSIM and LPIPS are computed in the bounding box of the human region.
The metric computations are slightly different to those in the main text. The best
results and the second best are highlighted in bold and underlined fonts, respectively.

Normal Albedo Relighting Visibility

Degree↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Ours 13.44 31.94 0.953 0.073 27.19 0.941 0.066 22.30 0.910 0.086
Ours (w/o normal) 19.37 31.08 0.942 0.072 26.92 0.939 0.068 20.36 0.891 0.098
Xu et al. [10] 12.44 29.01 0.933 0.119 22.69 0.861 0.206 20.20 0.848 0.155
Relighting4D [1] 29.38 24.70 0.885 0.183 22.13 0.835 0.237 15.22 0.763 0.252
NeRFactor [13] 34.29 22.23 0.817 0.226 21.04 0.758 0.313 11.37 0.581 0.387

Fig.A: Visualizations of our method on character jody in SyntheticHuman++ dataset.

which we use 10 for training and the others for novel view testing. We use this
original training/testing split in the dataset for evaluation, and follow the same
protocol in [10]. The results of [1, 10, 13] are borrowed from [10]. Due to the
scale amibiguity of inverse rendering problem, the metrics are computed after
scale alignment [6, 9, 10] on each color channel. As demonstrated in Table B,
our method significantly outperforms Relighting4D [1] across all inverse render-
ing metrics. Furthermore, benefiting from explicit mesh representation and more
accurate rendering, our method also achieved notable improvement from Xu et
al . [10] on the quality of novel light synthesis, despite limited enhancements in
geometry reconstruction. Example qualitative results of our method are shown
in Figure A.

We also evaluated the effectiveness of pseudo normal supervision on this syn-
thetic dataset. Tab. B presents the quantitative result without using estimated
normals, denoted as Ours (w/o normal). In comparison with Ours, it demon-
strates that introducing geometric priors enhances the accuracy of geometry re-
construction, which subsequently improves image synthesis under novel lighting.
We still achieved better performance than other SOTA methods in most metrics,
except geometric error, underscoring the efficacy of our proposed method.
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Table C: Additional quantitative comparisons on reconstructions and novel pose syn-
thesis. The better one is highlighted in bold fonts.

Training Frame Reconstruction Novel Pose Synthesis

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

AvatarReX 28.4015 0.9607 0.0579 30.6214 26.5853 0.9497 0.0684 36.1911
Ours (w/o normal) 30.2084 0.9616 0.0564 24.7444 27.1589 0.9495 0.0687 31.2888

Fig. B: Visualizations of our learned avatars synthesized under OLAT environments.

B.2 Additional Experiments

Relighting under OLAT. To further demonstrate the solved intrinsic prop-
erties and the relighting capability of our method, we relight our learned avatar
using OLAT (One Light At a Time) environment maps and visualize them in
Figure B. As shown in this figure, our method is able to realistically synthesize
the shading effects of cloth wrinkles under different lighting directions. This ex-
periment further proves that our method is able to recovery accurate geometry
and albedo/material for dynamic humans.
Comparisons without Normal Priors. Considering our method employed
additional priors from pseudo normal supervision, which may bias the compar-
ison in the main text, we further report the quantitative result without using
estimated normals in Tab. C. The evaluation is performed on AvatarReX dataset
and the metrics are the same as we used in Tab. 1 in the main text.
Correspondences. Another advantage of our method is that it naturally re-
alizes surface tracking and establishes point-to-point correspondence among the
whole performance sequence, which is typically difficult, if not impossible, in
previous implicit representations. Figure C shows the color-coded correspon-
dences across different poses. The rendered colors on the right image of each
sub-figure are defined as the corresponding normalized canonical coordinates of
the ray-traced points. It demonstrates that our method learns reasonable mesh
correspondences from images without explicit surface tracking.
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Fig. C: Visualizations of the correspondences of our learned avatar.

C Potential Social Impacts

Our method facilitates the automatic digital image creation of any specific hu-
man identity. However, this capability poses the risk to generate fake motion
sequences that the individual has never performed. This issue should be care-
fully addressed before deployment.
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