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Abstract. We present a novel pipeline for learning high-quality trian-
gular human avatars from multi-view videos. Recent methods for avatar
learning are typically based on neural radiance fields (NeRF), which
is not compatible with traditional graphics pipeline and poses great
challenges for operations like editing or synthesizing under different en-
vironments. To overcome these limitations, our method represents the
avatar with an explicit triangular mesh extracted from an implicit SDF
field, complemented by an implicit material field conditioned on given
poses. Leveraging this triangular avatar representation, we incorporate
physics-based rendering to accurately decompose geometry and texture.
To enhance both the geometric and appearance details, we further em-
ploy a 2D UNet as the network backbone and introduce pseudo nor-
mal ground-truth as additional supervision. Experiments show that our
method can learn triangular avatars with high-quality geometry recon-
struction and plausible material decomposition, inherently supporting
editing, manipulation or relighting operations. The code is available at
https://github.com/shad0wta9/meshavatar.
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1 Introduction

Human avatar creation plays a crucial role in the animation and film industries,
enabling the efficient creation of character animations by artists. Unfortunately,
constructing a high-fidelity avatar for a specific character is a costly and labori-
ous process [14, 23]. Conventional graphics pipelines typically involve scanning,
texturing, rigging, and skinning, each requiring substantial human efforts.

Benefiting from the huge progress of learning-based 3D modeling, researchers
have devoted great efforts in automatically learning 3D human body avatars
from images or videos of real humans. With the rise of neural radiance fields
(NeRF) [63], recent works tend to represent the 3D character as a pose-conditioned
NeRF, and enhance the avatar representation with forward/backward skinning [10,
11,15,49,51,62], splitting and structuring [103,104] or UV mapping [24,57]. In ad-
dition, concurrent works [30,43,50,66,105] introduce 3D Gaussian splatting [41],
a discrete radiance field representation, into human avatar modeling to realize
better fidelity and fast rendering. Although these methods can produce realis-
tic rendering of human avatars, they typically entangle geometry, appearance
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Fig. 1: Example results by our method. Given the multi-view videos of a specific
subject, our method learns his triangular avatar with the geometry reconstruction and
intrinsic material decomposition. After training, the avatar not only supports novel pose
synthesis and relighting, but also enables texture editing and material manipulation.
In this example, we make the arm metallic and edit the texture of the T-shirt.

and lighting into neural networks, neglecting the recovery of explicit geoemtric
surface and limiting many applications in traditional graphics pipelines such as
editing and relighting. Although several works attempted to realize inverse ren-
dering for humans in NeRF, they either rely on an inaccurate, physics-agnostic
network prediction [13,55], or require computationally intensive sphere ray trac-
ing [95].

To overcome these limitations, in this paper, we deviate from the current
trend and aim to learn human avatars in the form of triangular meshes, which
is more compatible with traditional graphics engines and inherently enables
physically-based rendering, relighting and editing. Although early works has
explored mesh-based avatar modeling [3, 25, 44, 92, 93], they require per-frame
mesh reconstruction [3, 92, 93] or pre-scanned templates [25, 44]. As a result,
these avatars cannot be learned in an end-to-end manner and none of them
support material decomposition.

Therefore, we propose a novel hybrid representation for triangular human
avatar modeling, enabling complete end-to-end training from multi-view videos.
Specifically, the learned model consists of an explicit triangular mesh geome-
try (with vertex skinning weights) extracted from an implicit SDF field, and
an implicit dynamic texture and material field conditioned on given poses. The
explicit mesh and implicit fields are bridged by differentiable marching tetra-
hedra (DMTet) [76]. On one hand, mesh-based human geometry can exploit
the compatibility with conventional graphics pipelines for editing operations.
Moreover, hardware-accelerated ray tracing algorithm could be applied for more
realistic rendering and better geometry recovery and intrinsic material decom-
position [26]. On the other hand, the implicit representation delivers higher rep-
resentation flexibility while inherently regularizing spatial smoothness on both
the geometry and the material, which enables effective, end-to-end learning of
triangular avatars without any initial guess for the 3D geometry. After training,
the learned avatar is capable of both novel pose synthesis and relighting/editing,
as demonstrated in Fig. 1.
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Nevertheless, acquiring such a representation directly from image observa-
tions poses challenges. Dynamic surface reconstruction from sparse views is in-
herently hindered by the shape-radiance ambiguity, and ensuring model rep-
resentativeness for dynamic geometric details further complicates the learning
process. Here we present several technical designs to address these challenges.
Specifically, we incorporate shadow-aware Physics-based Rendering (PBR) into
the differentiable rasterization process [26]. PBR accurately models the light-
ing process and shadow effects by analytically connecting the outgoing radiance
with the underlying surface position. Compared to implicit radiance fields, PBR
can prevent shadow baking, facilitating accurate surface reconstruction. To fully
harness the benefits of PBR, a geometry reconstruction module capable of re-
covering high-quality surface details is essential. Drawing inspiration from [50],
we employ powerful 2D neural networks to encode pose features and model
high-frequency geometry information. To further enhance geometric details and
reduce ambiguities, we leverage normal map prior estimated from image stereo
as a weak supervision. Note that this is feasible owing to our triangular mesh
representation that allows direct supervision on surface details, which is always
difficult in implicit surface representation. Benefiting from these technical de-
signs, our method achieves high-quality reconstruction of the shape of dynamic
humans, without reliance on explicit surface tracking.

As shown in the experiments, our method can learn a triangular avatar with
high-quality geometry and plausible materials in an end-to-end manner. More-
over, we achieve state-of-the-art dynamic human reconstruction in terms of both
geometry and appearance. In summary, our technical contributions are:

– We propose an end-to-end pipeline for learning triangular human avatars
from multi-view videos. The learned avatars are represented as triangular
meshes, which is compatible with traditional graphics pipeline for editing or
physics-based rendering.

– We propose a hybrid human avatar representation for triangular human
avatar modeling. It bridges explicit triangular mesh geometry with implicit
SDF/material fields, and recovers high-quality details by integrating 2D neu-
ral networks.

– We achieve high-quality geometry recovery by PBR differentiable rendering,
which can prevent shadow baking and facilitate both surface reconstruction
and material decomposition.

– We propose a stereo algorithm based on human prior for normal estimation.
The estimated normal maps can be used as a weak supervision to further
improve the geometry quality.

2 Related Work

2.1 Human Avatars using Explicit Representations

Over the last decade, efforts have been made to achieve drivable avatar model-
ing. Traditional pipelines typically employ explicit representations to model the
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shapes of clothed human bodies. Among them, polygon meshes is one of the
most popular representations. For example, early approaches first reconstruct a
character-specific mesh template and animate it through simulation [21, 78] or
retrieval [94]. Some works directly deform a generic human body template (e.g.
SMPL [58]) to approximate the shape of clothed humans [2, 9, 42, 101]. Unfor-
tunately, the quality of avatars is also constrained by the limitations of their
deformed SMPL representation. In the deep learning era, recent works, lever-
aging convolutional networks as a powerful learning tool, propose to learn non-
rigid deformation and dynamic appearance in the UV space of subject-specific
mesh templates [3, 25, 44, 92, 93]. These methods usually require pre-scanning
a subject-specific template or sophisticated non-rigid tracking throughout the
sequence. In contrast, our hybrid representation eliminates these requirements
and autonomously learns an triangular mesh template in an end-to-end fashion.

Apart from mesh-based representation, point clouds have gained popular-
ity for their flexibility. These approaches mainly focus on modeling the human
geometry [54,59,60,97,102]. Recently, 3D Gaussian splatting (3DGS) [41], an ef-
ficient differentiable point-based rendering method, has demonstrated real-time
photo-realistic rendering. By incorporating 3DGS into avatar modeling, concur-
rent works realize high-fidelity human animation results [30, 43, 50, 53, 66, 105].
However, the unstructured nature of points poses significant challenges for recov-
ering the underlying geometry and/or its intrinsic material properties of human
shapes. In contrast, our method is able to recover the geometric shapes as well
as intrinsic properties, enabling physics-based rendering and avatar relighting.

2.2 Human Avatars using Implicit Representations

Implicit representations model scene with coordinate-based MLPs that map con-
tinuous spatial coordinates to an implicit field, such as signed distance func-
tion (SDF) [67], occupancy [61], and radiance fields (NeRF) [63]. Since their
debut, it becomes a popular trend to adopt implicit representations in avatar
modeling framework. In the realm of geometric avatar modeling, numerous ap-
proaches leverages pose-conditioned SDF field [18, 28, 73, 85, 87] or occupancy
fields [10,11,15,51,62] learned from human scans or depth sequences. To capture
the avatar appearance, recent works leverage NeRF as the underlying represen-
tation [16, 19, 22, 36, 37, 48, 49, 68, 70, 75, 80, 84, 88, 91, 103, 104] for its impressive
learning capability. Some research explores hybrid representations that combine
the strengths of both explicit and implicit representations [12, 57, 71, 74, 79].
Despite the rapid progress, these implicit function-based methods necessitates
dense sampling and extensive network evaluation along pixel rays, suffering from
high computational complexity and making physics-based ray tracing extremely
difficult. In contrast, our representation directly generates a polygon mesh for
image rendering, which allows us to seamlessly integrate physics-based ray trac-
ing methods. This enables high-fidelity material decomposition and reconstruc-
tion while mitigating the computational burden associated with ray tracing in
implicit representations.
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2.3 Neural Inverse Rendering

Inverse rendering aims to disentangle intrinsic scene properties including geom-
etry, material and lighting conditions from image observations. This is a fun-
damental yet extremely ill-posed task. Therefore, previous methods [4, 5, 17, 20,
33, 46, 47, 52, 65] often resorted to assumptions like known geometry, controlled
lighting or other physics priors. Recently, advances in neural implicit representa-
tions aid in inverse rendering tasks by simultaneously recovering scene properties
without explicit geometry guidance [6, 7, 38, 77, 98, 100]. Despite achieving im-
pressive results, the ambiguity in volume rendering lead to low geometric quality.
Surface-based inverse rendering methods, on the contrary, directly optimize the
underlying geometry with differentiable rasterization, showing higher accuracy
in surface reconstruction [26,64].

This progress have also inspired follow-up research on human performance
relighting from sparse multi-view videos. A typical pipeline decomposes human
performance into canonical reflectance fields and incorporate human templates
for motion modeling [13,32,81]. However, these methods often struggle with in-
accurate surface reconstruction due to erroneous motion estimation and lack of
geometry supervision. The compromised quality of dymanic geometry hampers
the modeling of material properties, resulting in unsatisfactory relighting effects.
In contrast, our approach excels in high-fidelity surface reconstruction and ma-
terial decomposition for complex human avatars, overcoming the limitations of
existing methods and delivering superior results. Moreover, our triangular rep-
resentation are more suitable in conventional graphics engines and applications.
Concurrent to us, Wang et al. [86], Xu et al. [95] and Lin et al. [55] improve
the previous pipelines of relightable avatar learning by introducing explicit ray
tracing [86], hierarchical distance query [95] or part-wise light visibility estima-
tion [55]. These techniques allow for better modeling of the lighting process.
However, both of them are still built upon implicit representation, making them
computationally expensive when synthesizing novel poses and views.

Some methods have been proposed to enable relighting of human portraits
from low-cost inputs such as single images [34,35,40,45,82] or videos [89]. Despite
their convenience, these methods cannot change the viewpoints or the body
poses, so a deep discussion of these works is out of the scope of this paper.

3 Method

3.1 Overview

Given a collection of multiview videos capturing a clothed human’ motions and
the corresponding SMPL-X registrations, our task is to build a photo-realistic
avatar for this subject in an end-to-end manner, in the form of an explicit tri-
angular mesh. Such a goal deviates notably from the recently popular trend of
NeRF-based avatar modeling, and this departure is particularly significant as
it addresses the challenges associated with intrinsic decomposition in human
avatar modeling. However, this task is by no means trivial and poses two critical
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Fig. 2: Illustration of our method. Our pipeline learns a hybrid human avatar rep-
resented in the form of (a) an explicit skinned mesh and (b) implicit pose-dependent
material fields. Such a representation inherently supports (c) physics-based ray tracing
and can be trained in an end-to-end manner using (d) normal estimation as an addi-
tional supervision signal.

difficulties. One is to construct an accurate mesh template with pose-dependent
fine-grained details for clothed human animation, and the other is to address the
shape-radiance ambiguity in surface reconstruction. To tackle these difficulties,
we propose a novel pipeline utilizing a hybrid representation to model triangular
clothed human avatars.

As shown in Fig. 2, our pipeline learns a hybrid human avatar representa-
tion, which consists of an explicit skinned mesh extracted from an implicit SDF
field using deep marching tetrahedra (Sec. 3.2), and a pose-dependent detail gen-
eration network that produces dynamic vertex offsets (Sec. 3.3). The intrinsic
material properties including albedo and roughness are predicted in the form
of volumetric fields, with which our avatar can be rendered using physics-based
rendering given the learnable environmental lighting (Sec. 3.4). All networks are
trained in an end-to-end manner supervised by the input images and normal
estimations (Sec. 3.5).

3.2 Canonical Human Skinned Mesh

In this paper, we propose a hybrid representation to model the canonical implicit
SDF field of the clothed human. Specifically, we represent the SDF field by a
coordinate-based MLP

S(x) : R3 7→ R. (1)

in order to regularize the topology smoothness [67]. Instead of performing vol-
ume rendering from the SDF field, we leverage marching tetrahedra (MT) [76]
algorithm to extract the mesh in the canonical space for the following process-
ing. This algorithm differentiably connects the explicit triangular mesh and the
implicit SDF field in the canonical space, making it possible to optimize for a
variety of shapes in an end-to-end manner.



MeshAvatar 7

To associate the canonical space and the observation (posed) space, a skin-
ning weight field is required for skinning the canonical mesh extracted by DMTet.
Previous works project the spatial points onto the fitted SMPL surface to ob-
tain an initial guess, and learn some residuals for refinements [69]. However,
simultaneously solving the geometry and its skinning weights is highly ill-posed.
Therefore, we follow FITE [54] to spread the skinning weights WT on SMPL
surface T into 3D space by minimizing the energy:

E =λp

∫
p∈T

∥∇W(p)−∇T WT (p)∥2+

λT

∫
p∈T

∥W(p)−WT (p)∥2 + λr

∫
p∈R3

∥∇2W(p)∥2, (2)

where W : R3 → RJ denotes the diffused skinning weights. After minimizing
the above energy, we cache the diffused skinning weights on a 256 × 256 × 256
tetrahedra grid for subsequent queries. In this way, an arbitrary mesh extracted
from the grid could be instantly transformed into any posed space via the linear
blend skinning (LBS) algorithm. Specifically, let’s denote the vertices on the
extracted canonical mesh as {cn}Nc

n=1. Given any pose θ ∈ R3J , the corresponding
vertex in the posed space

vn =

J∑
i=1

W (cn)i Mi(θ)cn, (3)

where Mi(θ) is the rigid transformation for the i-th joint.

3.3 Pose-dependent Geometric Detail Generation

Although the representation in Sec. 3.2 can roughly approximate the shape un-
der different body poses, high-frequency details like the cloth wrinkles are miss-
ing due to the low-frequency bias in MLP [83]. Without high-quality surface
geometry, material decomposition and physics-based rendering are impossible.
Although previous works like LaplacianFusion [42] have represented the high-
frequency details with Laplacian coordinates, they require expensive computa-
tions at test time. Thanks to our triangular mesh representation, we can repre-
sent the geometric details by pure vertex offsets on the skinned mesh, and the
problem boils down to accurate vertex offset estimation.

To this end, we draw inspiration from [50] and employ techniques on 2D im-
ages to generate high-frequency features. Specifically, consider the vertices on the
canonical SMPL template, we assign the posed coordinates to the vertex colors,
then acquire the front/back position map Pf ,Pb ∈ R512×512×3 by orthogonally
project the colored mesh onto the front/back plane. The position maps are then
fed into a UNet U to obtain the vertex offset maps and an auxiliary feature map,
as

(Vf ,Vb,F) = U (concat(Pf (θ),Pb(θ))) , (4)
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where Vf and Vb denotes the front and back vertex offset maps, respectively,
and F is the auxiliary pose feature map. Then the high-frequency vertex offsets
are directly extracted from the offset map via bilinear interpolation according
to the canonical coordinates:

∆vn = 1{cn,z>0}Vf (cn,x, cn,y) + 1{cn,z≤0}Vb(cn,x, cn,y). (5)

To enhance generalizability of this pose encoding for novel poses, we also apply
position map projection onto training space by PCA [50].

3.4 Material Maps and Physics-based Rendering

Following the conventions in previous works, we use Disney material model [8]
and assume that the illumination comes from infinity, thus it could be repre-
sented as an environmental map. These material parameters and lighting pa-
rameters can be optimized through differentiable rendering. Considering inverse
rendering itself is a highly ill-posed problem, we manually set the metallic co-
efficient to zero in order to to regularize the solution complexity for clothed
human bodies. Although the network in Sec. 3.3 is powerful enough to generate
high-frequency geometric details, tiny errors are still inevitable due to the lim-
ited mesh resolution. To compensate for this inaccuracy, we make the material
map pose-dependent. Specifically, for any point v on the posed human body, we
decode its material properties (albedo color, roughness) from the feature map
(Eq. 4) by a shallow MLP M:

(kd(v), ks(v)) = M (concat(γ(v),F(cx, cy))) , (6)

where c is the corresponding canonical coordinate calculated via barycentric
interpolation, and γ(·) is the Fourier positional encoding function [63]. To guar-
antee material consistency across poses, the environmental lighting is restricted
to be identical for different poses.

Since the human body is diffusive-dominant and consequently low-frequency
environment map is sufficient to recover the materials [26,64,98], we apply a dif-
ferentiable Monte-Carlo (MC) renderer [26] for image rendering. Following the
rendering equation [39], the outgoing radiance L(ωo) is computed by the integra-
tion of the product of incident radiance Li(ωi) and BRDF function fBRDF(·, ·)
over the upper hemisphere Ω around the surface normal n, which can be ap-
proximated by Monte-Carlo sampling on reflection rays:

L(ωo) =

∫
Ω

Li(ωi)fBRDF(ωi, ωo)⟨ωi,n⟩ dωi

≈ 1

N

N∑
i=1

Li(ωi)fBRDF(ωi, ωo)⟨ωi,n⟩ dωi

p(ωi)
. (7)

Note that this sampling process is particularly effective under our assumption
of low-frequency lighting. We also apply Multiple Importance Sampling (MIS)
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Fig. 3: Animation and relighting results. The actors on the same row are driven
with the same pose, while the actors on the same column are relighted under the same
global illumination.

and image denoising techniques to further improve the sample efficiency, so that
the image can be rendered with only 4 to 8 samples per pixel during training
[26]. Moreover, this MC-based renderer is able to account for the occlusions
and generate shadows, thereby helping us reconstruct accurate and high-quality
materials and create photo-realistic animations. Please refer to [26] for more
implementation details about the MC-based renderer.

3.5 Prior-based Normal Supervision

To further reduce ambiguities and enhance geometric detail reconstruction, we
leverage normal maps estimated from the multi-view inputs as an additional
supervision signal. For this purpose, we utilize 3D human scans collected from
[96] to train a normal estimation network. The network consists of two modules
designed to estimate normals in a coarse-to-fine fashion. The coarse module,
adapted from RAFT-Stereo [56], takes a pair of images from two neighboring
views as input and produces a disparity map, as is also done in StereoPIFu [29].
The disparity map is then converted into a depth map, from which coarse normals
can be analytically calculated. After that, a refinement network is employed
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Fig. 4: More reconstruction results, including reconstructed geometry, albedo
color, material roughness, and light probes.

to further enhance the normal details. This is accomplished by an image-to-
image translation module, which refines the coarse normal map by utilizing the
RGB image as a condition. Both network modules are trained with ground-truth
supervision, which is rendered from the 3D scans in a similar way to PIFuHD [72].
Once trained, the normal estimation network is applicable to different datasets.

To use the normal prior in our avatar learning pipeline, we simply apply it to
the multi-view image inputs to obtain the normal estimations. These estimations
serve as pseudo ground-truth to construct an additional loss for supervising
the avatar geometry. The detailed learning objective will be presented in the
supplemental material.

4 Experiments

4.1 Experimental Settings

Datasets. Our method is evaluated on the datasets from ActorsHQ [31] and
AvatarReX [104]. There are totally 8 + 2 character sequences. For setting con-
sistency, we manually select 16 surrounding, full-body views from 160 views in
ActorsHQ. The SMPL-X registrations for these sequences can be obtained by
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Fig. 5: Qualitative comparisons on training frame reconstructions. Our
method could reconstruct fine-grained dynamic human geometry.
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Fig. 6: Qualitative comparisons on novel pose synthesis. Our method could not
only synthesize high-quality geometry, but also more realistic appearance.

existing tools [1]. For quantitative comparison, we make a train-test split for
each sequence and the training set contains 1000 frames.

Main Results. The animation and relighting results are presented in Fig. 3.
We also present our reconstruction results, including reconstructed geometry,
albedo color, material roughness and avatar relighting, in Fig. 4. Our approach
demonstrates the capability not only in synthesizing human images in novel
poses but also in adapting to diverse lighting conditions. These results prove the
robustness and adaptability of our method in achieving realistic and dynamic
human representations with high-quality geometry and material decomposition.

4.2 Comparison

We compare our methods with recent SOTA works on neural avatars, including
ARAH [88], PoseVocab [49] and AvatarReX [104]. The results of ARAH and
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Table 1: Quantitative comparisons on reconstructions and novel pose synthesis. The
best results and the second best are highlighted in bold and underlined fonts, respec-
tively.

Training Frame Reconstruction Novel Pose Synthesis

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

ARAH 23.1071 0.9390 0.1232 98.1130 22.9917 0.9368 0.1254 104.3341
PoseVocab 27.7608 0.9580 0.0668 41.5524 26.2010 0.9490 0.0752 41.3314
AvatarReX 28.4015 0.9607 0.0579 30.6214 26.5853 0.9497 0.0684 36.1911

ours (radiance) 28.9939 0.9646 0.0497 24.1061 26.6194 0.9498 0.0657 31.5325
ours (PBR) 28.9496 0.9630 0.0559 27.0561 26.8526 0.9505 0.0693 35.4671

O
U

R
S

Recon. Normal Albedo Visibility Relight1 Relight2

R
EL

IG
H

TI
N

G
4D

Fig. 7: Qualitative comparison against Relighting4D [13] in terms of material de-
composition and relighting fidelity.

PoseVocab are reproduced by the public codes and the results of AvatarReX are
requested from the authors. In order to have a fair and complete evaluation, we
implemented a NeRF-version for our method, denoted as ours (radiance), along-
side the primary version referred to as ours (PBR). Specifically, they are different
only in the rendering process. In Ours(radiance), the surface color is directly pre-
dicted by neural networks like NeRF, instead of integrating the reflective rays on
the upper hemisphere in ours (PBR). For quantitative comparisons on synthe-
sized images, we use the common Peak Signal-to-Noise Ratio (PSNR), Structure
Similarity Index Measure (SSIM) [90], Learned Perceptual Image Patch Similar-
ity (LPIPS) [99] and Fréchet Inception Distance (FID) [27] as our metrics. We
additionally evaluated the reconstructed geometry on the rendered normal map.
The normal error with pseudo ground truth is 12.17 (degree).

We assess the effectiveness of our approach through the evaluations on both
reconstruction and novel pose synthesis. To evaluate the reconstruction quality,
we present the qualitative comparisons on both the AvatarReX and ActorsHQ
datasets in Fig. 5. The ‘geometry’ column depicts the rendered normal map pro-
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Fig. 8: Ablation Studies. (a) w/o PBR and normal; (b) w/o PBR; (c) w/o normal; (d)
ours; (e) reference image and estimated normal.

duced by each method, with the final column corresponding to the estimated
normals derived from the raw image data. Notably, our method excels in re-
constructing dynamic geometric details, such as cloth wrinkles, and capturing
high-fidelity appearances. In contrast, existing approaches often rely on baking
these appearance details onto a smooth human body surface. In terms of novel
pose synthesis, Fig. 6 showcases the synthesized results under novel poses. Our
learned human geometry demonstrates the capability of generalizing to unseen
poses, and generating plausible geometric details. This capability leads to better
realism in the synthesis quality achieved by our method.

Tab. 1 provides the quantitative comparisons conducted on the AvatarReX
dataset. Notably, the NeRF version of our method exhibits superior performance,
proving that our hybrid representation surpasses all three recent approaches in
human avatar modeling. Despite a minor performance decline due to rendering
constraints, the PBR version still outperforms previous methods, underscoring
the efficacy of our accurate geometry modeling.

To evaluate our performance on material decomposition and avatar relight-
ing, we conduct a comparative analysis with Relighting4D [13], one of SOTA
inverse rendering pipelines designed for human motion sequences. Fig. 7 visu-
ally compares the reconstruction and relighting outcomes on one of the training
frame. As shown in the figure, our method excels in learning more accurate geom-
etry and albedo color, leading to superior results in synthesizing realistic outputs
under novel lighting conditions. In contrast, Relighting4D struggles with both
geometry reconstruction and material decomposition. This comparison shows
the enhanced capabilities of our approach in capturing and rendering intricate
details in both geometry and appearance. Due to the absence of public code, we
could not compare with other previous works like [32,81]. More experiments on
material decomposition and relighting are presented in the supplemental mate-
rial.
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(a) Pose-dependent v.s. pose-independent material fields. (b) Failure case (long dress).

Fig. 9: Limitations of our method. (a) It’s challenging to factorize all the shadows due
to the limited resolution of the mesh geometry, which leads to pose-dependent shadow
baking. In practice, the material field is conditioned on poses. (b) For loose garments,
our method failed to learn the correct geometric deformation across different poses.

4.3 Ablation Study

In this section, we evaluate the effectiveness of PBR rendering and pseudo-
normal supervision in the context of learning human geometry. Fig. 8 visually
presents rendered images and normal maps for a representative training frame,
illustrating the impact of each component. (a) Similar to other NeRF-based
neural avatars, the exclusive prediction of radiance suffers from shape-radiance
ambiguity. While it may achieve fair rendering quality, it often falls short in
reconstructing complex geometric details. (b) Pseudo normal ground-truth su-
pervision encourages the generation of similar geometric structures, albeit with
limitations imposed by multi-view consistency. (c) The introduction of shadow-
aware PBR proves beneficial in capturing geometric details; see the wrinkles on
the arm. However, its efficacy is constrained when tasked with recovering con-
cave structures, particularly when provided with sparse views. (d) By leveraging
the strengths of both approaches, we successfully combine the merits of the two
worlds, resulting in the reconstruction of high-fidelity human geometry.

5 Conclusion

We introduce a novel framework for high-quality triangular human avatar mod-
eling from multi-view videos. Our approach represents the avatar with an explicit
triangular mesh, which is extracted from an implicit SDF field, complemented by
a pose-dependent material field learned through the utilization of differentiable
physics-based ray tracing and rendering. Moreover, we integrate 2D feature maps
as well as normal supervision to further facilitate geometric detail learning.
Limitations. A limitation of our work is that we use pose-dependent material
to compensate the geometric errors caused by the limited resolution of the trian-
gular mesh. This design, though practical, is not physically plausible. (Fig. 9a).
In addition, more challenging garment types like loose dresses exhibit complex
non-rigid deformations, which may poses difficulties in our framework (Fig. 9b).
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