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Abstract. Due to the spatial constraints within the main paper, this
supplementary material provides an expansive elucidation of the method-
ology proposed and additional experimental evidence supporting its ef-
ficacy. Sec. 1 offers a comprehensive examination of the implementation
details, providing details into the practical aspects of our MAGIC frame-
work. Sec. 2 presents a broader spectrum of experimental results, em-
phasizing both quantitative metrics and qualitative assessments. Sec. 3
shows comprehensive ablation studies to evaluate the robustness and
contribution of individual components within the MAGIC framework.
Finall, Sec. 4 expounds upon the algorithmic foundations of the MAGIC
framework, detailing its conceptual and computational structure.

1 Implementation Details

1.1 Datasets

DELIVER [11] is a large-scale multi-modal segmentation dataset which in-
cludes Depth, LiDAR, Views, Event, RGB data, based on the CARLA simu-
lator. DELIVER [11] provides cases in two-fold, including four environmental
conditions and five partial sensor failure cases. For environmental conditions,
there are cloudy, foggy, night, and rainy weather conditions as well as the sunny
days. The environmental conditions cause variations in the position and illumi-
nation of the sun, atmospheric diffuse reflections, precipitation, and shading of
the scene, introducing challenges for robust perception. For sensor failure cases,
there are Motion Blur, Over-Exposure, and Under-Exposure common for RGB
cameras, LiDAR-Jitter for LiDAR sensor and Event Low-resolution for event
camera.
MCubeS is a multi-modal dataset with pairs of RGB, Near-Infrared (NIR),
Degree of Linear Polarization (DoLP), and Angle of Linear Polarization (AoLP)
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of 20 category segmentation annotations. It has 302/96/102 image pairs for
training/validation/testing at the size of 1224 × 1024.

Table 1: Per-class results on MCubeS [4] dataset. The training and validation is
conducted with four modalities: Image, Aolp, Dolp, and Nir. (M-2: MiT-B2)

MCubeS Method Backbone #Param(M) Asph. Concrete Metal R.M. Fabr. Glass Plaster Plastic Rubber Sand Mean

IoU

[11] M-2 58.73 84.71 45.23 54.10 74.80 32.18 54.34 0.69 28.54 28.72 67.80 -
Ours M-2 24.73 88.86 50.79 53.31 74.98 38.55 55.27 0.86 34.21 31.93 66.86 -

∆ +4.15 +5.56 -0.79 +0.18 +6.37 +0.93 +0.17 +5.67 +3.21 -0.94 -

Method Backbone Param Gravel Ceramic Cobb. Brick Grass Wood Leaf Water Human Sky Mean

[11] M-2 58.73 67.12 26.81 68.67 43.19 58.95 49.71 75.62 54.35 18.67 96.52 51.54
Ours M-2 24.73 66.80 31.21 71.67 46.47 55.26 48.72 75.33 54.72 17.91 96.60 53.01

∆ -0.32 +4.40 +3.00 +3.28 -3.69 -0.99 -0.29 +0.37 -0.76 +0.08 +1.47

MCubeS Method Backbone #Param(M) Asph. Concrete Metal R.M. Fabr. Glass Plaster Plastic Rubber Sand Mean

F1

[4] M-2 58.73 91.72 62.29 70.21 85.59 48.69 70.41 1.37 44.40 44.62 80.81 -
Ours M-2 24.73 94.10 67.36 69.55 85.70 55.64 71.19 1.70 50.98 48.40 80.14 -

∆ +2.38 +5.27 -0.66 +0.11 +6.95 +0.78 +0.33 +6.58 +3.78 -0.67 -

Method Backbone Param Gravel Ceramic Cobb. Brick Grass Wood Leaf Water Human Sky Mean

[11] M-2 58.73 80.33 42.28 81.43 60.32 74.18 66.41 86.12 70.42 31.47 98.23 64.57
Ours M-2 24.73 80.09 47.57 83.50 63.45 71.18 65.52 85.93 70.73 30.37 98.27 66.07

∆ -0.24 +5.29 +2.07 +3.13 -3.00 -0.89 -0.19 +0.31 -1.10 +0.04 +1.50

MCubeS Method Backbone #Param(M) Asph. Concrete Metal R.M. Fabr. Glass Plaster Plastic Rubber Sand Mean

Acc

[4] M-2 58.73 93.87 58.29 76.71 82.37 40.59 67.98 1.58 34.38 36.13 85.77 -
Ours M-2 24.73 96.46 66.00 74.85 81.95 46.45 67.73 1.33 42.55 41.87 88.58 -

∆ +2.59 +7.71 -1.86 -0.42 +5.86 -0.25 -0.25 +8.17 +5.74 +2.81 -

Method Backbone Param Gravel Ceramic Cobb. Brick Grass Wood Leaf Water Human Sky Mean

[11] M-2 58.73 75.86 32.37 77.30 65.59 72.73 58.58 90.13 56.63 23.29 98.30 61.42
Ours M-2 24.73 74.22 37.99 76.13 68.08 64.66 62.65 90.34 56.73 20.54 98.29 62.87

∆ -1.64 +5.62 -1.17 +2.49 -8.07 +4.07 +0.21 +0.10 -2.75 -0.01 +1.45

1.2 Implementation Details

We train MAGIC on 8 × A800 GPUs with an initial learning rate of 6e−5,
which is scheduled by the poly strategy with power 0.9 over 200 epochs. The
first 10 epochs are to warm-up with 0.1 × the original learning rate. We use
AdamW optimizer with epsilon 1e−8, weight decay 1e−2, and the batch size is
1 on each GPU. The images are augmented by random resize with ratio 0.5-
2.0, random horizontal flipping, random color jitter, random gaussian blur, and
random cropping to 1024 × 1024 on DELIVER [11], while to 512 × 512 on
MCubeS [5]. ImageNet-1K pre-trained weight is used as the pre-trained weight.

1.3 Metrics

To evaluate the performance of our MAGIC framework, three metrics are uti-
lized, including Intersection over Union (IoU), F1 score, and Accuracy (Acc).
IoU, also known as the Jaccard index, measures the overlap between the pre-
dicted segmentation and the ground truth segmentation. It is calculated by di-
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viding the intersection of the two segmentation maps by their union. IoU ranges
from 0 to 1, with a higher value indicating better segmentation performance.
F1 score is a measure of the model’s precision and recall. It is calculated by
taking the harmonic mean of precision and recall, where precision is the ratio
of true positives to the sum of true and false positives, and recall is the ratio of
true positives to the sum of true positives and false negatives. F1 score ranges
from 0 to 1, with a higher value indicating better segmentation performance.
Acc measures the percentage of correctly classified pixels in the segmentation
map. It is calculated by dividing the number of correctly classified pixels by the
total number of pixels in the segmentation map. Accuracy ranges from 0 to 1,
with a higher value indicating better segmentation performance.

2 Additional Experiments

Due to the lack of space in the main paper, we provide more experimental results
in this section.

2.1 Multi-modal Semantic Segmentation

In this subsection, we present a quantitative comparison of our MAGIC with
the state-of-the-art CMNeXt [11] method on the MCubeS dataset using three
semantic segmentation metrics, namely IoU, F1, and Acc. The experimental re-
sults are shown in Tab. 1, underscoring the marked edge our framework possesses
over existing methods.

Intriguingly, despite our MAGIC model encompassing merely 42% of CM-
NeXt’s parameters (with 24.73M against CMNeXt’s 58.73M), it demonstrates
superior performance across numerous categories in mIoU, such as Asphalt
(88.86% vs. 84.71% → +4.15%↑), Concrete (50.79% vs. 45.23% → +5.56%↑),
Fabric (38.55% vs. 32.18% → +6.37%↑), and Plastic (34.21% vs. 28.54% →
+5.67%↑). Similarly, our MAGIC framework (24.73M) consistently outper-
forms CMNeXt in most of the categories in Acc, such as Asphalt (96.46%
vs. 93.87% → +2.59%↑), Concrete (66.00% vs. 58.29 → +7.71%↑), Fabric
(46.45% vs. 40.59 → +5.86%↑), and Plastic (42.55% vs. 34.38% → +8.17%↑).
These results demonstrate the effectiveness of our plug-and-play modules over
the prior Hub2Fuse, separate branch, and joint branch paradigms. Notably,
for the mean performance on the three metrics, our MAGIC consistently out-
performs the previous state-of-the-art method CMNeXt by +1.47% mIoU,
+1.50% mF1, and +1.45% mAcc, respectively.

In Tab. 2, we showcase the performance of our MAGIC framework on the
DELIVER dataset, which incorporates four modalities: RGB, Depth, Event, and
LiDAR. Empirical results indicate that MAGIC consistently surpasses the state-
of-the-art CMNeXt [11] with improvements of +1.33% in mIoU, +1.30% in mF1,
and +0.92% in mAcc.

Further, MAGIC excels in several categories, notably Side Walk (86.22%
compared to 82.27%, an increase of +3.95%) and Cars (90.94% compared
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Table 2: Per-class results on DELIVER dataset. The training and validation is con-
ducted with four modalities: RGB, Depth, Event, and LiDAR. (M-2: MiT-B2)

MetricMethodBackboneParam Build. Fence Other Pede. Pole RL Road Side W. Veget. Cars Wall T. S. Sky

IoU

[11] M-2 58.73 89.41 43.12 0 76.51 75.13 85.91 98.18 82.27 88.97 84.98 69.39 70.57 99.43
Ours M-2 24.73 89.66 49.27 0 76.54 72.64 84.81 98.40 86.22 88.71 90.94 70.86 72.88 99.39

∆ +0.25 +6.15 0 +0.03 -2.49 -1.10 +0.22 +3.95 -0.26 +5.96 +1.47+2.31 -0.04

MethodBackboneParamGroundBridgeRail T. G. R. Traffic L. Static Dynamic Water Terr. Two W. Bus Truck Mean

[11] M-2 58.73 1.31 53.61 61.48 55.01 84.22 33.58 32.30 23.96 83.94 77.33 92.25 94.55 66.30
Ours M-2 24.73 2.62 59.28 59.76 73.08 82.76 35.70 30.23 30.93 84.00 76.22 84.58 91.99 67.66

∆ +1.31 +5.67 -1.72 +18.07 -1.46 +2.12 -2.07 +6.97 +0.06 -1.11 -7.67 -2.56 +1.33

MetricMethodBackboneParam Build. Fence Other Pede. Pole RL Road Side W. Veget. Cars Wall T. S. Sky

F1

[11] M-2 58.73 94.41 60.26 0 86.69 85.80 92.42 99.08 90.28 94.16 91.88 81.93 82.74 99.71
Ours M-2 24.73 94.55 66.02 0 86.71 84.15 91.78 99.20 92.60 94.02 95.25 82.95 84.31 99.69

∆ +0.14 +5.76 0 +0.02 -1.65 -0.64 +0.12 +2.32 -0.14 +3.37 +1.02+1.57 -0.02

[11] M-2 58.73 2.59 69.80 76.14 70.98 91.43 50.28 48.83 38.66 91.27 87.22 95.97 97.20 75.19

Ours M-2 24.73 5.11 74.43 74.81 84.44 90.57 52.61 46.43 47.25 91.30 86.51 91.65 95.83 76.49
∆ +2.52 +4.63 -1.33 +13.46 -0.86 +2.33 -2.40 +8.59 +0.03 -0.71 -4.32 -1.37 +1.30

MetricMethodBackboneParam Build. Fence Other Pede. Pole RL Road Side W. Veget. Cars Wall T. S. Sky

Acc

[11] M-2 58.73 98.24 57.18 0 87.58 85.25 89.70 98.95 95.36 94.19 98.65 87.98 83.33 99.75
Ours M-2 24.73 98.42 62.14 0 86.91 81.49 88.75 99.22 93.90 93.69 97.97 86.58 80.42 99.75

∆ +0.18 +4.96 0 -0.67 -3.76 -0.95 +0.27 -1.46 -0.50 -0.68 -1.40 -2.91 0.00

MethodBackboneParamGroundBridgeRail T. G. R. Traffic L. Static Dynamic Water Terr. Two W. Bus Truck Mean

[11] M-2 58.73 2.00 61.91 75.28 56.60 88.71 35.32 50.35 24.05 93.65 86.86 96.13 97.12 73.77
Our M-2 24.73 5.56 62.32 73.23 76.77 89.12 38.02 49.93 33.07 93.39 83.79 96.22 96.64 74.69

∆ +3.56 +0.41 -2.05 +20.17 +0.41 +2.70 -0.42 +9.02 -0.26 -3.07 +0.09 -0.48 +0.92

to 84.98%, an increment of +5.96%). This underscores the robustness of the
MAGIC framework, especially with the integration of the proposed MAM and
ASM modules for multi-modal learning. It’s important to mention that our eval-
uation on the DELIVER dataset also spanned Image, Aolp, Dolp, and Nir modal-
ities, reinforcing the adaptability of our approach across varied modalities.

2.2 Adverse Weather and Sensor Failures

This section offers an in-depth assessment of our MAGIC framework in compari-
son to leading multi-modal fusion approaches, tested under a spectrum of adverse
weather conditions such as cloudy, foggy, rainy, and sunny days. Additionally,
we examine performance during partial sensor failure scenarios, including mo-
tion blur, over-exposure, under-exposure, LiDAR jitter, and reduced resolution,
utilizing the DELIVER dataset.

Tab. 3 elucidates the comparative performance, underscoring the dominance
of MAGIC, which employs SegFormer-B0, over established methods like HRFuser [9],
TokenFusion [7], CMX [10], and CMNeXt [11]. Notably, when employing the
RGB-Depth-LiDAR sensor combinations, our MAGIC surpasses CMNeXt [11]
integrated with SegFormer-B0 by an impressive +6.38% mIoU average under
challenging conditions. In a direct comparison to TokenFusion—limited to RGB-
Depth sensors and equipped with 26.01M parameters—our streamlined CMNeXt
model, boasting just 3.72M parameters, yields a marked +9.34% mIoU im-
provement in mean performance during adverse settings.
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Table 3: Results on adverse conditions of DELIVER. Sensor failures are MB: Motion
Blur; OE: Over-Exposure; UE: Under-Exposure; LJ: LiDAR-Jitter; and EL: Event
Low-resolution. The parameters (#Params) and GFLOPs are counted in 512 × 512.

Model-modality #ParamCloudy Foggy Night Rainy Sunny MB OE UE LJ EL Mean

HRFuser [9]-RGB 29.89 49.26 48.64 42.57 50.61 50.47 48.33 35.13 26.86 49.06 49.88 47.95

SegFormer [8]-RGB 25.79 59.99 57.30 50.45 58.69 60.21 57.28 56.64 37.44 57.17 59.12 57.20

TokenFusion [7]-RGB-D 26.01 50.92 52.02 43.37 50.70 52.21 49.22 46.22 36.39 49.58 49.17 49.86

CMX [10]-RGB-D 66.57 63.70 62.77 60.74 62.37 63.14 59.50 60.14 55.84 62.65 63.26 62.66

HRFuser [9]-RGB-D 30.46 54.80 51.48 49.51 51.55 52.12 50.92 41.51 44.00 54.10 52.52 51.88

HRFuser [9]-RGB-D-E 31.04 54.04 50.83 50.88 51.13 52.61 49.32 41.75 47.89 54.65 52.33 51.83

HRFuser [9]-RGB-D-E-L 31.61 56.20 52.39 49.85 52.53 54.02 49.44 46.31 46.92 53.94 52.72 52.97

CMNeXt [11] w/ M-0 RGB-D-L 58.69 56.34 54.53 51.19 51.64 54.90 49.63 54.50 48.08 56.45 50.89 52.82

CMNeXt [11] w/ M-0 RGB-D-E 58.72 56.61 52.83 51.33 53.97 55.53 50.63 54.69 48.99 56.28 52.54 53.34

CMNeXt [11] w/ M-0 RGB-D-E-L 58.73 60.06 56.16 54.03 54.82 58.29 53.70 57.04 51.98 58.54 55.87 56.01

MAGIC w/ M-0 RGB-D-L 3.72 60.96 62.03 58.42 57.24 61.18 57.16 59.27 57.43 61.12 57.15 59.20

w.r.t CMNeXt [11] w/ M-0 RGB-D-L +4.62 +7.50 +7.23 +5.60+6.28 +7.53 +4.77 +9.35 +4.67+6.26+6.38

MAGIC w/ M-0 RGB-D-E 3.72 63.67 62.21 61.66 59.95 64.43 60.21 61.31 60.91 62.59 61.08 61.80

w.r.t CMNeXt [11] w/ M-0 RGB-D-E +7.06 +9.38+10.33+5.98+8.90 +9.58 +6.62+11.92+6.31+8.54+8.46

MAGIC w/ M-0 RGB-D-E-L 3.72 65.90 62.52 61.17 63.87 61.17 63.87 62.44 59.62 63.42 61.70 62.57

w.r.t CMNeXt [11] w/ M-0 RGB-D-E-L +5.84 +6.36 +7.14 +9.05+2.88+10.17+5.40 +7.64 +4.88+5.83+6.56

CMNeXt [11] w/ M-2 RGB-D-L 58.69 67.21 62.79 61.64 62.95 65.26 61.00 64.64 58.71 64.32 63.35 63.58

CMNeXt [11] w/ M-2 RGB-D-E 58.72 68.28 63.28 62.64 63.01 66.06 62.58 64.44 58.73 65.37 65.80 64.02

CMNeXt [11] w/ M-2 RGB-D-E-L 58.73 68.70 65.67 62.46 67.50 66.57 62.91 64.59 60.00 65.92 65.48 64.98

MAGIC w/ M-2 RGB-D-L 24.73 68.64 66.59 67.17 67.02 67.58 63.93 65.68 65.58 67.46 66.43 66.61

w.r.t CMNeXt [11] w/ M-2 RGB-D-L +1.43 +3.80 +5.53 +5.38+2.32 +2.93 +1.04 +6.87 +3.14+3.08+3.03

MAGIC w/ M-2 RGB-D-E 24.73 67.15 65.41 64.74 66.09 66.66 63.83 64.77 63.59 66.24 63.68 65.22

w.r.t CMNeXt [11] w/ M-2 RGB-D-E -1.13 +2.13 +2.10 +3.08+0.60 +1.25 +0.33 +4.86 +0.87 -2.12 +1.20

MAGIC w/ M-2 RGB-D-E-L 24.73 68.89 67.23 66.54 67.06 66.62 65.10 64.14 63.51 67.14 67.36 66.36

w.r.t CMNeXt [11] w/ M-2 RGB-D-E-L +0.19 +1.56 +4.08 -0.44 +0.05 +2.19 -0.45 +3.51 +1.22+1.88+1.38

Further deepening the analysis, MAGIC consistently demonstrates superior
performance over CMNeXt [11] across the majority of sensor malfunction sce-
narios detailed in Tab. 3. Specifically, with the integration of SegFormer-B2, we
witness performance boosts of +3.51%, +1.22%, and +1.88% mIoU during
under-exposure, LiDAR-jitter, and event low-resolution situations respectively.

Remarkably, for under-exposure scenarios, MAGIC overshadows the RGB
baseline with an impressive +26.07% mIoU, attesting to its resilience in stren-
uous circumstances. The empirical results accentuate the invaluable contribu-
tions of our MAM and ASM in refining MAGIC’s performance relative to its
predecessors.

2.3 Comparison with State-of-the-Art Methods

Results on DELIVER: Tab. 4 presents a comprehensive comparison of our
MAGIC framework with other state-of-the-art methods for fusing RGB with
Depth, Event, and LiDAR modalities. The results demonstrate that our MAGIC
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Table 4: Results of multi-modal semantic segmentation on DELIVER.

Method Modal Backbone mIoU(%) Method Modal Backbone mIoU(%)

HRFuser [9] R HRFuser-T 47.95 HRFuser [9] R+L HRFuser-T 43.13

SegFormer [8] R
MiT-B0 52.10 TF [7] R+L MiT-B2 53.01
MiT-B1 CMX [10] R+L MiT-B2 56.37
MiT-B2 57.20 CMNeXt [11] R+L MiT-B2 58.04

HRFuser [9] R+D HRFuser-T 51.88 Ours R+L MiT-B2 57.75

TokenFusion [7] R+D MiT-B2 60.25 HRFuser [9] R+D+E HRFuser-T 51.83
CMX [10] R+D MiT-B2 62.67 CMNeXt [11] R+D+E MiT-B2 64.44
CMNeXt [11] R+D MiT-B2 63.58 Ours R+D+E MiT-B2 66.24 +1.80↑

Ours R+D MiT-B2 66.89 +3.31↑ HRFuser [9] R+D+L HRFuser-T 52.72

HRFuser [9] R+E HRFuser-T 42.22 CMNeXt [11] R+D+L MiT-B2 65.50
TF [7] R+E MiT-B2 45.63 Ours R+D+L MiT-B2 67.63 +2.13↑

CMX [10] R+E MiT-B2 56.62 HRFuser [9] R+D+E+L HRFuser-T 52.97
CMNeXt [11] R+E MiT-B2 57.48 CMNeXt [11] R+D+E+L MiT-B2 66.30
Ours R+E MiT-B2 58.48 +1.00↑ Ours R+D+E+L MiT-B2 67.66 +1.36↑

framework outperforms other methods in terms of multi-modal semantic segmen-
tation performance. Specifically, our dual modality MAGIC framework achieves
superior performance compared to HRFuser [9], TokenFusion [7], CMX [10], and
CMNeXt [11] in most fusion scenarios.

Notably, when training with both RGB and Depth data, our MAGIC outper-
forms the previous state-of-the-art method CMNeXt by +3.31% mIoU. More-
over, when training with RGB, Depth, and LiDAR data, our MAGIC achieves
67.63% mIoU, which is +2.13% mIoU higher than the performance of CMNeXt.
These results demonstrate the effectiveness of our proposed MAGIC framework
for multi-modal semantic segmentation.

Tab. 5 presents a comprehensive comparison of our MAGIC framework with
other state-of-the-art methods for fusing RGB with Image, Aolp, Dolp, and NIR
modalities on the MCubeS dataset. The results demonstrate that our MAGIC
framework outperforms other methods in terms of multi-modal segmentation
performance. Specifically, our dual modality MAGIC framework achieves supe-
rior performance compared to DRConv [1], DDF [12], TransFuser [6], MMTM [3],
FuseNet [2], MCubeSNet [4], and CMNeXt [11]. Notably, when training with Im-
age, Aolp, and Dolp data, our MAGIC achieves 52.83% mIoU, which is +3.35%
mIoU higher than the performance of CMNeXt.

Overall, the proposed MAGIC framework represents a significant advance-
ment in the field of multi-modal semantic segmentation, offering a powerful and
effective way to fuse different modalities for more accurate and efficient image
segmentation.

2.4 Modality-agnostic Segmentation

In this subsection, we introduce the modality-agnostic segmentation, which dif-
fers from the approach proposed in [11], where the arbitrary modality inputs
cannot be without the RGB data. In our paper, we utilize arbitrary inputs with-
out relying on each of the modalities. To verify the robustness of our proposed
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Table 5: Results of multi-modal segmentation on MCubeS.

Method Modal mIoU

DRConv [1] I-A-D-N 34.63
DDF [12] I-A-D-N 36.16
TransFuser [6] I-A-D-N 37.66
MMTM [3] I-A-D-N 39.71
FuseNet [2] I-A-D-N 40.58

MCubeSNet [4] I 33.70
MCubeSNet [4] I-A 39.10
MCubeSNet [4] I-A-D 42.00
MCubeSNet [4] I-A-D 42.86

CMNeXt [11] (MiT-B2) I 48.16
CMNeXt [11] (MiT-B2) I-A 48.82
CMNeXt [11] (MiT-B2) I-A-D 49.48
CMNeXt [11] (MiT-B2) I-A-D-N 51.54

MAGIC (MiT-B2) I -
MAGIC (MiT-B2) I-A -
MAGIC (MiT-B2) I-A-D 52.83

w.r.t CMNeXt - +3.35

MAGIC (MiT-B2) I-A-D-N 53.01

w.r.t CMNeXt - +1.47

Table 6: Results of MAGIC validation with 2 modalities on DELIVER. (M-0: MiT-B0;
M-2: MiT-B2)

Train Method Backbone #Param(M) MAGIC Validation Mean ∆

R D E L R+D R+E R+L

R+D
CMNeXt M-2 58.69 1.60 1.44 - - 63.58 - - 22.81 -

Ours M-0 3.72 30.47 56.44 - - 63.46 - - 38.87 +16.06
M-2 24.73 37.26 59.02 - - 66.89 - - 54.39 +31.58

R+E
CMNeXt M-2 58.69 4.82 - 3.45 - - 57.48 - 21.92 -

Ours M-0 3.72 52.63 - 11.28 - - 52.69 - 38.87 +16.95
M-2 24.73 58.00 - 14.81 - - 58.48 - 43.76 +21.84

R+L
CMNeXt M-2 58.69 2.10 - - 2.56 - - 58.04 20.90 -

Ours M-0 3.72 51.55 - - 15.75 - - 53.01 40.10 +19.20
M-2 24.73 57.13 - - 19.46 - - 57.75 44.78 +23.88
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Table 7: Results of MAGIC validation with 2 modalities on MCubeS [4]. (M-0: MiT-
B0; M-2: MiT-B2)

Train Method Backbone #Param(M) MAGIC Validation Mean ∆

I A D N I+A I+D I+N

I+A
CMNeXt M-2 58.69 3.99 1.74 - - 29.31 - - 11.68 -

Ours M-0 3.72 32.92 23.02 - - 42.71 - - 32.88 +21.20
M-2 24.73 51.45 0.27 - - 51.45 - - 34.39 +22.71

I+D
CMNeXt M-2 58.69 2.26 - 0.71 - - 33.02 - 12.00 -

Ours M-0 3.72 45.98 - 20.71 - - 45.89 - 37.53 +25.53
M-2 24.73 49.93 - 0.06 - - 49.96 - 33.32 +21.32

I+N
CMNeXt M-2 58.69 2.14 - - 1.53 - - 33.39 12.35 -

Ours M-0 3.72 36.81 - - 8.38 - - 44.60 29.93 +17.58
M-2 24.73 51.20 - - 3.03 - - 51.69 35.31 +22.96

method with arbitrary modality inputs, we apply the MAGIC framework on
both the DELIVER and MCubeS [5] datasets.

Tab. 6 presents the results of our MAGIC framework trained with two se-
lected modalities, namely RGB+Depth, RGB+Event, and RGB+LiDAR, and
validated with arbitrary modality combinations3. Our MAGIC significantly out-
performs CMNeXt [11] in all validation scenarios, achieving a performance gain
of +16.06% and +31.58% mIoU compared to CMNeXt [11] with SegFromer-
B0 and -B2 backbone on the DELIVER [11] dataset with RGB+Depth sce-
nario, respectively. On the MCubeS [5] dataset, our MAGIC significantly out-
performs CMNeXt [11] in all validation scenarios, achieving a performance gain
of +21.20% and +22.71% mIoU compared to CMNeXt [11] with SegFromer-B0
and -B2 backbone on the Image+Aolp scenario, respectively.

Notably, in the RGB data absence validation scenarios, our MAGIC with
SegFormer-B2 demonstrates a significant performance gain, such as Depth only
(59.02 vs. 1.44 → +57.58↑). Moreover, our MAGIC with SegFormer-B2 has
only 42% of the parameters of CMNeXt. Furthermore, our MAGIC with SegFormer-
B0 surpasses CMNeXt [11] by a large margin with only 0.06% parameters. These
results demonstrate the effectiveness of our proposed MAM and ASM modules
as powerful plug-and-play modules for multi-modal visual learning, especially
for arbitrary modality input scenarios.

2.5 Extension to diverse models

We have implemented MAGIC across different backbones, including the LiteSeg
framework with MobileNet and FPN with PVTv2-b0, as in Tab. 11 and Tab. 12.
The results consistently demonstrate the robustness and superiority of MAGIC
across different backbones, from CNNs to ViTs.

3 Since CMNeXt cannot be implemented without the RGB input, we compare the
RGB+X settings for dual modality semantic segmentation



Abbreviated paper title 9

Table 8: Ablation study of the selection of the salient features in AFLM on MCubeS [5]
w/ MiT-b0.

Salient Features ◦ ◦ ◦ ◦ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ⋆ ⋆ ◦ ◦ ⋆ ◦ ◦ ⋆ ⋆ ◦ ⋆ ◦ ⋆ ⋆ ◦ ⋆ ◦ ⋆ ⋆ ◦ ◦ ◦ ⋆ ⋆ ◦

DELIVER 59.26 62.13 59.93 62.19 61.83 59.31 62.06 59.93 59.78

MCubeS ◦ ◦ ◦ ◦ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ⋆ ⋆ ◦ ◦ ⋆ ◦ ◦ ⋆ ⋆ ◦ ⋆ ◦ ⋆ ⋆ ◦ ⋆ ◦ ⋆ ⋆ ◦ ◦ ◦ ⋆ ⋆ ◦

mIoU (%) 42.43 46.39 44.11 46.50 46.47 46.01 43.01 44.09 44.43

Table 9: Ablation study of components in MAM with MiT-B0 on MCubeS.

MAM w/o Residual Block w/o Parallel Pooling w/o MLP All

mIoU 46.00 45.91 47.14 47.58

Pooling Size (1,3,5) (3,5,7) (3,7,11) (5,7,11) (7,11,21)

mIoU 45.65 45.49 47.58 45.23 44.99

Table 10: Ablation study of λ and β on MCubeS [5].

λ 0.2 0.1 0.06 0.05 0.04 0.02

mIoU 51.88 52.07 52.17 52.24 51.62 51.26

β (w/ λ=0.05) 0.5 1 2 4 6 10

mIoU 52.39 52.37 53.01 51.97 52.19 52.16

Table 11: Multi-modal segmentation comparison on DELIVER.

Backbone Modal (DELIVER) mIoU ∆

CMNeXt FPN + PVT-v2-B0 RGB+Event 51.50 -
MAGIC 58.78 +7.28

CMNeXt FPN + PVT-v2-B0 RGB+Depth 55.25 -
MAGIC 61.22 +5.97

CMNeXt FPN + PVT-v2-B0 R-D-E-L 61.52 -
MAGIC 66.33 +4.81

Baseline LiteSeg + MobileNet RGB 29.65 -

CMNeXt LiteSeg + MobileNet R-D-E-L 56.54 -
MAGIC 61.58 +5.04

Table 12: Multi-modal segmentation comparison on MCubeS.

Backbone Modal (MCubeS) mIoU ∆

CMNeXt LiteSeg + MobileNet Image+Nir 33.39 -
MAGIC 51.20 +17.81

CMNeXt LiteSeg + MobileNet Image+AoLP 29.31 -
MAGIC 51.44 +22.13

CMNeXt LiteSeg + MobileNet Image+DoLP 33.02 -
MAGIC 49.96 +16.94

Qualitative Results This subsubsection presents a qualitative comparison of
the semantic segmentation results obtained using our MAGIC and CMNeXt [11]
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Fig. 1: Visualization of arbitrary inputs using {RGB, Depth, Event, LiDAR} on DE-
LIVER. CMNeXt: results of CMNeXt [11]; Ours: results of our MAGIC, on normal
conditions, i.e., cloudy and rain with motion blur.
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Fig. 2: (a) & (b): Visualization of arbitrary inputs using {RGB, Depth, Event,
LiDAR} on DELIVER. (a): results of CMNeXt [11]; (b): results of our MAGIC, on
challenging conditions, i.e., night with motion blur and night.

in various autonomous driving scenes, including normal, challenging, and ex-
treme scenarios.

In Fig.1, we present more visual comparisons of the semantic segmentation
results obtained using our MAGIC and CMNeXt [11] in normal autonomous
driving scenes, such as rainy weather and motion blur. The results demonstrate
that our MAGIC consistently performs well with arbitrary inputs, whereas CM-
NeXt is fragile in most scenarios.

In Fig.2, we present more visual comparisons of the semantic segmentation
results obtained using our MAGIC and CMNeXt [11] in challenging autonomous
driving scenes, such as night driving with motion blur. The results demonstrate
that our MAGIC consistently performs well with arbitrary inputs, whereas CM-
NeXt is fragile in most scenarios.
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Fig. 3: (a) & (b): Visualization of arbitrary inputs using {RGB, Depth, Event,
LiDAR} on DELIVER. CMNeXt: results of CMNeXt [11]; Ours: results of our MAGIC,
on extreme conditions, i.e., night with under-exposure and fog with under-exposure.

In Fig.3, we present more visual comparisons of the semantic segmentation
results obtained using our MAGIC and CMNeXt [11] in extreme autonomous
driving scenes, such as driving at night with under-exposure lighting condition.
The results demonstrate that our MAGIC consistently performs well with arbi-
trary inputs, whereas CMNeXt is fragile in most scenarios.

Notably, our MAGIC does not rely on a specific modality and is relatively
insensitive to the absence of sensing data, which further enhances the robustness
of full scene segmentation under varying lighting and weather conditions, such
as cloudy, rain, and motion blur. These qualitative results further demonstrate
the effectiveness and robustness of our proposed MAGIC framework.

3 Additional Ablation Study

Ablation Study of MAM Components As indicated in Tab. 9, we conduct
an ablation study of the components in the proposed MAM. Removing any of
the components, namely the residual block, parallel pooling, and MLP, leads
to a drop in performance. Therefore, all of the components play a positive and
crucial role in our MAM.
Ablation of Pooling Size We ablate the pooling size in parallel pooling within
MAM on the MCubeS dataset, as presented in Tab. 9. Our results demonstrate
that the pooling size of (3,7,11) achieves the best mIoU.
Ablations of the Hyper-parameters λ and β We now investigate the impact
of hyper-parameters λ and β, which represent the weights for loss functions LA

and LC , respectively. Tab. 10 presents the experimental results for varying values
of λ and β.
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Algorithm 1: Framework of our proposed MAGIC.

Input: RGB images R ∈ Rh×w×3, depth maps D ∈ Rh×w×CD

, LiDAR point
cloud L ∈ Rh×w×CL

, event streams E ∈ Rh×w×CE

, and the
corresponding groudn truth y with K categories

Initialize backbone model with Imagenet1K pre-trained weights and randomly
initialize our MAM and ASM;

for each epoch do
for each iteration do

1. Sample a mini-batchr, d, l, e, and y with K categories;
2. Get features with backbone model: {fr, fd, fl, fe} = F ({r, d, l, e});
3. Pass {fr, fd, fl, fe} to the MAM to get semantic features fsa;
4. Pass fsa to the seghead to get the predictions Pm to be supervised
from y: LM = −

∑K−1
0 y · log(Pm);

5. Cross-modal semantic similarity ranking with {fr, fd, fl, fe} with
the semantic features fsa obtained from MAM, thereby deriving a
similarity ranking and find the salient features fsa and the remaining
features frm: fsa, frm = Rank(Cos({fr, fd, fl, fe}, fsa));

6. fsa are then passed to another MAM for generating predictions Ps

with the seghead;
7. y smoothness ;
8. Arbitrary-modal learning loss: LS = −

∑K−1
0 y · log(Ps);

9. Semantic consistency training between the remaining features frm:
LC =

∑C
0 (c1log

c1
1
2
(c1+c2)

+ c2log
c2

1
2
(c1+c2)

);
10. Total loss function: L = LM + λLA + βLC ;
11. Loss backwards and update parameters of the backbone model and
our MAM and ASM.

end
end

Visualization of Semantic and Salient Features We visualize the RGB
image features, semantic features extracted by MAM, and the salient features
extracted by ASM in Fig. 4 (e). Obviously, the semantic and the salient features
capture better scene details compared with the RGB features, indicating that
our proposed MAM and ASM successfully take advantages of the multi-modal
input data.

4 Algorithm

Algorithm 1 describes the training procedure for our multi-modal fusion and
segmentation model, MAGIC, that processes RGB images, depth maps, LiDAR
point clouds, and event streams to predict pixel-wise semantic categories.
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