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Abstract. Scale arbitrary super-resolution based on implicit image func-
tion gains increasing popularity since it can better represent the visual
world in a continuous manner. However, existing scale arbitrary works
are trained and evaluated on simulated datasets, where low-resolution
images are generated from their ground truths by the simplest bicu-
bic downsampling. These models exhibit limited generalization to real-
world scenarios due to the greater complexity of real-world degrada-
tions. To address this issue, we build a RealArbiSR dataset, a new real-
world super-resolution benchmark with both integer and non-integer
scaling factors fo the training and evaluation of real-world scale arbi-
trary super-resolution. Moreover, we propose a Dual-level Deformable
Implicit Representation (DDIR) to solve real-world scale arbitrary super-
resolution. Specifically, we design the appearance embedding and de-
formation field to handle both image-level and pixel-level deformations
caused by real-world degradations. The appearance embedding mod-
els the characteristics of low-resolution inputs to deal with photomet-
ric variations at different scales, and the pixel-based deformation field
learns RGB differences which result from the deviations between the
real-world and simulated degradations at arbitrary coordinates. Exten-
sive experiments show our trained model achieves state-of-the-art per-
formance on the RealArbiSR and RealSR benchmarks for real-world
scale arbitrary super-resolution. The dataset and code are available at
https://github.com/nonozhizhiovo/RealArbiSR.

Keywords: Real-World Scale Arbitrary Super-Resolution · Deformable
Implicit Neural Representation · Appearance Embedding

1 Introduction

Single image super-resolution (SISR) is a long-standing low-level task that recon-
structs high-resolution (HR) images from their low-resolution (LR) inputs [11,21,
⋆ indicates the corresponding author.

https://github.com/nonozhizhiovo/RealArbiSR
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Fig. 1: (a) We propose a Dual-level Deformable Implicit Representation (DDIR) to
solve real-world scale arbitrary SR, simulating the continuous optical zoom of a DSLR
camera by only one model. We compare (b) the HR image with the SR results (×3.7)
of a real-world LR image generated by (c) CiaoSR [5] trained on DIV2K dataset with
bicubic degradation (CiaoSR+BD), (d) CiaoSR [5] trained on RealArbiSR dataset
with real-world degradation (CiaoSR+RealArbiSR), and (e) our DDIR model trained
on RealArbiSR dataset with real-world degradation (DDIR+RealArbiSR).

29,30,32,39,43,49,58]. It has been investigated for decades [6,12–15,18,22,53,54],
and various sub-fields of SISR have been proposed [2–4,16,19,27,33,37,45,46,48,
56]. Among them, scale arbitrary super-resolution (SR) has been developed to
generate HR images with arbitrary scales (even with non-integer ones) by only
one model [9, 17]. It better fulfills practical needs because we demand to zoom
in and zoom out continuously in daily life.

Recent works in scale arbitrary SR are either based on convolutional neural
networks (CNNs) [17, 47] or implicit neural representations [9, 25, 31]. However,
these methods are trained and evaluated on simulated datasets, employing bicu-
bic degradation only. By comparing Figure 1(c) with Figure 1(d), we can see the
CiaoSR model [5] trained on DIV2K dataset [44] with bicubic downsampling is
ineffective to reconstruct real-world HR images. Such synthetic degradation mod-
els cannot be generalized in real-world applications because real-world degrada-
tions are much more complex [4, 51]. To handle real-world degradation kernels,
real-world SR has been investigated, and current works such as LP-KPN [4] and
CDC [51] are based on CNNs and predict RGB values locally. However, existing
real-world SR datasets are limited to integer scale factors (e.g ., ×2, ×3, ×4) and
their models are constrained to work for one fixed scale factor.

To fill the gap between current SR research and the practical needs of zoom
functionality, we construct a RealArbiSR dataset, the first real-world SR bench-
mark with both integer and non-integer scale factors for the training and eval-
uation of real-world scale arbitrary SR. To get the focal lengths of arbitrary
scale factors, we use a checkerboard to calibrate the focal lengths for the desired
scales, where the checkerboard is annotated with rectangles with changing areas
for different scales. According to the calibrated focal lengths, we capture LR-HR
image pairs, which are further aligned by an image registration algorithm [4].
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The RealArbiSR dataset provides a good benchmark for real-world scale arbi-
trary SR. It contains diverse indoor and outdoor scenes with both integer and
non-integer scale factors.

We propose a Dual-level Deformable Implicit Representation (DDIR) to solve
the real-world scale arbitrary SR, simulating the continuous optical zoom of a
high-end DSLR camera, as illustrated in Figure 1(a). According to the analysis of
real-world LR and HR images, we notice real-world degradation kernels can lead
to image-level and pixel-level deformations on degraded images. We argue the
image-level deformation is caused by photometric variations at different scales,
and pixel-based deformation results from content-dependent and spatially vari-
ant degradation kernels. Therefore, we regard the problem of real-world scale
arbitrary SR as a model that is deformed from the synthetic scale arbitrary
SR (e.g ., bicubic downsampling) along the channel dimension, and thus design
a dual-level deformable implicit representation to learn image deformations at
the image and pixel levels. For the image level, we model the characteristics of
an LR image as the appearance embedding. The appearance embedding grants
our model the ability to explain away photometric deformations between dif-
ferent scales, and improves the SR performance by a large margin. In addition,
since real-world degradation kernels are content-dependent and spatially vari-
ant, we design a deformation branch to simulate the deformation field, which
is calculated as the RGB differences that result from the deviations between
the real-world and synthetic degradations at arbitrary spatial coordinates. The
deformation field focuses on reconstructing image details in a continuous space
at the pixel level. Combining appearance embedding and deformation field, our
DDIR model is capable of handling complex real-world degradation kernels and
reconstructing real-world HR images with high fidelity.

In summary, our contributions are threefold. (a) We build a RealArbiSR
dataset, the first real-world SR dataset with both integer and non-integer scale
factors in diverse scenes. The RealArbiSR dataset provides a good SR benchmark
for the training and evaluation of real-world scale arbitrary SR. (b) We propose a
dual-level deformable implicit representation to learn image-level and pixel-level
deformations caused by complex real-world degradation kernels. (c) Experiments
show our DDIR model achieves state-of-the-art performance on the RealArbiSR
and RealSR benchmarks for real-world scale arbitrary SR.

2 Related Work

Scale Arbitrary SR. Scale arbitrary SR is first proposed by Meta-SR [17].
Meta-SR utilizes the meta-upscale module to upscale LR inputs with arbitrary
scales. ArbSR [47] proposes the scale-aware adaption blocks and a scale-aware
upsampling layer. In addition to the CNN methods above, implicit neural rep-
resentation [1, 10, 20, 34–36, 41] has been widely used. LIIF [9] makes the first
attempt by using the local implicit image function. Following LIIF, LTE [25]
designs a local texture estimator to synthesize HR images in the Fourier do-
main. UltraSR [52] introduces positional encoding with residual connections to
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the LIIF model to enhance the SR performance. OPE-SR [42] proposes orthogo-
nal position encoding for scale arbitrary SR. [50] designs super-resolution neural
operator to learn the mapping between function spaces. CiaoSR [5] proposes
the continuous implicit attention-in-attention network for scale arbitrary SR.
ITSRN [55] designs an implicit transformer network to solve screen content SR
with arbitrary scales. Different from the previous works, IPF [31] introduces im-
plicit pixel flow to generate perceptual-oriented HR results. However, current
works of scale arbitrary SR all generate LR inputs by bicubic downsampling,
which cannot simulate SR in real-world situations. [8] solves real-world scale ar-
bitrary SR by reverse modules SASRN and SARDN, but it is only trained and
tested at the scale factor of ×2.
Real-World SR Datasets. Different from synthetic datasets, LR-HR image
pairs in most real-world SR datasets are captured by adjusting the focal length
of the camera. Qu et al. [38] use a beam splitter to collect LR-HR image pairs
with two cameras. SupER dataset [24] uses hardware binning to generate corre-
sponding LR versions of ground truths. City100 dataset [7] contains 100 aligned
image pairs that are captured from the printed postcards. Just like City100,
D2CRealSR dataset [26] takes photos of postcards in the laboratory environ-
ment to get image pairs with large scaling factors. SR-RAW dataset [57] is the
first real-world SR dataset captured in natural scenes, but their image pairs are
not well aligned. RealSR dataset [4] provides a good real-world SR benchmark
by using an image registration algorithm to precisely align image pairs. Then,
a large-scale DRealSR dataset [51] is constructed. However, all the pixel-aligned
real-world SR datasets captured in the indoor and outdoor environments [4, 51]
only consist of image pairs with integer scale factors and thus are insufficient for
the training and evaluation of real-world scale arbitrary SR.
Real-World SR Methods. In contrast to the bicubic downsampling kernel,
real-world degradation kernels are much more complicated because they are
spatially variant and content-dependent. Zhang et al. [57] propose a contextual
bilateral loss for real-world SR. LP-KPN [4] introduces a Laplacian pyramid
network to learn spatially variant kernels and reconstruct HR images. CDC [51]
parses an image into three low-level components and proposes a component
divide-and-conquer model to reconstruct HR images. DDet [40] introduces a
dual-path dynamic enhancement network. STCN [60] designs a spatio-temporal
correlation network and proposes a dual restriction to reduce the space of map-
ping functions in the real world. D2C-SR [26] proposes a novel framework with
divergence and convergence stages for real-world SR. These methods are based
on CNN models, and only work for one specific integer scale factor.

3 The RealArbiSR Dataset

3.1 Camera Calibration

One significant feature of synthetic scale arbitrary SR is that it can predict HR
images even at non-integer scale factors, where LR inputs can be easily generated
by setting a bicubic scaling factor. Currently, real-world SR datasets only consist
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Table 1: Comparisons of the scale factors in the training set and test set between our
RealArbiSR dataset and the existing pixel-aligned real-world SR datasets captured in
the indoor and outdoor environments.

Dataset Scale Factor
Train set Test set

RealSR [4] ×2.0, ×3.0, ×4.0 ×2.0, ×3.0, ×4.0

DRealSR [51] ×2.0, ×3.0, ×4.0 ×2.0, ×3.0, ×4.0

RealArbiSR (Ours) ×1.5, ×2.0, ×2.5,
×3.0, ×3.5, ×4.0

×1.5, ×1.7, ×2.0, ×2.3, ×2.5, ×2.7,
×3.0, ×3.3, ×3.5, ×3.7, ×4.0

of LR-HR image pairs with multiple integer scale factors such as ×2, ×3, and
×4 [4, 51]. Hence, no real-world dataset can be used to train and evaluate at
non-integer scaling factors for real-world scale arbitrary SR. In the real-world
situation, arbitrary scale factors especially non-integer ones are hard to indicate,
because in general only a sparse set of focal length values are labeled on the zoom
lens (e.g ., Canon 24∼105mm, f/4.0 zoom lens only displays the focal lengths of
105mm, 50mm, 35mm, and 24mm on the zoom ring). Also, the relation between
the scaling factor and the focal length can be nonlinear.

To get the desired focal lengths for arbitrary scaling factors, we use a checker-
board to calibrate the focal length of the zoom lens. The checkerboard is anno-
tated with rectangles of various sizes for different scaling factors, as illustrated
in the supplementary material. Considering the aberration effect is more severe
with a wider angle of view, we take the images captured at the longest focal
length as the ground truth of all scales, which corresponds to the smallest rect-
angle or equivalently the smallest field of view. In this way, the aberration effect
can be minimized in all LR-HR image pairs. The widths and heights of other
rectangles are enlarged by the desired scaling factors compared to the smallest
ground-truth rectangle, so larger rectangles correspond to the LR inputs with
larger scaling factors. During calibration, we first match the field of view of the
longest focal length with the ground-truth rectangle by adjusting the camera
position. After matching, we fix the camera at this steady position on a tripod.
Then, we reduce the focal length to increase the field of view of the camera to
match the larger rectangle of the desired scale factor. In this way, we can indicate
and record the calibrated focal lengths for all scaling factors. For the training
set, we collect the LR-HR image pairs of scaling factors from ×1.5 to ×4 with a
step of ×0.5 (including ×1.5, ×2.0, ×2.5, ×3.0, ×3.5, and ×4.0). For the test set,
in addition to the scale factors that appeared in the training set (including ×1.5,
×2.0, ×2.5, ×3.0, ×3.5, and ×4.0), we further collected image pairs of the scale
factors that are not present in the training set (e.g ., ×1.7, ×2.3, ×2.7, ×3.3, and
×3.7). We summarize the scale factors of our RealArbiSR dataset and compare
with existing pixel-aligned real-world SR datasets captured in the indoor and
outdoor environments in Table 1.
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3.2 Dataset Collection

We use the DSLR camera (Canon 5D3) to capture LR-HR image pairs for dataset
collection. The DSLR camera is equipped with a 24∼105mm, f/4.0 zoom lens
to cover the range of target scaling factors. We set the focal length of 105mm
as the ground truth and the focal lengths of the LR inputs are indicated by the
calibration procedure. When collecting images, the camera is fixed on a tripod.
We first capture the ground-truth image at the focal length of 105mm, and then
gradually zoom out the camera to collect LR inputs according to the calibrated
focal lengths. We collect image pairs in diverse indoor and outdoor scenes to
ensure our RealArbiSR dataset is generalized. We prefer to photograph objects
at a distance of at least 3 meters. A large object distance can alleviate image de-
formations caused by aberrations. Also, we avoid photographing moving objects,
since they are impossible to be aligned between image pairs. After collecting the
ground truth and LR versions of all scale factors, we adopt the image registra-
tion algorithm [4] to obtain pixel-wise aligned image pairs. For the scale factors
from ×1.5 to ×4.0 with a step of ×0.5, we get 250 scenes with 1500 LR-HR
image pairs in total (Each scene has six image pairs for six scaling factors). 200
scenes are randomly chosen as the training set and the other 50 scenes are used
as the test set. We further collect 83 scenes for the scale factors of ×1.7, ×2.3,
×2.7, ×3.3, and ×3.7 as the test set. More details of the camera setting, image
registration process, and the resolutions of the LR and HR versions at different
scaling factors are discussed in the supplementary material.

4 Methods

4.1 Analysis of Real-World Scale Arbitrary SR

Before introducing our approach, we conduct a detailed analysis to compare
the difference between the real-world scale arbitrary SR and the synthetic scale
arbitrary SR. It better explains the motivation of our DDIR model.
Photometric Variation: In real-world photographs, photometric variations
on exposure, tone-mapping, white balance, etc., are unavoidable because the
camera imaging pipeline is very complex. After changing the focal length of
the camera, factors such as lighting conditions inside the field of view, camera
sensors, image signal processing (ISP) pipeline, etc., can be all varied, leading
to appearance variations over the whole image. To demonstrate such image-
level variations, we compare the colour histogram of the ground-truth image
with its bicubic-upscaled LR counterpart in Figure 2(d), illustrating the RGB
values of LR images are generally shifted away from the ground-truth values. We
argue these real-world photometric variations can be regarded as an image-level
deformation from the template of synthetic degradation. Most existing real-
world SR methods [4, 51] cannot solve this issue because they predict kernels
and reconstruct high-resolution RGB targets locally. For the same reason, local
implicit neural representation [9,25,31] used in existing scale arbitrary SR works
is insufficient to solve this real-world task since its receptive field is limited.
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(a) HR (d) Comparison of Colour Histogram(c) HR-Bic (Real-world LR)(b) HR-Bic (Synthetic LR)

Fig. 2: (a) The ground-truth images; (b) The images computed by subtracting the
ground truths with their synthetic low-resolution versions which have been bicubically
upscaled to the same resolution as the ground truth; (c) The images computed by
subtracting the ground truths with their real-world low-resolution versions (bicubically
upscaled); (d) The comparison of colour histograms between the ground truths and
their real-world low-resolution versions (bicubically upscaled).

Pixel-based Deformation: One difficulty of real-world scale arbitrary SR is
that the model needs to predict real-world degradations at arbitrary spatial
coordinates. To visualize and compare the effect of degradation kernels in real-
world and synthetic scale arbitrary SR, we compute the RGB difference between
the ground truth and bicubic-upscaled LR input in Figure 2. From Figure 2(b),
we can see the RGB difference in synthetic scale arbitrary SR is only significant
in high-frequency regions, including sharp edges and textures, with minor colour
mismatching. In contrast, the RGB difference in real-world scale arbitrary SR is
much more complex. In Figure 2(c), we find illumination and colour mismatches
occur everywhere regardless of low-frequency or high-frequency regions in the
real-world case. These mismatches are caused by content-dependent and spatially
variant degradation kernels.

According to the analysis above, we propose dual-level deformable implicit
representation to address both image-level and pixel-level deformations in real-
world scenarios. In Section 4.3, we introduce an appearance embedding to ad-
dress the deformation at the image level. In Section 4.4, we design a deformation
branch to model the deformation field and reconstruct image details at the pixel
level. Figure 3 shows the training pipeline of our DDIR model.

4.2 Overview

The overall architecture of our DDIR model is illustrated in Figure 3. It is
composed of two branches, which are the deformation branch and the SR branch.
Each branch consists of one encoder and one decoding function, taking the pixel
coordinate (x, y) and the LR image as the inputs. Both decoding functions are
parameterized by MLPs, and use local implicit neural representation to predict
RGB values at query coordinates. Therefore, the prediction of the RGB values
Iq at an arbitrary query coordinate xq by a decoding function f with trainable
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weights θ can be formulated as:

Iq =
∑
i

Si

S
· fθ(m∗

i , xq − x∗
i ), (1)

where m∗
i (i ∈ {00, 01, 10, 11}) are the nearest latent code at the top-left, top-

right, bottom-left, and bottom-right coordinates x∗
i respectively, Si is the rect-

angle area between x∗
i and xq, and S is the sum of all four Si. Cell decoding and

feature unfolding are also used.

4.3 Appearance Embedding

The receptive field of local implicit neural representation is limited. To adapt
our DDIR model to variable photometric variations, we introduce an appearance
embedding to the deformation branch to handle the image-level deformation.
Here, the appearance embedding is simply taken as the spatial average pooling of
the 2D feature map from the encoder Esr

ϕ of the SR branch. Thus, the appearance
embedding la can be formulated as:

la =
1

WH

W∑
x=1

H∑
y=1

m∗
x,y, (2)

where m∗
x,y is the latent code at the coordinate of x and y, and W and H

are the width and height of the 2D feature map respectively. After getting the
appearance embedding of the LR input, we concatenate it with the nearest
latent code from the query coordinate xq. With the appearance embedding, our
DDIR model can ‘see’ the characteristics of the whole LR input and is not purely
local anymore. Although the appearance embedding is simply the spatial average
pooling of the 2D feature map, we will show it can largely improve the metric
results in experiments, especially in the real-world case.

4.4 Deformation Field

There is no way we can model the exact form of degradation kernels in real-world
scale arbitrary SR because they are too complex to be known. Instead of directly
predicting the form of degradation kernels, we simulate the effects of degradation
kernels on RGB values. We regard bicubic downsampling as linear degradation
and real-world downsampling as nonlinear degradation. We design the deforma-
tion branch to predict RGB differences that result from the derivations between
real-world and synthetic degradation at arbitrary coordinates. More specifically,
the RGB output of this branch is supervised by the RGB difference between
the ground truth and the bicubic-upscaled LR input at this query point. We de-
fine the target of this branch as the deformation field ∆I(xq) because it models
the pixel-level deformation between the nonlinear and linear degradations at the
arbitrary coordinate xq, which can be computed as:

∆I(xq) = IGT (xq)− ILR↑(xq), (3)
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Fig. 3: The training pipeline of our DDIR model. It consists of double branches, which
are the deformation branch and the SR branch. Each branch is composed of an encoder
and an MLP, taking the LR image and query coordinates as the inputs. The appearance
embedding la is computed as the spatial average pooling of the 2D feature map from
the encoder Esr

ϕ of the SR branch, which is fed into the decoding function fd
θ′ of the

deformation branch by concatenation. The RGB output of the deformation branch is
supervised by the deformation field. Then, the predicted deformation field feeds into
the decoding function fsr

θ of the SR branch by concatenation. Finally, the decoding
function fsr

θ of the SR branch outputs the target high-resolution RGB values at the
query coordinates. Combining the appearance embedding and the deformation field,
our DDIR model learns the dual-level deformable implicit representation to address
the deformations at the image and pixel levels simultaneously.

where IGT (xq) is the RGB value of the ground truth at the query coordinate xq,
and ILR↑(xq) is the RGB value of the upscaled LR (upscaled to the same size as
the ground truth by bicubic) at the query coordinate xq. By taking the residual
between the ground truth and bicubic-upscaled LR input, the deformation field
can simulate the spatially variant degradation effect and reconstruct texture
details at the pixel level. Combining the appearance embedding and deformation
field, our DDIR model learns a dual-level deformable implicit representation to
address the image-level and pixel-level deformations simultaneously.

4.5 Network Architecture and Training

The training pipeline of our DDIR model is shown in Figure 3. The network
components and parameters of the two branches are separated. The deforma-
tion branch outputs the RGB values, supervised by the deformation field (De-
formation Supervision). The SR branch outputs the target high-resolution RGB
values, supervised by the ground truth (SR Supervision). In the deformation
branch, the appearance embedding la concatenates with the latent code from
the deformation encoder Ed

ϕ′ before feeding into the decoding function fd
θ′ of

the deformation branch. In the SR branch, the predicted deformation field con-
catenates with the latent code from the SR encoder Esr

ϕ before feeding into the
decoding function fsr

θ of the SR branch. The losses of the SR Supervision LSR

and the Deformation Supervision LD are both L1 losses. Thus, the final loss L
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is formulated as the sum of these two losses:

L = LSR + LD. (4)

In inference, there is no computation of the bicubic-upscaled LR image and the
subtraction between the ground-truth image and the bicubic-upscaled LR image,
compared to the training pipeline.

5 Experiment

5.1 Experiment Setup

We use the RealArbiSR dataset and the RealSR dataset [4] for experiments of
real-world scale arbitrary SR. The RealArbiSR dataset has 200 image pairs for
training and either 50 or 83 image pairs for testing with various integer and non-
integer scale factors. The RealSR dataset has around 400 image pairs for training
and 100 image pairs for testing with the integer scale factors of ×2, ×3, and ×4.
We train the RealArbiSR dataset with the scale factors of ×1.5, ×2.0, ×2.5,
×3.0, ×3.5, and ×4.0, and test at the scale factors of ×1.5, ×1.7, ×2.0, ×2.3,
×2.5, ×2.7, ×3.0, ×3.3, ×3.5, ×3.7, and ×4.0. The RealSR dataset is trained
and tested with the scale factors of ×2, ×3, and ×4. In the training time, we
crop 48× 48 patches as the inputs to the encoder. The corresponding HR patch
with a random scale factor is also cropped as the ground-truth counterpart.
2304 pixels are randomly sampled from the ground-truth patch, and converted
to coordinate-RGB pairs. We evaluate PSNR on the Y channel (e.g ., luminance)
of the transformed YCbCr space [4, 51].

The encoders Esr
ϕ and Ed

ϕ′ of both branches are either EDSR [28] or RDN [59]
without the upsampling module. Both decoding functions fsr

θ and fd
θ′ are 5-layer

MLPs with ReLU activations and hidden dimensions of 256. we use an Adam [23]
optimizer with an initial learning rate of 2× 10−4, which decays by 0.5 at every
200 epochs. The batch size is 16 and the models are trained for 1000 epochs.
The last epoch is used for the final results. Experiments are conducted on two
GeForce RTX 3090 GPUs.

5.2 Comparisons with State-of-the-Art

Quantitative Results. In Table 2, we compare the quantitative results between
LIIF [9], LTE [25], CiaoSR [5], and our DDIR, using EDSR and RDN without
the upsampling module as the encoders. Prior work [8] is not included because
its results are worse than the LIIF baseline. We can see our DDIR model achieves
the best PSNR results at all the scale factors that appeared in the training set in
the RealArbiSR dataset (including ×1.5, ×2.0, ×2.5, ×3.0, ×3.5, and ×4.0) and
the RealSR dataset (e.g ., ×2.0, ×3.0, and ×4.0). In particular, compared with
the previous SOTA method [5], our DDIR model achieves remarkable PSNR
gains of 0.32dB under the RDN backbone (×2.0) on the RealArbiSR dataset.
Even for the scale factors that are not present in the training set (such as ×1.7,
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Table 2: Quantitative comparison on RealArbiSR and RealSR datasets in PSNR(dB).
The highest PSNR at each scale factor of each dataset is bolded. One model is trained
and tested at the scale factors from ×1.5 to ×4.0 with a step of ×0.5 in RealArbiSR
dataset. Another model is trained and tested at the integer scale factors including ×2.0,
×3.0, and ×4.0 in RealSR dataset.

Method RealArbiSR RealSR
×1.5 ×2.0 ×2.5 ×3.0 ×3.5 ×4.0 ×2.0 ×3.0 ×4.0

Bicubic [4] 35.46 32.45 30.69 29.42 28.50 27.80 31.67 28.61 27.24

EDSR-baseline [28] - 34.26 - 31.12 - 29.47 33.88 30.86 29.09
EDSR-LIIF [9] 37.14 34.37 32.54 31.28 30.29 29.63 33.87 30.77 29.18
EDSR-LTE [25] 37.16 34.34 32.53 31.26 30.30 29.68 33.94 30.80 29.21
EDSR-CiaoSR [5] 37.23 34.54 32.80 31.52 30.57 29.88 34.08 30.97 29.37
EDSR-DDIR 37.51 34.85 33.02 31.78 30.80 30.05 34.19 31.02 29.39

RDN-LIIF [9] 37.14 34.41 32.60 31.40 30.34 29.70 33.99 30.90 29.29
RDN-LTE [25] 37.24 34.52 32.76 31.53 30.54 29.84 34.01 30.93 29.29
RDN-CiaoSR [5] 37.38 34.70 32.96 31.68 30.77 30.07 34.26 31.14 29.45
RDN-DDIR 37.63 35.02 33.20 31.91 30.94 30.21 34.35 31.15 29.48

Table 3: Quantitative comparison on RealArbiSR in PSNR(dB). The highest PSNR
at each scale factor of each dataset is bolded. One model is trained at the scale factors
from ×1.5 to ×4.0 with a step of ×0.5, but tested at the scale factors of ×1.7, ×2.3,
×2.7, ×3.3, and ×3.7 in RealArbiSR dataset.

Method EDSR Backbone RDN Backbone
×1.7 ×2.3 ×2.7 ×3.3 ×3.7 ×1.7 ×2.3 ×2.7 ×3.3 ×3.7

Bicubic 33.53 31.05 30.12 29.03 28.48 33.53 31.05 30.12 29.03 28.48

LIIF [9] 34.63 32.33 31.39 30.22 29.64 34.66 32.40 31.45 30.28 29.71
LTE [25] 34.65 32.29 31.30 30.10 29.51 34.74 32.44 31.55 30.39 29.81
CiaoSR [5] 34.49 32.44 31.64 30.48 29.87 34.54 32.50 31.67 30.56 29.96
DDIR 34.90 32.73 31.80 30.61 30.01 35.07 32.88 31.96 30.75 30.15

×2.3, ×2.7, ×3.3, and ×3.7), our DDIR model also achieves the best PSNR
results at all these scale factors, as illustrated in Table 3. These experimental
results show the appearance embedding and the deformation field handle real-
world degradation kernels from the perspectives of image-level and pixel-level
deformations properly, resulting in robust metric gains at all the scale factors
under both backbones in the RealArbiSR and RealSR datasets.

We further conduct the cross-dataset testing in Table 4. We train the models
on the RealArbiSR dataset and test them on the RealSR dataset. Table 4 shows
our DDIR model achieves the best metric results in the cross-dataset experiment.
Qualitative Results. We present a qualitative comparison between LIIF [9],
LTE [25], CiaoSR [5] and our DDIR in Figure 4. It shows our DDIR model
obtains better visual quality than the competitors, reconstructing sharper edges
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Table 4: Quantitative comparison of the cross-dataset testing in PSNR(dB). The
highest PSNR at each scale factor is bolded. One model is trained at the scale factors
from ×1.5 to ×4.0 with a step of ×0.5 in RealArbiSR dataset, and tested at the scale
factors of ×2.0, ×3.0, and ×4.0 in RealSR dataset.

Method EDSR Backbone RDN Backbone
×2.0 ×3.0 ×4.0 ×2.0 ×3.0 ×4.0

LIIF [9] 32.47 29.54 28.03 32.39 29.54 28.02
LTE [25] 32.48 29.52 28.06 32.27 29.47 28.06
CiaoSR [5] 32.38 29.56 28.19 32.42 29.58 28.17
DDIR 32.58 29.72 28.25 32.59 29.70 28.18

LR LIIF LTE CiaoSR DDIR (Ours) GT

× 4.0

× 3.5

× 3.0

× 3.7

Fig. 4: Qualitative comparisons between different methods on benchmarks. Zoom in
to have better views.

and more natural details. In contrast, the results of other methods [5, 9, 25]
suffer from unpleasant details, especially blurry edges. Taking the first group
of the images as an example, our DDIR can reconstruct more lines with sharp
edges. However, more of the lines in other methods are blurred. These qualitative
comparisons prove our DDIR reconstructs HR images with better texture details
due to the use of appearance embedding and deformation field.

5.3 Analysis of Scale Factors in RealArbiSR Dataset

Compared with the existing real-world SR dataset (e.g ., RealSR [4] and DRealSR
dataset [51]), our RealArbiSR dataset has three more non-integer scale factors
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Table 5: Quantitative Analysis of training scale factors in RealArbiSR dataset. The
highest PSNR at each scale factor on each method is bolded. ‘×2×3×4’ represents the
models are trained at the scale factors of ×2.0, ×3.0, and ×4.0. ‘All’ represents the
models are trained at the scale factors of ×1.5, ×2.0, ×2.5, ×3.0, ×3.5, and ×4.0.

Method Training Scale ×1.5 ×2.0 ×2.5 ×3.0 ×3.5 ×4.0

EDSR-LIIF [9] ×2×3×4 36.70 34.20 32.39 31.19 30.22 29.59
All 37.14 34.37 32.54 31.28 30.29 29.63

EDSR-LTE [25] ×2×3×4 36.89 34.23 32.40 31.18 30.21 29.59
All 37.16 34.34 32.53 31.26 30.29 29.68

EDSR-CiaoSR [5] ×2×3×4 36.85 34.45 32.69 31.45 30.49 29.82
All 37.23 34.54 32.80 31.52 30.57 29.88

EDSR-DDIR ×2×3×4 37.21 34.63 32.80 31.61 30.61 29.90
All 37.51 34.85 33.02 31.78 30.80 30.05

Table 6: Quantitative ablation study of EDSR-DDIR on RealArbiSR dataset in
PSNR(dB). The highest PSNR at each scale factor is bolded.

Deformation Appearance Scale
Field Embedding ×1.5 ×2.0 ×2.5 ×3.0 ×3.5 ×4.0

✗ ✗ 37.09 34.32 32.52 31.29 30.33 29.69
✓ ✗ 37.26 34.50 32.66 31.41 30.41 29.72
✗ ✓ 37.32 34.69 32.86 31.61 30.64 29.90
✓ ✓ 37.51 34.85 33.02 31.78 30.80 30.05

including ×1.5, ×2.5, and ×3.5 in the training set. To demonstrate our RealAr-
biSR dataset is more suitable for the training of real-world scale arbitrary SR
due to the presence of these non-integer scale factors, we compare the metric
results of the models trained with only integer scale factors and with all scale
factors in Table 5. We can see the models which are trained at all scale factors
(including ×1.5, ×2.0, ×2.5, ×3.0, ×3.5, and ×4.0, indicated as ‘All’ in Table
5) perform better than the ones trained only at integer scale factors (including
×2.0, ×3.0, and ×4.0, indicated as ‘×2×3×4’ in Table 5). Further experimental
results are presented in the supplemental material.

5.4 Ablation Study

We show an ablation study in Table 6 to demonstrate the effect of the appear-
ance embedding and deformation field. After removing appearance embedding,
the PSNR results are reduced at all scale factors. To illustrate the effect of defor-
mation field, we remove the deformation field and the branch, concatenating the
appearance embedding with the latent code of the SR branch. In this case, the
PSNR results also drop at all scale factors. Without the appearance embedding
and deformation field, the model performs the worst at all these scale factors.
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Table 7: Quantitative comparison of appearance embedding in synthetic and real-
world scale arbitrary SR in PSNR(dB) on RGB channels. EDSR-LIIF(+a) refers to
adding appearance embedding to the EDSR-LIIF baseline. The highest PSNR at each
scale factor is bolded. The models are trained and evaluated on RealArbiSR and DIV2K
datasets. RealArbiSR dataset is tested at the scale factors from ×1.5 to ×4.0 with a
step of ×0.5 and DIV2K dataset is tested at the scale factors of ×2.0, ×3.0, and ×4.0.

Method RealArbiSR DIV2K
×1.5 ×2.0 ×2.5 ×3.0 ×3.5 ×4.0 ×2.0 ×3.0 ×4.0

EDSR-LIIF [9] 34.88 32.27 30.49 29.27 28.29 27.62 34.67 30.96 29.00
EDSR-LIIF(+a) 35.09 32.64 30.88 29.64 28.68 27.96 34.74 31.05 29.07

5.5 Analysis of Appearance Embedding on Real-World SR

To demonstrate appearance embedding is particularly useful in real-world scale
arbitrary SR, we compare the experimental results with and without the ap-
pearance embedding in the synthetic (e.g ., bicubic downsampling) and the real-
world scale arbitrary SR. Specifically, we use the EDSR-LIIF [9] model as the
baseline and choose to concatenate or not concatenate the appearance embed-
ding with the latent code before feeding into the MLP. We train and evaluate
these models on DIV2K dataset (bicubic degradation) [44] and our RealArbiSR
dataset. In Table 7, we can see the PSNR gains by adding the appearance em-
bedding in the real-world dataset are significantly higher than the gains in the
synthetic dataset. This proves the appearance embedding is much more useful
in the real-world case. Since bicubic downsampling cannot have image-level de-
formations, we argue there exist image-level deformations in real-world SR. By
adding appearance embedding, our DDIR model can handle image-level degra-
dations caused by photometric variations in real-world photographs, leading to a
more significant improvement in the real-world scenario than the synthetic one.

6 Conclusion

In this work, we contribute a RealArbiSR dataset, the first real-world SR bench-
mark with both integer and non-integer scale factors in diverse scenes for the
training and evaluation of real-world scale arbitrary SR. We propose dual-level
deformable implicit representation to solve this problem. Specifically, the appear-
ance embedding and deformation field are designed to handle image-level and
pixel-level deformations caused by real-world degradation kernels. Extensive ex-
periments show our DDIR model is capable of dealing with complex real-world
degradations and reconstructing real-world HR images with high fidelity, achiev-
ing state-of-the-art performance on both RealArbiSR and RealSR benchmarks.
As for limitations, our RealArbiSR dataset uses one camera to collect image
pairs. The differences in imaging pipelines among cameras can lead to more di-
verse degradations. In the future, we will build a large-scale dataset by using
more DSLR cameras to cover diverse real-world degradation among devices.
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