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Abstract. Mesh-based facial blendshapes have been widely used in an-
imation pipelines, while recent advancements in neural geometry and
appearance representations have enabled high-quality inverse rendering.
Building upon these observations, we introduce a novel technique that
reconstructs mesh-based blendshape rigs from single or sparse multi-view
videos, leveraging state-of-the-art neural inverse rendering. We begin by
constructing a deformation representation that parameterizes vertex dis-
placements into differential coordinates with tetrahedral connections, al-
lowing for high-quality vertex deformation on high-resolution meshes.
By constructing a set of semantic regulations in this representation,
we achieve joint optimization of blendshapes and expression coefficients.
Furthermore, to enable a user-friendly multi-view setup with unsynchro-
nized cameras, we use a neural regressor to model time-varying motion
parameters. Experiments demonstrate that, with the flexible input of sin-
gle or sparse multi-view videos, we reconstruct personalized high-fidelity
blendshapes. These blendshapes are both geometrically and semantically
accurate, and they are compatible with industrial animation pipelines.
Code and data are available at https://github.com/grignarder/high-
quality-blendshape-generation.
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1 Introduction

Synthesizing realistic 3D facial animations has long held significant applications
in the movie and gaming industry. Accurate modeling of facial geometry and
expression deformation constitutes a fundamental challenge for this task. In the
industry, modeling usually involves a studio-level multi-view setup [3, 18, 26] to
capture facial performances of real humans, along with the artist’s manual effort
to generate a facial rig. This facial rig is then imported into an animation pipeline
[13,60] for game and movie production. VR and AR applications further require
modeling facial rigs for a vast user base, necessitating an automated approach
for facial modeling from widespread capture setups. One critical requirement is
that the modeled face rig must be compatible with the animation pipeline to
enable downstream animation applications.
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Fig. 1: With the input of sparse multi-view face videos (shown on the left), our tech-
nique reconstructs personalized mesh-based blendshapes (examples shown on the right)
that are ready to be used in the industrial animation pipeline.

RGB cameras are prevalent on everyday mobile devices, making them a
popular choice for user-friendly facial reconstruction in numerous works. In
addition to detecting facial landmarks from RGB inputs to fit facial statisti-
cal models [11, 12, 57], differentiable rendering [29] can improve the reconstruc-
tion fidelity by harnessing dense pixel observations. However, overly-simplified
rendering models cause under-fitting of facial material and arbitrary lighting,
thereby negatively impacting the shape reconstruction quality. With the recent
advancements in neural inverse rendering [41, 55], techniques like neural facial
avatars [4, 21, 27, 72–74] can generate realistic animatable avatars from com-
mon RGB recordings. However, these techniques do not rely on high-quality
topology-consistent mesh representation and thus are not compatible with the
industrial animation pipeline, impacting their practical utility. To bridge the gap
between realistic modeling and compatibility with current animation pipelines
using easy recording setups, we, on one hand, represent dynamic facial model-
ing as a blendshape rig [34], consisting of topology-consistent facial meshes for
various expressions. On the other hand, we optimize the blendshape with novel
per-vertex deformation schemes to precisely match the generated animation to
the facial performance in RGB videos (inverse rendering). Once converged, the
obtained blendshape can be imported into animation software (e.g. Blender [17])
to generate realistic person-specific facial animations for industrial applications.

To achieve high-quality shape reconstruction and animation by optimiz-
ing the blendshape rig via neural inverse rendering, we propose techniques to
solve three unaddressed issues. The first arises in optimizing per-vertex defor-
mations of a high-resolution mesh, which can be non-smooth and suffer from
self-intersections. By applying differential coordinates to parameterize blend-
shape meshes augmented with tetrahedral connections, we facilitate gradient
propagation along topologically and spatially adjacent vertices, ensuring smooth
deformation. Secondly, there is an ambiguity in optimizing either expression
bases or coefficients to fit users’ arbitrary facial performance, and prior meth-
ods [4,21,27,72,74] typically circumvent this by excluding expression coefficients
from the optimization (estimating them through a pre-processing step [57]) thus
only reaching local optima. We aim to improve convergence by joint optimization
with novel regularization techniques that enforce the symmetry, sparsity, and se-
mantics of expression bases to solve the ambiguity. Thirdly, multi-view inputs are



High-Quality Mesh Blendshape Generation 3

Fig. 2: Method pipeline. We model the human head as a person-specific facial rig that
includes a neutral face and a set of blendshapes. This rig is derived from template
blendshapes through tetrahedralizing and reparameterizing per-vertex deformation.
The head poses R,t and expression coefficients βexp are regressed from the timestamps
corresponding to each frame by a neural synchronization regressor, which achieves im-
plicit synchronization between the multi-view, not fully synchronized videos. Combined
with the facial rig, the dynamic face geometry is obtained. Afterwards, a neural ren-
dering MLP renders the corresponding images according to the latent codes, normals,
and view directions acquired through differentiable rasterization. Finally, we leverage
the rendering loss, landmark loss, and rigging regularization terms to jointly optimize
the facial rig, the neural regressor, and the neural rendering MLP.

useful for accurately reconstructing non-rigid facial deformations [22], but previ-
ous research usually does not presume that multi-view inputs are readily avail-
able, as they are typically linked with complex procedures such as synchroniza-
tion and color correction. We incorporate sparse multi-view inputs from unsyn-
chronized smartphones by utilizing a neural regressor to model time-dependent
motion parameters, implicitly ensuring temporal synchronization. In summary,
our contributions include:

– A video-based facial rigging technique that bridges traditional animation
pipelines and neural inverse rendering to achieve high-quality animation-
ready facial rig reconstruction from single or sparse multi-view videos (as
shown in Fig. 1), and

– a novel blendshape deformation technique that parameterizes differential
coordinates augmented with tetrahedral connections, involving a set of se-
mantic regularization into a joint optimization.

2 Related Work

3D Facial Performance Capture. Many studies have been devoted to gener-
ating realistic 3D animations from users’ facial performance. High-quality facial
animation can be reconstructed through a studio-level multi-view setup [3,7,20].
However, this involves intricate procedures for dozens of professional cameras,
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including synchronization and color correction. To enable facial performance cap-
ture using ubiquitous devices, morphable models [5,61] are fitted from monocular
RGB or RGBD videos [11,12,63]. To achieve a more personalized facial geome-
try beyond the morphable model, fine-level displacements are introduced on the
facial mesh to synthesize nuanced facial details [10, 24, 40]. Due to the inherent
ambiguity in non-rigid facial reconstruction from monocular input, deformation
is highly constrained. In attempts to address such limitation, efforts extend to
sparse views and observe reconstruction improvements [9,59]. Establishing a sim-
ple and user-friendly sparse view setup remains an active research topic. While
the aforementioned approaches can reconstruct dynamic facial geometries, addi-
tional efforts are required to organize the performance data into a facial rig for
convenient editing and synthesis of novel facial animations.

3D Facial Rigging. Rigging aims to generate a personalized facial ex-
pression model from the user’s performance, typically represented using blend-
shapes [34] for compatibility with the animation pipeline. Deformation trans-
fer [52] can personalize template blendshapes from a neutral expression mesh.
Furthermore, data-driven priors are utilized to predict personalized expression
bases from a neutral scan or image [37,70] . To achieve higher degrees of person-
alization from more observations, some works [35] take input from multiple scans
with predefined expressions, while some [28] require users to make specific key
expressions during the capture process. Efforts on exploring more user-friendly
capture procedures [6,25,36,62] focus on utilizing performance sequences where
users make arbitrary facial expressions to generate expression blendshapes. Up-
dating blendshapes requires careful design to avoid mesh non-smoothness, thus
techniques such as reduced subspace [6] and corrective shapes [25, 36] are em-
ployed to constrain deformations. To resolve the ambiguity between expression
bases and expression coefficients, semantic emotion priors are proposed to con-
strain expressions [62]. Some deep-learning-based methods [14, 54] propose an
end-to-end framework that learns a personalized face model from a corpus of
in-the-wild videos. Our work introduces a vertex deformation representation
that enables high-fidelity deformation of blendshapes while enforcing smooth-
ness. We also design constraints to maintain semantic coherence in expression
blendshapes.

Neural Inverse Rendering. Differentiable rendering [32,39,47] can lever-
age gradient backpropagation to optimize geometry, material and lighting to
achieve inverse rendering-based reconstruction. Facial materials, influenced by
subsurface scattering [19], are challenging to represent using simplified render-
ing models, which can lead to underfitting in differentiable rendering. Recent
advances in neural rendering [41, 56, 64] bypass this limitation by directly mod-
eling the emitting radiance via neural networks, achieving realistic novel-view
synthesis [41,56] and reconstruction [64] of static objects. Dynamic object mod-
eling is achieved via neural deformation fields [8, 49], but do not incorporate
expression-driven retargeting. Some works [2,15,21,23,69,74] extend NeRF [41]
to expression-driven dynamic faces. However, the density-based representation
employed by their methods lacks explicit geometric regularization, often lower-
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ing the quality of novel views. Alternative representations such as implicit fields,
point clouds and 3D Gaussians [46, 68, 72, 73] are explored, but compatibility
with animation pipelines remains a challenge. Neural Head Avatars [27] can ob-
tain a mesh representation after a long training time, but with a primary focus
on rendering quality rather than accurate geometry reconstruction, frequently
leading to details being baked in textures. FLARE [4] explores the use of mesh-
based representation for fast learning of facial avatars. Compared to their works,
our emphasis lies more on the geometric quality and compatibility of animation.
Therefore, we jointly optimize blendshapes and expression coefficients, incorpo-
rate regularization to maintain the semantics of the updated blendshapes, and
achieve accurate reconstruction evaluated by point-to-plane distance.

3 Method

We aim to reconstruct personalized mesh-based blendshapes from RGB videos.
Personalization involves per-vertex deformation applied to the blendshapes. We
propose a deformation representation, outlined in Sec. 3.1, to ensure smoothness
and prevent self-intersection for high-resolution meshes. Based on the repre-
sentation, the deformations are further regularized, introduced in Sec. 3.2, to
maintain the semantics of the expression blendshapes. The sparse multi-view
inputs, which are used to guide the deformations, are implicitly synchronized by
a neural synchronization regressor illustrated in Sec. 3.3. Additionally, with a
neural rendering pipeline in Sec. 3.4 to render the animated faces, we compare
the rendered faces with the input to reconstruct the blendshape deformation. To
be specific, the reconstruction is solved by the joint optimization of the blend-
shape deformation, the rendering network, and the synchronization regressor in
Sec. 3.5. Fig. 2 represents an overview of our method.

3.1 Vertex Deformations with Tetrahedral Connections

The facial shape is represented by a mesh where a neutral face bn describes its
identity and blendshapes [34] describe its expression deformation. This blend-
shape model represents a face with a specific expression as bβ = bn+Bexpβexp,
where bn denotes the user-specific neutral face, Bexp ∈ R3N×Mexp denotes the
blendshape model, and βexp ∈ RMexp represents the expression coefficients. Our
objective is to generate a person-specific facial rig consisting of a neutral face
b∗
n and a set of blendshapes B∗

exp by solving per-vertex deformation applied
to bn and Bexp from a base blendshape model (ICT Face Model [38] in our
experiments).

However, directly optimizing per-vertex deformation poses challenges for con-
vergence [43]. To ensure smoothness and prevent self-intersection cavities, we
devise a vertex parameterization that implicitly satisfies volumetric Laplacian
regularization. First, we parameterize vertex displacements into differential coor-
dinates [51], inspired by [43]. The parameterization propagates vertex gradients
to neighboring vertices based on mesh connectivity, effectively enforcing smooth



6 X. Ming et al.

deformation. However, there is no gradient propagation between spatially ad-
jacent but not directly connected vertices, and mesh self-intersection can still
occur. Therefore, we augment mesh connectivity via internal tetrahedral filling.
Specifically, we use TetGen [50] to fill the closed space between the surface and
corresponding internal sockets with tetrahedras, preventing interpenetration due
to large deformations. More details about tetrahedral filling can be found in our
supplementary document. We use Φ to denote the process of tetrahedralizing and
reparameterizing per-vertex deformation. The personalized neutral face is repre-
sented as b∗

n = Φ (bn). Blendshapes are deformed similarly as B∗
exp = Φ (Bexp).

Discussion. [27,73] employ MLPs to regress deformations from canonical ver-
tex coordinates, observing that the output deformations exhibit spatial smooth-
ness. We attribute this phenomenon to the shared network among vertices,
where during backpropagation, the gradient of one vertex influences others, with
a greater impact on adjacent vertices [53]. We have employed a network-free
method that achieves similar effects, propagating vertex gradients to topologi-
cally and spatially adjacent vertices. This approach is memory-efficient, faster,
and suitable for applications with multiple (Mexp = 53) blendshape bases.

3.2 Rigging Regularization

Blendshapes have clear semantics due to their connection with facial action
units [45]. However, the semantics may be corrupted due to ambiguity as we
optimize both expression coefficients βexp and blendshapes B∗

exp simultaneously.
To this end, we propose regularizations based on three principles, namely locality,
sparsity, and symmetry, to ensure that we obtain a semantically consistent rig.

Locality. Each blendshape corresponds to an action unit, and its deforma-
tion has a localized influence region. Inspired by [14], the update of a blendshape
should be concentrated on its original activation region. To this end, we first
compute the per-vertex deforming weights W ∈ R3N×Mexp based on the initial
blendshapes given by

W (3i : 3i+ 2, j) = exp

(
−
∥Bexp (3i : 3i+ 2, j)∥2

a

)
(1)

where a is a hyperparameter controlling the smoothness of the activation region
boundary.

The weight is used to compute the locality loss defined as

Llocality =
∥∥W ⊙

(
B∗

exp −Bexp

)∥∥
F

(2)

where ⊙ denotes element-wise multiplication.
Sparsity. The dynamic facial deformation should be explained by only a

few blendshapes. When multiple blendshape coefficients are wrongly activated
during optimization, a sparsity regularization on blendshapes can prevent the
deformation to be averaged into multiple blendshapes. The sparsity loss is defined
as:

Lsparsity =
∥∥B∗

exp −Bexp
∥∥
p

(3)
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with p < 1. We use p = 0.75 in the experiments.
Symmetry. The blendshapes which are symmetric for the left and right

faces should still maintain symmetry. We manually select the symmetric ones
from the initial blendshapes, and only update their left half faces. The right half
faces are obtained by symmetry.

3.3 Sparse Multi-View Handling

Accurate modeling of dynamic faces from monocular videos is an ill-posed prob-
lem [22]. However, increasing the number of viewpoints often incurs cumbersome
setups such as synchronization. Conversely, we allow unsynchronized RGB videos
captured from mobile phones as input. To address the issue of incomplete time
synchronization among multiple devices, we propose to use a one-dimensional
Instant-NGP [42] to store temporal information to implicitly ensure synchroniza-
tion. Specifically, for each viewpoint k, we record the video start time tks from the
system clock of the mobile phone. The time of the ith frame can be calculated

as tki = tks +
i

rk
, where rk is the frame rate. tki will be used to regress parameters

containing face rotation Rk
i , translation tki , and expression coefficients βk

i with
the neural regressor as:

Rk
i , t

k
i ,β

k
i = Grid

(
tki
)

(4)

Compared to another viewpoint k′, while tki and tk
′

i are not captured at the
same time, they have independent motion parameters, and the neural regressor
ensures smoothness for temporally close parameters.

To address the exposure difference among different viewpoints, we assign a
learnable latent code for each camera hk when rendering. Details will be ex-
plained in the next section.

3.4 Mesh-based Neural Deferred Rendering

Mesh-based face models enable us to perform efficient rendering using differen-
tiable rasterization [32]. However, overly simplified rendering models may suffer
from underfitting due to the complex material of the face and arbitrary light-
ing. Motivated by [65], We use a technique that combines neural rendering and
deferred rendering from real-time rendering pipelines. Specifically, a latent code
is assigned to each mesh vertex, which represents the neural texture. In the
rendering process, the mesh is first rasterized, yielding the triangle indices and
barycentric coordinates for each pixel, which are used to interpolate the latent
codes, vertex normals and view directions. Then, we use a learnable MLP-based
shader to regress the per-pixel RGB color:

fθ (z,n,ω,hk) ∈ [0, 1]
3 (5)

where z denotes the latent code, n denotes the normal, ω denotes the view
direction, hk denotes the learnable latent code assigned to the k-th viewpoint
and θ denotes the network parameters.
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3.5 Joint Optimization

Our optimization objective integrates multiple loss components to collectively
optimize all trainable parameters from randomly initialized values, including the
facial rig, the neural regressor, and the neural shader. The formulation of the
joint optimization objective is expressed as follows:

Ltotal =Lldmk + Lmask + Lphotometric

+ LLaplacian + Llocality

+ Lsparsity +Rexp +Rneutral

(6)

This objective function encapsulates various aspects, including landmark loss
Lldmk , mask loss Lmask , photometric loss Lphotometric , Laplacian loss LLaplacian ,
expression regularization Rexp , and regularization for template deformation
Rneutral. Lsparsity and Llocalityhave been explained in the previous section. Lldmk
enforces accurate prediction of facial landmarks,

Lldmk =
1

N

N∑
i=1

∥v̂i − vi∥1 (7)

where v̂ indicates the landmarks projected on images and v indicates the detected
N landmarks. Rexp serves as the sparsity regularizer,

Rexp =
∥∥βexp

∥∥
1

(8)

where βexp is the expression coefficient. Lmask ensures the alignment of ren-
dered masks M̂ and segmented masks M , and Lphotometric enforces consistency
between rendered images Î and captured images I

Lmask =
∥∥∥M̂ −M

∥∥∥
1

(9)

Lphotometric =
∥∥∥M ⊙

(
Î − I

)∥∥∥
1

(10)

where ⊙ denotes element-wise multiplication. LLaplacian enforces smoothness of
latent codes between adjacent vertices.

LLaplacian = ∥LU∥2 (11)

where L is the Laplacian matrix and U denotes the per-vertex latent codes,
with its i-th row storing the latent code of the i-th vertex. Rneutral constrains
deformation of the neutral face.

Rneutral = ∥b∗
n − bn∥22 (12)

This comprehensive optimization objective facilitates the joint refinement of
our pipeline. In our experiment, the Lldmk (including the landmarks on eye
balls) and Rexp are initially activated to obtain a coarse alignment. After a
number of epochs, we proceed to enable all the loss components.
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4 Experiments

In this section, we first describe the implementation details of our method and
provide information about the used datasets. Next, we qualitatively and quanti-
tatively compare the accuracy of geometric reconstruction with previous works.
We then conduct ablation studies to assess the impact of the deformation rep-
resentation on vertex optimization and the role of semantic regularization in
constraining expression bases. Finally, we demonstrate the application of our
method in animation, including expression retargeting and novel-view synthesis.
More results can be found in our supplementary document and video.

4.1 Implementation Details

For the input videos, we use Facer [71] to obtain the facial landmarks and masks.
We use a three-layer MLP as the neural renderer, which has 64 hidden units and
uses ReLU as the activation function. In the hierarchical grids of our neural
synchronization regressor, we use 6 grid scales with a base resolution of 8, and
we use 4 channels per level. We use Nvdiffrast [32] as the differentiable rasterizer.
For the neural renderer and the regressor, we use an Adam [30] optimizer with
η = 1e−3 and β = (0.9, 0.999). The facial rig is updated using an AdamUniform
[43] optimizer, with the same parameters as the Adam optimizer. We train our
model for 200 epochs, with all loss functions activated for the last 120 epochs.

4.2 Datasets and Metrics

Datasets We capture our dataset using four mobile phones for qualitative
comparisons. Additionally, we conduct qualitative and quantitative evaluations
on the Multiface [67] and NeRSemble [31] datasets, which feature high-quality
multi-view captures of different identities with rich expressions. We utilize Meta-
Shape [1] to reconstruct accurate 3D scans from all available views of the two
datasets (38 in [67] and 16 in [31]) as the ground truth. For each dataset, we man-
ually select four views as the inputs to simulate the sparse-view setup, like [49].
All experiments in the main paper are conducted with four-view inputs. We
present the experimental results under a single view in the supplementary ma-
terials to demonstrate that our method is also applicable for easier setup.

Evaluation Metrics We adopt the evaluation metrics from [66] to com-
pute point-to-plane L2 errors at facial regions between reconstructed 3D shapes
and ground-truth 3D scans. We report reconstruction errors averaged across all
frames in a video sequence.

4.3 Comparisons

To evaluate the accuracy of the geometric reconstruction, we perform qualita-
tive and quantitative comparisons on the reconstruction results using the Multi-
face [67] and NeRSemble [31] datasets. We choose to compare NHA [27], PointA-
vatar [73] and FLARE [4] as they represent the latest works on face avatars based
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point-to-plane error(mm) Multiface NeRSemble
Mean Std Mean Std

NHA 3.76 0.13 4.98 0.36
PointAvatar 7.66 0.28 7.22 0.34
FLARE 5.61 0.21 5.88 0.33
HRN 4.37 0.14 4.53 0.19
Ours 2.31 0.05 2.73 0.26

Table 1: Quantitative comparison in point-to-plane errors among NHA, PointAvatar,
FLARE, HRN and our method on the NeRSemble and MultiFace datasets.

Fig. 3: Visualization of the point-to-plane error heatmaps for PointAvatar, NHA,
FLARE, HRN, and our method.

on explicit shape representation. PointAvatar [73] claims to achieve comparable
geometry reconstruction with [72]. Works such as [2, 21, 23, 69, 74] achieve high-
quality rendering, but their density-based representations are not suitable for di-
rect comparisons. We also compare our method with HRN [33], which is trained
on large-scale in-the-wild images for accurate face reconstruction and can accept
multi-view image inputs. We modified the baselines so that all methods use in-
put from four views. As shown in Table 1, our method surpasses other methods
in point-to-plane errors on both datasets. Lower errors are also evident in the
visualized heatmaps in Fig. 3, where we achieve more accurate reconstruction,
especially in the forehead and nose regions. In Fig. 4, a qualitative comparison of
the reconstruction results for identity and expression-specific facial details is pre-
sented. In the first row, our method reconstructs a more personalized puckering
expression. In the second row, our method successfully reconstructs the aquiline
nose, which is a distinctive geometric feature specific to the input identity.

4.4 Ablation Study

To test the necessity of the blendshape deformation representation in preserving
the mesh’s desirable properties, we present geometric reconstruction results un-
der different settings. We compare the reconstruction results of our method with:
(1) without using differential coordinates and (2) with tetrahedral connections
disabled. The results are then compared against the full pipeline. As shown in



High-Quality Mesh Blendshape Generation 11

Fig. 4: Comparisons of identity and expression-related facial details between our
method and other baselines.

Fig. 5: Evaluating the effectiveness of the blendshape deformation representation, in-
cluding differential coordinate reparameterization and tetrahedral connections.

Fig. 6: Blendshapes of neutral and cheek puffing expressions obtained by different so-
lutions. The results reveal that our method not only correctly encodes the identity
information in the neutral blendshape but also encodes the single-sided puffing expres-
sion in its corresponding blendshape.



12 X. Ming et al.

Fig. 7: Retargeting results of our personalized facial rig. The first row shows the source
expressions. The following rows show the retargeting results, where the images in the
first column show the neutral expression of the target identities.

the left half of Fig. 5, the utilization of differential coordinates in the optimiza-
tion process significantly enhances the smoothness of the face surface, effectively
eliminating numerous artifacts while preserving geometry accuracy. Replacing
differential coordinates with a Laplacian regularizer could also increase smooth-
ness, but it fails to prevent self-intersections and geometrically mismatches the
target (third column). The right half in Fig. 5 illustrates the results of using
tetrahedral connections during the vertex deformation process. When the user
exhibits extreme facial expressions, such as a puckered mouth, there is a risk
of penetration between the mouth socket and the facial surface, especially for
high-resolution meshes. The twisting of the nose, due to the presence of the nasal
cavity, may result in similar issues. Even if it occurs in a limited region, it poses
significant challenges for artists in refining and adjusting the reconstructed facial
rigs. By establishing tetrahedral connections between surface points and internal
socket points, we effectively mitigated the penetration without compromising the
accuracy of deformation.

To evaluate the impact of blendshape updates and semantic regularization
in the updates, we visualize the obtained expression bases under different set-
tings in Fig. 6. The first column showcases a frame from the input sequence
where the user makes a puffy expression. Our objective is to update the per-
sonalized one-sided puffy expression basis based on the inputs. If expressions
are made only in the expression space of the ICT morphable model (second
column), the resulting face deviates significantly from the user’s identity, lack-
ing personalization. If the expression basis is updated without applying semantic
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regularization, identity-specific hair details are missing on the neutral face (third
column). The relevant detail components appear inappropriately in the expres-
sion basis (fourth column, highlighted by red boxes). When applying semantic
regularization, our method can reconstruct a high-quality neutral face (fifth col-
umn) that includes all identity-related facial details. However, if the expression
basis is not updated and template blendshapes are directly applied to deform the
personalized neutral face, artifacts due to mismatched deformations occur in the
deformed region (sixth column, highlighted by red boxes). After updating the
expression basis and applying semantic regularization, our method synthesizes
high-quality personalized expression bases (seventh column).

4.5 Applications

In this section, we showcase the animation applications of the reconstructed
results, including expression retargeting and novel-view synthesis.

Expression retargeting. The reconstructed geometry, represented by blend-
shapes with consistent topology, adheres to the format of animation pipelines.

Fig. 8: Usage of our
blendshapes in Blender.

Therefore, it can be directly imported into animation
software (such as Blender [17]) for synthesizing expres-
sive animations, as depicted in Fig. 7. We demonstrate
the results of the reconstructed facial rig being driven by
a performer of a different identity. During a puckering
expression, our method synthesizes distinct lip shapes
between individuals (fourth column), and during a gri-
mace, we observe person-specific nasolabial folds (third
column). Expression-related nasolabial folds are prop-
erly deactivated when the skin is relaxed (fourth col-
umn). Our facial rig includes complete teeth that can
be properly driven (second and fourth column). Due
to limited observations, our teeth do not receive ver-
tex deformation. However, constraints on the teeth are
considered during optimization to ensure compatibility
with lip movements. This ensures that even when up-
dating the expression basis for lip movements, there is
no penetration with the teeth.

Usage in Blender. The blendshapes we generate are readily importable
into Blender [17] for animation as shown in Fig. 8, where sliders are used for
expression adjustments.

Novel-view synthesis. We demonstrate that our method can synthesize
photo-realistic novel views, as shown in Fig. 9. Our method can accurately re-
construct the geometry and appearance of ears from sparse multi-view inputs,
ensuring effective novel-view generalization for ear appearance and synthesizing
high-quality ears (third column). Deferred rendering MLP is suitable for syn-
thesizing photo-realistic facial appearance but cannot be directly imported into
current animation software. Making deferred rendering MLP compatible with
animation pipelines is a direction for future work. Recent efforts, such as those
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presented in [4, 16, 48], are working towards achieving this goal. Our method
relies on fast mesh-based rasterization and deferred neural rendering, enabling
real-time animation and novel-view synthesis.

5 Limitations

We aim to reconstruct personalized facial blendshapes from videos, enabling ac-
curate surface geometry. However, surface geometry is suitable for modeling the
skin but not ideal for modeling fine volumetric details like hair. In the anima-
tion pipeline, the focus is primarily on modeling the movement of facial muscles.

Fig. 9: Results of novel view syn-
thesis for an input frame of our
method.

Since hair is not in the region of muscle move-
ment, its impact on animation is relatively
small. However, future work could explore
adopting a hybrid representation that uses dif-
ferent geometric forms to express facial skin
and hair. This approach could lead to higher-
quality rendering of face avatars. Our method
optimizes per-frame head poses, while cam-
era intrinsics and extrinsics are calibrated us-
ing a checkerboard pattern once before the
capture. Recent works such as [44, 58] hold
the potential to integrate with our method
to achieve joint estimation of camera param-
eters. Our method can personalize template
blendshapes. However, the ICT model [38] used in the experiment does not have
a blendshape for the tongue. Future work could involve testing blendshapes or
designing a separate motion approach for the tongue.

6 Conclusion

We propose to reconstruct personalized blendshapes from RGB videos via neu-
ral inverse rendering, effectively addressing the gap between traditional anima-
tion pipelines and cutting-edge neural inverse rendering techniques. Leveraging a
blendshape rig representation for dynamic facial modeling, we introduce a joint
optimization process that refines the rig with per-vertex deformation schemes.
This ensures seamless compatibility with animation pipelines and precise align-
ment with facial performances in RGB videos. Our contributions extend to an
efficient inverse rendering framework that integrates neural shading with blend-
shapes, enabling the reconstruction of animation-ready facial rigs under diverse
lighting and materials. A novel blendshape deformation technique, incorporat-
ing differential coordinates augmented with tetrahedral connections and seman-
tic regularization, is introduced to enhance the expressiveness and adherence to
volumetric Laplacian regularization. Experiments showcase the effectiveness of
our approach in obtaining high-quality, animation-ready facial rigs from single or
sparse multi-view videos, underscoring its accuracy and animation applicability.
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