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Abstract. Prior works have addressed the problem of driver intention
prediction (DIP) by identifying maneuvers after their onset. On the other
hand, early anticipation is equally important in scenarios that demand
a preemptive response before a maneuver begins. However, there is no
prior work aimed at addressing the problem of driver action anticipation
before the onset of the maneuver, limiting the ability of the advanced
driver assistance system (ADAS) for early maneuver anticipation. In this
work, we introduce Anticipating Driving Maneuvers (ADM), a new task
that enables driver action anticipation before the onset of the maneuver.
To initiate research in ADM task, we curate Driving Action Anticipation
Dataset, DAAD, that is multi-view: in- and out-cabin views in dense
and heterogeneous scenarios, and multimodal: egocentric view and gaze
information. The dataset captures sequences both before the initiation
and during the execution of a maneuver. During dataset collection, we
also ensure to capture wide diversity in traffic scenarios, weather and
illumination, and driveway conditions. Next, we propose a strong baseline
based on a transformer architecture to effectively model multiple views
and modalities over longer video lengths. We benchmark the existing
DIP methods on DAAD and related datasets. Finally, we perform an
ablation study showing the effectiveness of multiple views and modalities
in maneuver anticipation. Project Page: https://cvit.iiit.ac.in/
research/projects/cvit-projects/daad.

Keywords: Action anticipation · Ego-centric vision · Gaze estimation
· Multi-modal learning · Action recognition · Autonomous vehicles

1 Introduction

An ideal ADAS system should be capable of anticipating a potentially wrong
maneuver moments before the driver intends to initiate it. That is, a system that
actively learns from visual cues preceding the onset of a maneuver and alerts the
driver beforehand. As an illustration, consider a scenario where a driver on a
highway signals an intention to switch lanes. Despite activating the turn signal
to indicate a move to the right lane, the driver, failing to check blind spots,
remains unaware of a rapidly approaching vehicle in that lane. Consequently,
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Fig. 1: Overview of DAAD dataset for ADM task. Left: Shows previous datasets
containing maneuver videos from their initiation to their execution (DM), whereas our
DAAD dataset features longer video sequences providing prior context (BM), which
proves beneficial for early maneuver anticipation. Right: Illustrates the multi-view
and multi-modality (Gaze through the egocentric view) in DAAD for ADM.

proceeding with the lane change without recognizing the potential collision risk
could result in a hazardous situation. In this instance, relying solely on the
turn signal did not encompass the surrounding traffic context, leading to the
execution of the maneuver without due consideration of the potential dangers. In
such cases, early anticipation enables the ADAS to prepare for the maneuver by
adjusting the speed and checking for incoming traffic to avoid any safety hazards.
The existence of such a system holds great significance in accident prevention,
underscoring its crucial role in improving overall road safety. Existing ADAS
systems detect critical maneuvers only after the driver has initiated them [14],
leading to the onset of a hazardous situation. The brief time frame between
identifying a potentially risky maneuver and the impending collision often proves
insufficient for an effective response.

The closest attempt to address the challenge of anticipating the driver’s ma-
neuver (ADM) is found in Driver Intention Prediction (DIP) [14,21,22,24,30,37],
which aims to predict the maneuver during its execution. Existing DIP methods
attempt to predict the maneuver post its onset, essentially engaging in video
recognition rather than anticipation3. This limitation arises from the nature of
DIP [1, 21, 36, 50] datasets. Due to their relatively short length, these datasets
provide minimal to no contextual information about the scene before the driver
initiates the maneuver, constraining the potential for early anticipation as shown
in Fig. 1. These datasets have maneuver clips with an average duration of less
than 6 seconds, and at times, as brief as a second (see Fig. 3 for video dura-
tion statistics), encapsulating the maneuver from its initiation to execution (see
DM in Fig. 1). Furthermore, their limited field of view constrains their capacity
to comprehensively capture the surroundings of the vehicle, impeding effective
inference. Table 1 enlists the in- and out-cabin views, modalities, and gaze in-
formation for the existing datasets.
3 By "anticipate", we refer to the model’s ability to predict a maneuver a few seconds

before its actual execution.
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On the other hand, most of the existing DIP methods rely on recurrent
models like LSTMs that struggle to capture long-range temporal dependencies
[16]. These models exhibit memory and computational limitations in processing
videos that are typically longer than 5 seconds [47], limiting the scope for early
anticipation. Moreover, since these methods are not compatible with multi-view4

and multimodal data, they cannot model cues captured by different views that
prove to be discriminative for early maneuver anticipation as shown in Fig. 1.

To address these shortcomings, we introduce the DAAD dataset comprising
videos with sequences before the onset and during the execution of maneuvers.
We refer to these sequences as BM (Before the Maneuver) and DM (During the
Maneuver) as shown in Fig. 1. The existence of BM provides a scope for early
maneuver anticipation. The dataset captures the egocentric view, side-mirror
(i.e., blindspot) views, front and rare view, and the in-cabin view in dense and
heterogeneous scenarios (see Fig. 3). Moreover, to address the shortcomings of
DIP methods, we introduce a multi-view multi-modal vision transformer capable
of modeling multi-view and cross-modal videos over longer durations for ADM.

In summary, our contributions are: (i) Introduce DAAD, a multi-view and
multi-modal driving action anticipation dataset with longer video sequences, cov-
ering scenes before the onset of the maneuver that proves to be discriminative for
early maneuver anticipation; (ii) Propose a multi-view multi-modal transformer
with hybrid fusion and learnable memory that effectively utilizes the temporal
information for maneuver anticipation task; (iii) Present quantitative benchmark
results for the DAAD dataset across multiple baseline models, and showcase our
method, demonstrating improved maneuver prediction performance.

2 Related Work

Action Anticipation. It is the task of predicting actions or movements be-
forehand. The field of action anticipation has seen significant progress, stimu-
lated by the promising outcomes achieved in video recognition [10, 26, 47, 53].
It encompasses a diverse spectrum of problems in movement [25] and interac-
tion [15, 16, 28] across short and long videos [32, 47]. Traditionally, recurrent
networks [11, 12, 35] were used for action anticipation. However, with the ad-
vent of transformers [45] all the state-of-the-art action anticipation [16, 18, 51]
are based on vision transformers [7]. Recently, the field of action anticipation
has witnessed a drift in interest from third-person videos [13, 20, 22, 46] to first-
person [5,6,12,16,31,39], and multi-modal videos [3,17,34,43,51]. However, there
is no such dataset that addresses the issue of maneuver anticipation in driving.
Driver Intention Prediction. Numerous end-to-end deep learning architec-
tures are introduced in the literature to tackle DIP challenge [14,21,22,24,30,37].
[14, 37] use a combination of 3D ResNets and LSTM. However, they perform
poorly on longer video sequences [16, 47]. [30] proposed a vision transformer
4 We use "multi-view" for more than two views. None of the aforementioned datasets

other than AIDE [50] are multi-view. However, it has only 3 maneuver classes with
3 seconds long videos.
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Table 1: Comparison of datasets. Our dataset is unique in containing longer multi-
view multi-modal videos both in-cabin and out-cabin, along with eye gaze derived from
Aria eye tracking cameras. Among others, DAAD is further diversified by capturing
varying traffic densities, weather conditions, time of day, and the type of routes.

Dataset Views Size Duration
(hours) Resolution Areas Drivers Traffic

Density
Multi-
View

Multi-
Modal Eye Gaze Day &

Night
Weather
Diversity Anomalies

In-
cabin

Out-
cabin

Brain4Cars [21] 1 1 2M 10 N/A Urban,
Suburban 10 Low ✗ ✗ ✗ ✗ ✗ ✗

VIENA2 [1] 0 1 2.25M 20.83 1920x1280 N/A 15 N/A ✗ ✗ ✗ ✓ ✓ ✗

HDD [36] 0 1 275K 104 1280x720 Urban,
Suburban N/A Medium ✗ ✗ ✗ ✗ ✗ ✗

LBW [23] 1 1 123K 7 N/A Urban &
Suburban 28 Low ✗ ✓ ✓ ✗ ✓ ✗

AIDE [50] 1 3 561K 2.4 1920x1080 N/A N/A Medium ✓ ✓ ✗ ✗ ✓ ✗

DAAD (Ours) 2 4 6.6M 85 1920x1080 Urban,
Suburban, Rural 18 High ✓ ✓ ✓ ✓ ✓ ✓

with learnable memory tokens [38] and a context-aware loss function. However,
their encoder [7] struggles to leverage the temporal information and, instead,
relies heavily on appearance. Our work explores a task effectively contributing
towards both early anticipation and maneuver prediction.
Gaze from Ego-View. Gaze is known to provide strong indicators related
to driver intent [27]. Earlier works in driving use gaze information for driver
intention and attention anticipation. Many of these datasets are either captured
in synthetic environments or lab settings [2, 48, 52]. Recent works [23, 33, 34,
49] show being captured in the real world, exploiting the ground-truth gaze
information and videos from the front-facing camera, and drivers’ face. Inspired
by these, we incorporate egocentric gaze information in building a transformer
for maneuver anticipation.
DIP Datasets. Brain4Cars [21] is a real-world dataset that introduces the
DIP problem statement. It consists of 700 videos of lengths up to 6 seconds.
VIENA2 [1] is a large-scale synthetic DIP dataset consisting of 15, 000 short
videos. Another popular dataset is HDD [36], which introduces stimulus and
cause in driving. Recently, the AIDE [50] dataset was introduced that facilitates
contextual information from inside and outside the vehicle. All of these datasets
have inherent limitations associated with their length of maneuver and have no
context information of the scene before the onset of the maneuver. We address
these issues in our proposed dataset that captures long video clips from multiple
in- and out-cabin, and ego-centric view along with the gaze.

3 The DAAD Dataset
We introduce the DAAD dataset here. First, we outline the data capture setup
and then present the annotation process for different driving intentions with
causes and agents. Finally, we analyze the dataset attributes.

3.1 Data Capture and Collection

Data Capture Platform. To create the DAAD dataset, the cameras were
arranged as shown in Fig. 2. The vehicle used for data capture encompassed
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Fig. 2: Data capture setup. (a) Out-cabin setup: Four cameras are oriented towards
frontal-view, side-mirror (left, right) views, and rear-view, (b) In-cabin setup: Driver-
facing camera along with Aria [42] glasses for an egocentric view, (c) Eye gaze derived
from Aria eye tracking cameras: Shown from egocentric view during a left turn, going
straight, and a right turn respectively.

both the in-cabin and out-cabin views. DAAD comprises multiple data streams,
synchronized and timestamped, and is captured at a rate of 30 frames per second.

Video Data. The vehicle was equipped with five monocular (GoPro 8) cam-
eras with 1080p resolution. These cameras are positioned both outside the cabin
(front, rear, left-side mirror, right-side mirror) and inside the cabin, specifically
facing the driver. The out-cabin cameras offer a comprehensive view of the sur-
rounding traffic context along with side blind spot regions that are essential for
maneuver anticipation. The in-cabin camera non-intrusively captures the driver’s
actions during the maneuvers.

Driver Gaze. Gaze is captured using Aria [42] eye-tracking cameras. The device
offers an eye-tracking resolution of 320 ˆ 240, along with 8 MP video from the
RBG camera with a resolution of 1408 ˆ 1408.

Data Collection. The dataset was collected for 85 hours over 1400 kms on 24
different routes, spanning over 2 months. The diversity of the driving data is
in terms of varying lighting conditions (morning to night), weather, drivers (18
participants, 15 male, 3 female), driver experience (from 5 to 35 years), road
traffic density (from low to high), landscapes (main road, residential, highway,
market, semi-urban, and rural), and the vehicles used. Furthermore, the dataset
incorporates anomalies such as animals, potholes, and other objects that may
pose interference during maneuvers. Table 1 compares DAAD against earlier
driving datasets. Fig. 4 shows data samples in naturalistic unstructured driving
conditions with respect to maneuvers, and Fig. 3 illustrates the diversity of our
dataset.
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Fig. 3: Dataset statistics. Top Row: Number of videos for various types of routes,
time of day, weather conditions, and traffic density. Bottom Row: Average maneuver
duration for different datasets, average video lengths for our dataset, years of driving
experience, and the absolute gaze difference from the mean.

3.2 Annotation Process

We annotate different driver intentions with appropriate causes. Each of the
driving videos is annotated using one to four labels i.e. intention, cause, static
agent, and dynamic agent. Fig. 5 shows annotated instances for each label.

The intention labels deal with the type of maneuver. Here, the labels used
are go straight (ST), right turn (RT), left turn (LT), right lane change (RLC),
left lane change (LLC), slow/stop (SS), and U-turn (UT). The cause labels are
contingent on the current traffic context (existence of static and/or dynamic
agent(s)). For example, a driver may be willing to take a right lane change
(intention) to avoid congestion (cause) in a particular road lane, or, a driver
may slow down or stop (intention) to let the other vehicle (dynamic agent) yield
or cut-in (cause). Important to note is that not all of the videos in this dataset
have static and dynamic agents in the scene. Therefore, the cause label does
not need to be there in every case. Furthermore, a dynamic agent can be a
vehicle, a pedestrian, or others (animal, bike, etc.), and a static agent can be
a traffic light, a speed breaker, or a pothole among others. Pertinent to mention
is that in this work, we stick to the usage of intention labels.
Sanity Check. We use the VIA video annotator [9], an open-source tool, to
annotate the dataset. For data annotation, we used professional annotators with
bespoke training, and an expert annotator doing quality checks to maintain
consistency. For the first 100 videos, a group of five annotators individually
provided annotations. Following this, an expert annotator assessed and rectified
any discrepancies, ensuring accuracy and consistency in the annotations. Finally,
all the videos were annotated, with each of the five annotators labeling a portion
of the dataset and an expert annotator evaluated for correctness. With this
process, less than 1% of the overall videos were incorrectly annotated and fixed
by experts.
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Fig. 4: Data samples. DAAD in comparison to Brain4Cars [21], VIENA2 [1] and
HDD [36] datasets. DAAD exhibits great diversity in various driving conditions (traffic
density, day/night, weather, type of routes) across different driving maneuvers.

3.3 Data Statistics

Fig. 3 gives a detailed overview of the dataset statistics. The dataset has a total
of 2, 028 video samples, with a varying length of 5 to 35 seconds. Each sample
consists of six video clips from five camera views and one Aria RGB ego-centric
view. For each sample, specific label and gaze information is provided. Following
the AIDE [50], a stratified sampling approach is applied and the dataset is split
into training (65%), validation (15%), and testing (20%) sets. This division is
performed without considering held-out subjects, acknowledging the inherent
data imbalance stemming from the naturalistic nature of the dataset.

Fig. 5: Annotated instances. For driver intention (intended maneuver), cause be-
hind a maneuver (if any), and the dynamic and static agents responsible for the cause.
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Fig. 6: ADM Framework. Separate projections are used for the in- and out-cabin
views, post which the embeddings are fused (zmv

n ), and a classification token emv
cls is pro-

vided. These representations are then augmented with learnable memory embeddings,
jointly given as zmv

0 . At the same time, the other modality (gaze from ego view) is
fed separately to the encoder along with its classification token (eev

cls) and Eev
eps P R2ˆd

learnable memory tokens (given jointly as zev
0 ). Finally, the classification tokens are

concatenated (f ) before anticipation.

Ethical Statement. Each participant was informed of the risks involved in
data collection and signed a consent form reviewed by the Institutional Research
Board (IRB) which allows the dataset to be publicly available for research pur-
poses. All drivers were older than 18 years and held a valid driver’s license.
During driving, an instructor was on board in the passenger seat to provide
safety instructions.

4 Anticipating Driving Maneuvers Framework

4.1 Our Approach

Fig. 6 gives an overview of the proposed framework. The network takes as input
a set of multi-view and multi-modal videos that capture: (i) in-cabin driver’s
view, (ii) out-cabin traffic context from front-view, side-mirrors view, and rear-
view, (iii) driving scene ego-centric view and gaze. These streams are processed
independently to obtain two distinct embeddings: multi-view embedding zmv

0
and ego-view embedding zev

0 . Our goal is to fuse multi-modal multi-view long
video representations for maneuver anticipation. To accomplish this, we intro-
duce M2MVT encoder augmented with episodic memory to retain prior context.
Now, we present a detailed description of the modules involved.
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Video Representations. We represent the input from the K in-cabin, out-
cabin, and ego views as a 4D tensor V “

␣

Vk P RT ˆHˆW ˆ3(K

k“1 where T , H,
W and C are the temporal, spatial, and channel dimensions respectively.

M2MVT Encoder. We split each input view into a set of non-overlapping
spatio-temporal tubes (4D sub-tensors) v of dimensions t ˆ h ˆ w ˆ c that are
projected to get embeddings of size d. Here, vvit

k :“
“

v1
kXk, ..., vn

k Xk

‰

for k “

1, 2, ..., K, and Xk is the projection matrix. Embeddings from multiple views
(except for the ego view) are then fused into a combined sequence zmv

n . After
prepending a learnable class token to zmv

n , it becomes zmv
0 “

“

emv
cls , vvit

1 ; ...; vvit
K´1

‰

where emv
cls is the joint classification token for the five views. Similarly, for the

ego view, zev
0 “

“

eev
cls, vvit

K

‰

. Based on learnings from [30] and [38], we prepend
N “ 12 episodic memory tokens Eeps P RNˆd to the input tokens, where d
is the embedding dimension. Out of these, the multi-view input is augmented
with N ´ 2 tokens (Emv

eps P RpN´2qˆd), while for the ego-view, Eev
eps P R2ˆd.

Similar to [26], the input tensors are then pooled, post which the attention
is computed on reduced sequence lengths. Encoders at each subsequent stage
progressively down-sample the resolution. It is important to note that the fused
episodic memory tokens undergo the same pooling operation, post which they
are flattened again, however, with a reduced sequence length. We retain the
decomposed relative position embedding [26].

Inspired by [44], we found out that early fusion of the embeddings of five
views followed by a late fusion with the ego view improves the prediction per-
formance of M2MVT on our dataset. For early fusion, separate projections are
used for all five views, post which their embeddings are projected into a shared
representation and fused with the episodic memory tokens to learn a single joint
<CLS> token emv

cls . For the ego view, a separate <CLS> token eev
cls is learned for

the memory-augmented embeddings, which is then fused (concatenated) with
the joint-classification token of the five views (emv

cls ) before anticipation.

4.2 Implementation Details

M2MVT is pre-trained on the Kinetics-600 [4] dataset. The videos are sampled at
30 FPS, with all the streams having a spatial resolution of 224 ˆ 224. Before the
input clips are projected into space-time patches, sampling over the temporal
domain follows the [10] procedure. Specifically, we sample clips from the full-
length video, and the input to the network is T

1 frames with a temporal stride
of τ denoted as T

1

ˆτ . We further evaluate it with two different frame samplings,
16ˆ4 (sampling at a temporal stride of 4 from 16 frame input clips) and 32ˆ3.
The pooling operation (over the input and episodic memory embeddings) and
the decomposed relative position embeddings are computed at spatio-temporal
levels. The model was trained on 4 RTX 2080 GPUs over 80 epochs with a batch
size of 4 clips. We retain the loss function of [30] and train our network using
the AdamW optimizer [29], with a base learning rate of 1e´4.
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5 Experiments

5.1 Baselines

We accommodate multiple views and multi-modality in the baseline methods
for a fair comparison. Gebert et. al [14] take the in-cabin frames and pass them
through a FlowNet [8], a 3D ResNet [19] and then through an LSTM for temporal
modeling of the frames. Rong et. al [37] pass the out-cabin data stream through
FlowNet before being passed through a ConvLSTM encoder [40] followed by
a decoder. Parallely, in-cabin frames pass through a 3D ResNet-50 [19] and are
fused with the output of the decoder for maneuver prediction. During baselining,
we rely on the late fusion of all the views for these two methods. For [14], a multi-
stream network [41] is used for a joint representation of all five views and the
ego view similar to how they do it for in- and out-cabin views, followed by a
late fusion. Pertinent to mention is that since our videos are relatively longer, we
sampled 40 frames from each view for the experiment. In [37], a similar procedure
is followed. However, all of the out-cabin views go through the same network as
the out-cabin stream in the original work. In CEMFormer, Ma et. al [30] fuse the
linear embeddings from the in-cabin and out-cabin patches to learnable memory
tokens [38] from previous iterations to maintain a context of the past features.

During baselining, we follow the early fusion recipe wherein post-dividing
the input views into patches, the embeddings are fused with episodic memory
tokens, all of which is an input to the ViT encoder. For MViT and MViTv2, we
take input from all six data streams and the memory tokens in a way similar
to CEMFormer. However, instead of 2D patches, the input is now projected
into space-time tubes. For all of these methods, we retain the pre-training, fine-
tuning, and patchification strategies. For M2MVT, we pass different modalities
through the same encoder due to its strong performance on related tasks [17].

Table 2: Performance comparison of baseline methods. Accuracy and F1
score (%) over different data sources on the Brain4Cars [21], HDD [36], VIENA2 [1],
AIDE [50], and our datasets. For DIP, In- and Out-Cabin-based M2MVT gives the
best performance on Brain4Cars and the lowest on our dataset.

Data
Source Method Brain4Cars AIDE DAAD (Ours)

Acc. F1 Acc. F1 Acc. F1

In-Cabin
Gebert et. al [14] 74.12 ˘ 0.52 70.70 ˘ 0.24 69.35 ˘ 0.3 67.88 ˘ 0.75 40.06 ˘ 0.05 42.70 ˘ 0.20
Rong et. al [37] 77.24 ˘ 0.03 74.92 ˘ 0.02 69.11 ˘ 0.06 70.34 ˘ 0.25 41.10 ˘ 0.08 42.43 ˘ 0.34
CEMFormer [30] 81.59 ˘ 0.90 80.49 ˘ 0.40 72.38 ˘ 0.29 71.59 ˘ 0.01 46.74 ˘ 0.43 44.18 ˘ 0.02

M2MVT 81.87 ˘ 0.24 80.90 ˘ 0.03 - - 50.43 ˘ 0.04 48.11 ˘ 0.15

Out-Cabin
Gebert et. al [14] 72.89 ˘ 0.56 69.59 ˘ 0.04 72.89 ˘ 0.56 69.59 ˘ 0.04 52.65 ˘ 0.04 48.15 ˘ 0.04
Rong et. al [37] 58.71 ˘ 0.04 62.75 ˘ 0.05 73.45 ˘ 0.03 70.17 ˘ 0.46 50.31 ˘ 0.04 54.05 ˘ 0.03
CEMFormer [30] 63.27 ˘ 0.26 65.19 ˘ 0.21 75.90 ˘ 0.24 73.25 ˘ 0.15 58.87 ˘ 0.03 59.31 ˘ 0.05

M2MVT 64.07 ˘ 0.02 65.35 ˘ 0.55 - - 58.78 ˘ 0.05 59.91 ˘ 0.35

In and
Out-Cabin

Gebert et. al [14] 77.18 ˘ 0.24 78.20 ˘ 0.52 70.94 ˘ 0.35 71.86 ˘ 0.05 52.79 ˘ 0.50 52.36 ˘ 0.22
Rong et. al [37] 81.87 ˘ 0.03 80.42 ˘ 0.10 73.89 ˘ 0.40 72.19 ˘ 0.04 53.47 ˘ 0.9 54.37 ˘ 0.22
CEMFormer [30] 83.37 ˘ 0.03 82.73 ˘ 0.05 75.90 ˘ 0.24 73.25 ˘ 0.15 58.33 ˘ 0.74 61.68 ˘ 0.03

M2MVT 83.18 ˘ 0.05 84.11 ˘ 0.35 - - 61.74 ˘ 0.20 63.82 ˘ 0.15

Data
Source Method HDD VIENA2

Acc. F1 Acc. F1

Out-Cabin
Gebert et. al [14] 62.74 ˘ 0.00 64.43 ˘ 0.04 67.21 ˘ 0.76 66.39 ˘ 0.45
Rong et. al [37] 63.89 ˘ 0.10 63.77 ˘ 0.33 71.92 ˘ 0.26 70.21 ˘ 0.01
CEMFormer [30] 68.40 ˘ 0.03 66.16 ˘ 0.35 73.52 ˘ 0.35 72.95 ˘ 0.25

M2MVT 72.51 ˘ 0.03 71.89 ˘ 0.40 75.63 ˘ 0.24 73.47 ˘ 0.01
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Table 3: Evaluation of M2MVT on varying (a) Traffic Density, (b) Weather Condition,
(c) Time of Day, and (d) Type of routes. Lowest in red.

Traffic Density Acc. (Ò) F1 (Ò)

Low 68.21 69.38
Medium 65.91 66.47
High 63.14 63.89

(a)

Weather Condition Acc. (Ò) F1 (Ò)

Sunny 64.92 65.28
Cloudy 68.81 69.47
Rainy 59.18 60.79

(b)

Time of Day Acc. (Ò) F1 (Ò)

Morning 69.63 69.82
Afternoon 68.76 69.04
Evening 69.12 70.77
Night 56.50 54.20

(c)

Type of Route Acc. (Ò) F1 (Ò)

Mainroad 65.15 66.56
Residential 64.39 66.13
Highway 72.14 71.41
Market 62.50 63.26
Sub-Urban 70.09 70.50
Rural 57.59 55.48

(d)

5.2 DAAD Benchmarking and Analysis

As shown in Table 2, we report the comparison results of different baseline
models over standard driving datasets and our dataset across three data sources.
The following are some key observations: (i) We observe that CEMFormer and
M2MVT, which use episodic memory achieve higher accuracy for in-cabin, and
in- and out-cabin views on the Brain4Cars dataset, and for out-cabin views on the
AIDE dataset. Unlike Brain4Cars, which uses the frontal view for learning traffic
context, AIDE uses a multi-view out-cabin setup, highlighting the importance of
multi-view in the DIP task. The higher out-cabin accuracy on DAAD validates
our inference. (ii) We observe that there is a significant drop in the performance
score of baselines on our dataset compared to other standard datasets. It can be
attributed to two reasons. Firstly, DAAD consists of longer videos (see Fig. 1),
making it challenging for the existing methods to perform on them [47]. Secondly,
a considerable portion (Fig. 3) of our dataset consists of scenarios captured in
dense and heterogeneous scenarios (Table 3), adding to its complexities. (iii)
The ViT-based CEMFormer performs better than the LSTM-based models. It
does so by the incorporation of episodic memory embeddings and early fusion
of in- and out-cabin views. Moreover, the context-consistency loss function [30]
augments its performance.
Effect of time-to-maneuver. Fig. 7a compares the accuracy of M2MVT over
time for different DIP datasets. For the DAAD dataset (DAAD-Full), we demon-
strate that by having accuracy above the random chance (approximately 15%)
before the culmination of BM (28.74%), the model can correctly anticipate
the maneuver (ADM) before its onset. For DAAD-BM, we observe that when
M2MVT is trained on sequences before the onset of maneuver (BM) and tested
on the whole video, it is still able to predict the upcoming maneuver above
the random chance (27.76%). This supports our assertion that these sequences
(BM :t ´ 4 to t) contain indicative cues about the potential type of maneuver.
For DAAD-DM, which is essentially a DIP task, we get an accuracy of 69.81%,
suggesting that DIP is convoluted in dense and heterogeneous scenarios. The pre-
diction accuracy over time for all maneuver classes in the comparative datasets
is provided in the supplementary material.
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  BM   DM
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  BM   DM
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(b)

Fig. 7: Effect of time-to-maneuver. (a) Accuracy over time for different driving
datasets on M2MVT (with MViTv2 encoder). We conducted three separate experiments
for DAAD dataset. (i) DAAD-DM: Training and testing only on maneuver sequences
(DM). (ii) DAAD-Full: Training and testing on whole video. (iii) DAAD-BM: Training
on a portion of the video captured before the onset of maneuver (BM) and testing
on the whole video; (b) Accuracy over time for our dataset on ViT, MViT, MViTv2
encoders, and the proposed method (M2MVT). Here, t is the time of onset of maneuver.

Importance of Dense, Diverse, and Heterogeneous Attributes. Table 3
compares the Accuracy and F1 score over diverse scenarios. The following obser-
vations are made: (i) The performance dips in high-traffic scenarios, owing to the
erratic motion of other traffic agents influencing our motion trajectory. (ii) For
weather conditions, accuracy in sunny conditions is less than cloudy due to oc-
casional glare. Also, due to rain, the cameras and window panes show decreased
visibility, affecting both out-cabin and ego-view. (iii) Decreased visibility during
nighttime contributes to a drop in accuracy compared to other times of the day.
(iv) While driving in rural settings, sub-optimal visual cues are learned due to
the presence of unstructured roads and surroundings.

5.3 Comparison to Proposed Approach

As shown in Table 4, our approach outperforms the ViT-based CEMFormer
by 4.85% accuracy and 3.63% F1 score on all views and gaze with 61.22% less
parameters. It can be attributed to several reasons. Firstly, the hybrid fusion
network augments the performance by efficiently learning the cross-modal inter-
actions between the multiple camera views and gaze. Its early fusion of multiple
views, for which the episodic memory tokens jointly model the view, further im-
proves learning. Secondly, the presence of implicit temporal bias in the encoder.
M2MVT exhibits strong modeling of temporal information, a phenomenon un-
found in traditional ViTs that predominantly rely on appearance. Lastly, the
spatio-temporal patchification and pooling along with learnable memory tokens,
and the decomposed relative positional embeddings, further account for an im-
proved performance on maneuver anticipation. M2MVT, 16ˆ4 gives an accuracy
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Table 4: Encoder comparison of proposed framework accuracy and F1 score (%) on
various transformer encoders like ViT [30], MViT [10], MViTv2 [26] and ours (32 ˆ 3
variants for all) over different data sources. For the task of anticipation, all views and
gaze-based M2MVT gives the best performance.

Encoder Metric Data Source
Aria
RGB

Aria
Gaze

In-Cabin
& Aria RGB

In-Cabin
& Gaze

Out-Cabin
& Aria RGB

Out-Cabin
& Gaze

All Views
& Gaze

ViT [30]
Acc.(Ò) 37.17 42.02 47.78 51.33 53.80 59.12 60.74
F1 (Ò) 38.88 40.10 49.50 51.01 54.92 60.95 63.09

Param (M) (Ó) 87.30 87.30 88.10 88.10 90.50 90.50 91.30

MViT [10]
Acc.(Ò) 37.90 44.54 48.99 52.64 53.59 60.89 62.13
F1 (Ò) 38.47 41.29 50.08 52.83 54.11 59.63 63.65

Param (M) (Ó) 36.80 36.80 37.60 37.60 40.00 40.00 40.80

MViTv2 [26]
Acc.(Ò) 39.17 45.22 51.48 53.11 54.28 61.94 62.78
F1 (Ò) 39.89 46.04 50.74 52.25 55.49 60.85 64.08

Param (M) (Ó) 51.40 51.40 52.20 52.20 54.60 54.60 55.20

M2MVT
(Ours)

Acc.(Ò) 39.17 45.22 53.19 53.84 57.44 62.87 65.59
F1 (Ò) 39.89 46.04 52.77 54.02 58.50 63.33 66.72

Param (M) (Ó) 51.40 51.40 52.70 52.70 55.10 55.10 55.90

of 64.19% on all views and gaze. Further experimental details on the 16 ˆ 4 vari-
ant can be found in the supplementary material.
Effect of time-to-maneuver. In Fig. 7b, M2MVT encoder gives an accuracy
of 37.66% at the onset of maneuver (t=0), which is 9.12% more than the ViT
and 4.95% more than the MViTv2 at the same time, demonstrating a significant
performance in early maneuver anticipation.

5.4 Ablation Study

Analysis of Confusion Matrices. In Fig. 8, we observe that DAAD achieves
a lower performance compared to other datasets, highlighting that the task of
ADM is challenging on longer videos in dense and heterogeneous environments.
It specifically confuses between U turn and Right turn, and go straight and
slow/stop. For the former, the dataset was captured in a left-hand side driving
country, with U turns always taken towards the right. Furthermore, the presence
of roads with no lane marks leads to wrongly classifying lane changes as go
straight or sometimes, as a turn.
Effectiveness of Multiple Views and Modalities. Table 5a gives a compar-
ison of accuracy and F1 score from different views and highlights the importance
of multi-view and gaze in DIP. Using M2MVT, we get an accuracy of 65.59% on
all views with gaze. However, with the removal of gaze, the accuracy plummets
by 2.41%, highlighting the importance of multi-modality in maneuver anticipa-
tion. Next, the accuracy drops by more than 5% without the front view and by
less than 2% without the driver facing in-cabin view. This result contrasts with
the accuracy of Brain4Cars on [37], [14] and [30], where the in-cabin accuracy
is more than the out-cabin (front-facing). It can be attributed to the fact that
Brain4Cars has short videos of maneuvers in which the driver shows explicit head
movements in the direction of the maneuver. This, however, is not necessarily
true for longer videos where the driver exhibits complex movements to evalu-
ate the scene context before executing a maneuver. The existence of sequences
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Brain4Cars HDD VIENA2 DAADAIDE

Fig. 8: Confusion matrices for Brain4Cars, HDD, VIENA2, AIDE and DAAD on the
proposed M2MVT method.

Table 5: Ablation study. (a) Experiments on multiple views and modalities for our
method on DAAD. (b) Accuracy and F1 score (%) for varying episodic memory tokens
on M2MVT method.

Front Rear In-Cabin Left Right Gaze Acc. (Ò) F1 (Ò)

✗ ✓ ✓ ✓ ✓ ✓ 60.53 56.92
✓ ✗ ✓ ✓ ✓ ✓ 62.85 56.66
✓ ✓ ✗ ✓ ✓ ✓ 63.82 59.31
✓ ✓ ✓ ✗ ✓ ✓ 63.02 62.74
✓ ✓ ✓ ✓ ✗ ✓ 61.99 59.74
✓ ✓ ✓ ✓ ✓ ✗ 63.28 65.31
✓ ✓ ✓ ✓ ✓ ✓ 65.59 66.72

(a)

N Acc. (Ò) F1 (Ò)

0 63.46 63.97
4 63.79 64.07
8 64.92 65.04
12 65.59 66.72
16 65.35 66.24

(b)

captured in dense and haphazard traffic and on roads with blind curves further
convolutes this modeling.

Influence of Learnable Memory Tokens. Table 5b examines the impact of
varying the number of learnable memory tokens on the performance of M2MVT.
[38] show that by using more than 5 memory tokens, the model shows no consid-
erable improvement. Rather, in some cases [30], the accuracy plummets by using
more tokens. We, however, note that in M2MVT, the accuracy increases up to
N “ 12 tokens, post which it decreases. It suggests that with the increase in the
number of views, the episodic memory tokens need to be increased as well.

6 Conclusion
In this paper, we present DAAD, a multi-view and multi-modal dataset to aid the
next-generation ADAS to improve road safety by early maneuver anticipation.
Next, we propose M2MVT that acts as a strong baseline for DAAD dataset. Our
proposed model is a hybrid-fusion multiscale vision transformer with learnable
memory embeddings that efficiently models cross-modal spatiotemporal interac-
tions. We provide an extensive experimentation to demonstrate the importance
of multi-view and multi-modal data streams across diverse scenarios for maneu-
ver prediction on the DAAD. We hope that our new proposed task of ADM and
DAAD will pave the way for development of robust road safety systems.
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