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Abstract. 3D surface reconstruction from multi-view images is essential
for scene understanding and interaction. However, complex indoor scenes
pose challenges such as ambiguity due to limited observations. Recent im-
plicit surface representations, such as Neural Radiance Fields (NeRFs)
and signed distance functions (SDFs), employ various geometric priors to
resolve the lack of observed information. Nevertheless, their performance
heavily depends on the quality of the pre-trained geometry estimation
models. To ease such dependence, we propose regularizing the geometric
modeling by explicitly encouraging the mutual information among sur-
face normals of highly correlated scene points. In this way, the geometry
learning process is modulated by the second-order correlations from noisy
(first-order) geometric priors, thus eliminating the bias due to poor gen-
eralization. Additionally, we introduce a simple yet effective scheme that
utilizes semantic and geometric features to identify correlated points, en-
hancing their mutual information accordingly. The proposed technique
can serve as a plugin for SDF-based neural surface representations. Our
experiments demonstrate the effectiveness of the proposed in improving
the surface reconstruction quality of major states of the arts. Our code
is available at: https://github.com/Muliphein/InfoNorm.
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1 Introduction

3D surface reconstruction from multi-view images is an essential task in the
computer vision and graphics community, with practical applications including
content creation for virtual reality and robot-scene interaction. However, indoor
scenes present challenges due to the large and complex scenes captured from
sparse viewpoints. These challenges encompass issues such as occlusion and am-
biguity arising from limited observations. As a result, traditional Multi-View
Stereo (MVS) methods [28,36], which require substantial overlap among images,
may not produce satisfactory results in these scenarios.
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Fig. 1: 3D scene reconstruction from sparse views on Replica [26] (first row) and Scan-
Net++ [38] (second row). By enforcing the mutual information between the normals
of highly correlated scene points, the proposed method can effectively enhance the re-
construction quality of the baselines (VolSDF [37] and GeoNeuS [8]).

Recently, implicit scene representations, e.g., Neural Radiance Fields (NeRFs)
[21], have been proposed to encode 3D scenes into a set of neural network pa-
rameters, with subsequent works enhancing the representational capacity for ge-
ometry to enable surface extraction. The key idea involves incorporating signed
distance functions (SDFs) [23] into the learned radiance field. Although NeRFs
with SDF produce high-quality reconstructions of simple scenes with sufficient
images, they still underperform in large and complex scenes captured from sparse
viewpoints. More recent approaches, such as NeuRIS [29] and MonoSDF [40],
propose using monocular geometric priors to guide the learning of the radiance
field. However, they can be affected by inevitable errors and noise in the monoc-
ular geometry estimation modules.

We explore geometric regularization in a second-order perspective. We argue
that both the geometry itself and the correlation of geometry among scene re-
gions are crucial for surface reconstruction, especially when dealing with varying
indoor scenes under sparse views with noisy geometry estimates. The correlation
is expressed as mutual information between scene entities under random pertur-
bations of the network weights. More explicitly, we propose to enforce the mutual
information between the normals of two points in the scene that are considered
geometrically correlated, where the mutual information can be efficiently com-
puted by measuring the cosine similarity between the gradients of the normals
with respect to the perturbed weights. Further, we leverage a combination of pre-
trained semantic and geometric features [4,7,12] to identify the correlated scene
regions that endorse high mutual information. This results in an easy-to-use
geometric shaping1 technique that can be applied to any SDF-based neural ra-
diance fields. To thoroughly evaluate its effectiveness, we test the proposed with

1 We use the term “shaping” to refer to the process of optimizing network parameters
to enforce consistencies in the scene geometry via aligning the gradients.
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multiple state-of-the-art neural surface reconstruction models. The experimen-
tal results confirm the effectiveness of the proposed shaping technique, showing
improved surface reconstruction quality (e.g., Fig. 1) on challenging scenes with
limited views. To summarize:

– We propose to leverage second-order geometric correlation in the form of
mutual information between normals to regularize the surface reconstruction
of SDF-based NeRF representations.

– We develop a pipeline that efficiently enforces the mutual information of the
normals of points, deemed geometrically correlated with pre-trained multi-
modal features, to improve the reconstruction quality of the scene.

– We verify the effectiveness of the proposed second-order regularization tech-
nique across a broad spectrum of baselines and demonstrate its usefulness
as an easy-to-use plugin in improving 3D surface modeling.

2 Related Work

3D Reconstruction with neural radiance fields (NeRFs). NeRF [21] is originally
designed for novel view synthesis, with its variants serving as scene representa-
tions [15, 32, 33, 35, 39] for tasks related to editing [2, 31, 44], semantic segmen-
tation [5, 14, 16, 34], 3D shape generation [20, 27], and so on. We mainly focus
on neural surface representations that enable the extraction of high-quality 3D
meshes from the trained NeRFs.

Early works such as NeuS [30] and VolSDF [37] combine signed distance func-
tions (SDFs) with volume rendering to extract high-quality surfaces. Recently,
SparseNeuS [17] introduces a cascaded geometry reasoning framework that gen-
eralizes well to novel scenes. GeoNeuS [8] uses surface points from structure-
from-motion and neighbor-view patches to reconstruct surfaces, while NeuDA [3]
employs a deformable anchor to adaptively encode geometric details. NeAT [19]
broadens the scope of reconstruction to arbitrary topology, no longer confining
to watertight surfaces. Moreover, Neuralangelo [13] uses a hash grid for position
encoding and implements a coarse-to-fine optimization with numerical gradients.
Despite their promising results, most of these methods need sufficient training
views, and their performance declines when dealing with large and complex
scenes under sparse viewpoints.

Incorporating priors into NeRFs. One can augment scene representations by
introducing various priors to NeRFs. VDN-NeRF [43] normalizes the spatial
feature to align with monocular features. LERF [11] introduces a new branch
whose outputs align with DINO [4] and CLIP [24] features. Semantic-NeRF [42]
encodes semantic information for segmentation tasks, while JacobiNeRF [34]
shapes the color gradients to encode the mutual information in terms of semantic
similarity from DINO [4] features for label propagation.

For surface reconstruction, GeoNeuS [8] incorporates patch similarity from
neighboring images and sparse surface points derived from structure-from-motion
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[25], while I2-SDF [44] combines the rendering equation with VolSDF [37] for bet-
ter novel views and geometry. To cope with complex indoor scenes, NeuRIS [29]
incorporates the normal priors as additional geometric supervision. Further,
MonoSDF [40] uses both depth and normal to improve the surface reconstruc-
tion quality. However, these methods highly depend on the quality of the sup-
plemented geometric information. In contrast, our method leverages the second-
order information in geometric prior, rather than directly using the prior as a
first-order supervision signal, which makes it more robust to errors and noise.
There are also methods utilizing strong assumptions derived for human-made
scenes. For instance, ManhattanSDF [10] works under the assumption that all
captured scenes adhere to the Manhattan-world concept, thus, predicting se-
mantic segmentation to identify walls and floors. While these methods primarily
focus on planar scenes, the proposed technique can work for general scenes under
noisy correlation information.

3 Method

We start with a discussion on the preliminaries in Sec. 3.1 to provide the back-
ground on how we can learn from posed images an implicit scene representation
(NeRF), improve 3D scene reconstruction via the combination of NeRF and SDF
representations, and employ mutual information as a constraint in the NeRF
training process. Following this, in Sec. 3.2, we delve into how mutual informa-
tion can be used as constraints on NeRF’s implied surfaces, so that we can learn
better geometries for higher-quality 3D reconstruction of the scene. Finally, we
elaborate on how we can employ off-the-shelf semantic and geometry features
to assist the encoding of mutual information through the proposed geometric
shaping framework.

3.1 Preliminaries

Neural radiance fields. NeRF [21] learns an implicit scene representation from
a set of posed images. For a specific pixel in an image, NeRF samples a list of
3D points, {x|xt = o+ tv, t ∈ [tnear, tfar]}, from the camera center o along the
viewing direction v within a bounded space. Specifically, it employs a Multilayer
Perceptron (MLP) to encode the volume density and color of each sampled point.
We denote all the parameters of NeRF as θ, the density function as σ, and the
color function as c. The pixel’s rendered color Ĉ from a NeRF is calculated by
the discrete volume rendering:

Ĉ(o,v; θ) =

N∑
i=1

ω(o,v, ti; θ)c(xti ,v; θ),

where ω(o,v, ti; θ) =

i−1∏
j=1

(1− αj)αi.

(1)
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Here, αi = 1 − exp(−σiδi), where σi is the abbreviation of σ(xti ; θ) and δi =
ti+1− ti. A photometric loss is utilized to minimize the discrepancy between the
rendered color and its ground truth:

LC = ||C− Ĉ||1, (2)

so that the parameters θ can be optimized to fit the scene. Despite the ability
to handle photorealistic novel view synthesis, NeRFs suffer from noisy and un-
realistic surface extraction when it comes to 3D reconstruction, as discussed in
the literature [30,37].

NeRFs with signed distance functions. To produce high-quality surfaces, it is
beneficial to use signed distance functions (SDFs) [6, 23] to represent geome-
try. Consequently, the surface can be reconstructed by extracting the zero-level
set [18] of the SDF values. The combination of NeRF and SDF can be achieved
by deriving the NeRF’s densities from the SDF, or defining Laplace’s cumulative
distribution function. Accordingly, αi in Eq. 1 can be represented by a function
Φ which converts SDF values to volume densities as

αi = Φ(x, f(x; θ), i). (3)

Generally, NeRFs with an SDF achieve improved surface reconstruction quality,
where the key to maintaining the characteristics of SDF is an eikonal loss [9]:

LE =
1

N

N∑
i=1

(||∇f(xi)||2 − 1)2. (4)

Mutual information in NeRFs. Mutual information (MI) quantifies the statis-
tical dependence between two random variables, providing an estimate of how
much information they share. It has been introduced for semantic segmenta-
tion and motion modeling tasks [34, 41]. In this paper, We study the mutual
information under perturbations of the NeRF parameters, and focus more on
the geometry properties. Let I(pi) and I(pj) denote two pixels derived from the
NeRF rendering process F. And we assume that a subset of the NeRF weights,
denoted by θD, is perturbed by a random noise vector n ∈ RD sampled from a
uniform distribution on the sphere SD−1 by a small step γ ≪ 1.0. The random
variables corresponding to the perturbed pixels can be written through a Taylor
expansion:

Î(pi) = I(pi) + γn
∂Fi

∂θD
,

Î(pj) = I(pj) + γn
∂Fj

∂θD
.

We can now characterize the mutual information between Î(pi) and Î(pj) under
the joint probability distribution P(Î(pi), Î(pj)). As derived in JacobiNeRF, the
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mutual information can be computed as:

I(Î(pi), Î(pj)) = H(Î(pi))−H(Î(pi)|Î(pj))

= log(
1√

1− cos2 β
) + const..

Here, β denotes the angle between ∂Fi/∂θ
D and ∂Fj/∂θ

D. It is observed that:

I(Î(pi), Î(pj)) ∝ || cosβ||. (5)

Therefore, to enhance the MI between two random pixels induced by NeRF
perturbations, one can enforce the absolute value of the cosine similarity. That
is, if two pixels pi, pj come with high correlation (e.g., from the same object in
the scene), their gradients regarding the perturbed parameters should be in the
same or opposite direction.

3.2 Mutual Information Shaping of Geometry in SDF-based NeRFs

While the previous approach focuses on enforcing mutual information for image
synthesis, we explore a mutual information shaping of the geometries for quality
surface reconstruction in SDF-based NeRFs.

Specifically, we represent a scene via a NeRF backbone with an SDF head
and a color head, as shown in Fig. 2. Note that the method to be proposed is
capable of being applied to any network similar to NeRF and SDF representa-
tions. Given that the two heads partially share parameters, we denote all the
parameters as θ, and use f(x; θ) and c(x,v; θ) to represent the SDF and color
branches, respectively. To achieve mutual information shaping of the geometry,
we focus on manipulating the parameters of f(x; θ), while keeping c(x,v; θ) un-
changed. Below, we first explain why and how we compute mutual information
with surface normals derived from SDF, i.e., f(x; θ), as a geometry-aware con-
straint. Next, we present a simple yet effective strategy that extracts regions
with high correlation, which need to be encoded into the weights using the mu-
tual information shaping technique. Finally, we elaborate on our loss function
and training process to reconstruct the scene from posed images.

Mutual information among surface normals. We explicitly encode mutual in-
formation into the function f(x; θ). However, instead of computing mutual in-
formation between the density values, we proceed by manipulating the surface
normal vectors that can be derived from f . Specifically, for a 3D point x on a
surface of the scene, its normal vector N(x; θ) can be calculated as the partial
derivative of the 3D coordinate:

N(x; θ) =
∂f(x; θ)

∂x
. (6)

There are several reasons to manipulate surface normal vectors but not SDF
values: 1) Shaping the SDF values with respect to a subset θD of the parame-
ters may not effectively impose the constraints on all parameters. However, the
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Fig. 2: An overview of the pipeline, where we apply mutual information shaping on
the geometric branch to enforce consistencies that help enhance the surface reconstruc-
tion. Specifically, the model consists of the NeRF backbone, an SDF head, and a color
head. The predicted density and color are supervised by the classic eikonal loss LE

and the photometric reconstruction loss LC , respectively. We encode geometry-aware
mutual information into a subset of the parameters θD of f(x) to constrain the den-
sity field learning for better surface quality, which is achieved by the proposed mutual
information loss LM computed on top of the estimated surface normal.

calculation of the surface normal includes the entire set of parameters in f , thus
a more global regularity. 2) Moreover, shaping f with the mutual information
between its values may induce side effects as density could be distorted to satisfy
the constraints. However, shaping the normal ∂f/∂x leave more space for the
SDF values to cope with the scene reconstruction task, thus minimizing potential
negative effects.

According to Eq. 5, we need to calculate the partial gradients ∂N/∂θD to
compute the mutual information. When it comes to a vector rather than a scalar,
the gradients consist of three components corresponding to the x, y, and z axes:

∂N(x; θ)

∂θD
=

∂Nx(x; θ)

∂θD
,
∂Ny(x; θ)

∂θD
,
∂Nz(x; θ)

∂θD
. (7)

For ease of computation, we concatenate the gradients into a vector, denoted as
∂N for simplicity:

∂N = Concat(
∂Nx

∂θD
,
∂Ny

∂θD
,
∂Nz

∂θD
). (8)

Since a 2D pixel is accumulated from 3D, we aggregate the normal-based infor-
mation along a viewing ray as in Eq. 1 as:

N(pi) =
∑
x∈ray

ω(ti; θ)∂N. (9)

Finally, we obtain that the mutual information between two normals is:

I(N̂(pi), N̂(pj)) ∝ || N(pi) · N(pj)
|N(pi)||N(pj)|

||. (10)

Please refer to our supplementary material for a detailed derivation. From Eq. 10,
we observe that the mutual information in surface normal vectors correlates
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Anchor pixel Similar semantic features Similar geometric features Combined (Ours)

Fig. 3: An example of positive samples from different features. Given an anchor pixel
(marked by a blue circle in the first image) on the wall-like cabinet, semantic features
like DINO often correlate both the cabinet and the ceiling (as shown by the red area in
the second image). Meanwhile, geometric features such as (noisy) monocular normals
can not distinguish between parallel planes that are not connected (the third image).
By combining semantic and geometric features, we can obtain positive samples of the
anchor pixel with better geometric consistency, thus, high mutual correlation.

positively with the cosine similarity of their gradients to the network parameters.
This conclusion is similar to that of Eq. 5. As a result, we can now identify
the pixels that are of high correlations, and increase the aggregated mutual
information during the NeRF training process.

Extracting correlated scene regions from image pixels. To extract scene regions
that need to be shaped to have high mutual information, we present a simple yet
effective approach with off-the-shelf visual features. Given the input images, we
extract pixel-wise semantic and geometric features to identify correlated scene
regions. Following previous research [34], we apply DINO [4] as the semantic fea-
ture extractor to obtain a high-level understanding of the scene regions. Mean-
while, as we shape mutual information on top of the surface normal, we employ a
monocular normal estimator [7] as the geometric feature extractor for a detailed
low-level perception of the 3D points in the scene.

DINO features can group different parts of an object, like the seat and back of
a chair, which share similar semantics. However, the surface normal vectors from
these parts have limited correlation, thus should not be constrained. Conversely,
using only geometric features can wrongly suggest high correlation between un-
related areas, like the seat and the floor. As these areas aren’t closely connected
in 3D space, there is no reason to have better surface reconstruction when en-
hancing their mutual information. Similar phenomena on wall-like structures
can be observed in Fig. 3, where we show that by combining semantic and geo-
metric features together we can better identify scene regions that are spatially
connected and have similar normal directions.

More explicitly, we combine semantic and geometric features with an inter-
section operator. It is simple yet effective. The process of identifying correlated
scene regions (in normal) is implemented as positive pixel pair selection from
input images. Given a randomly selected pixel from an image, we first extract
similar pixels from neighboring images using semantic and geometric features,
respectively. This extraction is implemented by applying two thresholds, βS and
βG, to filter the cosine similarity for semantic and geometric features. We then
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feed the intersection of the top similar pixels from each feature type into NeRF’s
training process as positive samples, allowing us to shape them with high mu-
tual information. In order to leverage the contrastive learning framework to
encourage mutual information, we randomly select pixels not involved in the
aforementioned process to serve as negative samples (independent pixels that
are not correlated to the anchor pixel).

Loss functions for training. The aforementioned contrastive learning process is
performed with a tailored InfoNCE loss [22]:

LM = − log

∑
exp(|| cos(∂Ni, ∂Ni+)||)∑
j exp(|| cos(∂Ni, ∂Nj)||)

, (11)

where i, i+, and j denote the anchor, positive, and negative pixels, respectively.
This loss function effectively enhances mutual information (according to Eq. 10)
among correlated pixels, while maintaining low mutual information among in-
dependent pixels. Finally, to train the NeRF backbone and retain the character-
istics of the SDF, we adopt the basic photometric loss (Eq. 2) and the eikonal
loss (Eq. 4). The latter two are derived from single images, while the former can
be calculated from either single images or a set of neighboring images. The full
loss function is defined as the weighted sum of three loss terms:

L = LC + λELE + λMLM . (12)

With the above, all network parameters θ can be trained end-to-end.

4 Experiments

In this section, we evaluate the effectiveness of our method through experiments
conducted on multiple datasets with various baselines. First, we introduce the
two datasets used to conduct the experiments in Sec. 4.1. Next, we detail the
implementation of the proposed method in Sec. 4.2, where we adapt a spectrum
of state-of-the-art models for validating the effectiveness of the geometric shap-
ing. Then, we report the comparisons between the baselines and our models in
Sec. 4.3. Lastly, we conduct a series of ablation studies in Sec. 4.4, to verify the
necessity of each component in our method.

4.1 Datasets

We evaluate the proposed method using two public datasets from the literature:
ScanNet++ [38] and the Replica [26] dataset. For the ScanNet++ dataset, we
choose 8 representative scenes, while for the Replica dataset, we select 4 rep-
resentative scenes. The scenes from both datasets represent a variety of indoor
settings, including offices, bedrooms, and so on. As our focus is on scene recon-
struction from sparse views, we uniformly sample 50-85 images from the official
(and Replica from Semantic-NeRF [42]) scanning sequences for each scene to use
as input in our evaluation. For detailed statistics of each scene, please refer to
our supplementary material.
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Evaluation metrics. Following previous works [13, 30, 40], we evaluate the qual-
ity of surface reconstruction using two metrics: Chamfer distance and F-score.
Chamfer distance is a measure that evaluates the difference between recon-
structed and ground-truth points sets. F-score is a statistical metric that in-
tegrates precision and recall, providing a more comprehensive understanding of
the reconstruction quality.

4.2 Implementation Details

As the proposed geometric shaping can be easily integrated into any network
similar to NeRF with SDF representations, we select several state-of-the-art
models as our baselines and apply the proposed to them for demonstrating the
effectiveness of our approach. We first choose NeuS [30] and VolSDF [37], the
two representative pioneers for NeRFs with SDFs. We also apply our method
to the following works: GeoNeuS [8], I2-SDF [44], NeuRIS [29], MonoSDF [40],
and Neuralangelo [13]. In addition to the basic loss functions for NeRF and
SDF, GeoNeuS incorporates patch similarity from neighboring views and sur-
face points derived from structure-from-motion. I2-SDF integrates the rendering
equation with VolSDF. We disregard its normal and depth loss terms. NeuRIS
utilizes monocular normal estimation as a supervision on the geometry, and dis-
cards the low-quality normal information that lacks sufficient confidence through
multi-view patching. MonoSDF employs both depth and normal estimation, for
which we set the decay of the normal and depth at 30k iterations to prevent the
method from degeneration. Neuralangelo utilizes a multi-resolution hash grid
and numerical gradient. We set the hash encoding dictionary size to 20, and the
encoding dimension to 4. For all the base models mentioned above, we enhance
them by incorporating our proposed mutual information loss during training.
The resulting methods are respectively labeled as NeuS+, VolSDF+, GeoNeuS+,
and so on.

4.3 Comparisons

Results on the ScanNet++ dataset. The quantitative comparisons are reported
in Tab. 1. We also visualize the surface reconstruction results in Fig. 4 for qual-
itative comparisons. We can observe that by applying the proposed mutual in-
formation shaping on the geometry, the surface reconstruction quality can be
improved across all baselines, as measured by mean Chamfer distance, F-score,
and the visuals.

NeuS and VolSDF tend to produce rough surfaces and excessively smoothed
boundaries. However, with our geometry-aware mutual information, the surfaces
become smoother, while the boundaries are more crispy. Compared to GeoNeuS,
a method that uses patch-similarity among neighboring views and requires suf-
ficient textures, our method provides significant improvements. Applying the
proposed technique to I2-SDF can also enhance its reconstruction quality.

As for more recent works, we find that NeuRIS is somewhat sensitive to the
quality of normal estimation. It can either be affected by noise in the normal
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Table 1: Quantitative results on the ScanNet++ dataset. Each cell includes the orig-
inal baseline number in black, followed by the improvement using our mutual informa-
tion. Positive and negative improvements are marked in green and orange, respectively.
The last column shows the average improvement over all scenes, validating the effec-
tiveness of the proposed shaping for better geometric reconstruction (despite a small
potion of noise on a few scenes).
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Table 2: Quantitative results on the Replica dataset.
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Neuralangelo [13]+ 0.024-0.018 0.030-0.019 0.146-0.012 0.082-0.047 0.070-0.024

F
-s

co
re

↑

NeuS [30]+ 0.92+0.00 0.80+0.01 0.78-0.03 0.72+0.08 0.80+0.02
VolSDF [37]+ 0.94-0.04 0.78+0.01 0.78+0.16 0.82+0.07 0.83+0.05
GeoNeuS [8]+ 0.89+0.08 0.91 +0.04 0.90 +0.09 0.98 +0.01 0.920+0.05
I2-SDF [44]+ 0.72+0.09 0.56+0.20 - - 0.64+0.14
NeuRIS [29]+ 0.79+0.06 0.01+0.68 0.89+0.05 0.77+0.03 0.61+0.20
MonoSDF [40]+ 0.96+0.00 0.90 +0.02 0.98 +0.00 0.95 +0.02 0.95+0.01
Neuralangelo [13]+ 0.89+0.07 0.49+0.36 0.65+0.15 0.71+0.18 0.69+0.19

or completely disregard the normal information due to low confidence. Particu-
larly, when images are sparse, the regions covered by fewer viewpoints tend to
lose supervision. Our mutual information scheme does not depend on the ab-
solute values of the surface normal, but on the similarity among these values.
This makes it more robust to noise and less likely to discard low-quality but use-
ful normal information. Consequently, our method enhances the reconstruction
quality of NeuRIS. MonoSDF achieves the best overall performance among the
baselines because it uses both depth and normal estimations as geometry su-
pervision. However, our method still offers improvements. Notably, it produces
smoother planes and clearer boundaries. This indicates that not only the su-
pervision of geometric cues is important, but also the correlation between the
geometric entities matters.
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Fig. 4: Visual results on the ScanNet++ dataset. Each row shows a comparison with
a different baseline, from top to bottom, NeuS [30]+, VolSDF [37]+, GeoNeuS [8]+,
I2-SDF [44]+, NeuRIS [29]+, MonoSDF [40]+, and Neuralangelo [13]+. Red boxes are
overlaid to help the contrast.



InfoNorm 13

Fig. 5: Reconstruction results after 10K iterations in the training process with (NeuS+)
and without (NeuS) the proposed geometric shaping technique.

Last but not least, the experiments on Neuralangelo demonstrate the poten-
tial of our method in working with hash grid encoding and numerical gradient.
This highlights our method’s versatility and ease of use, which can be broadly
applied in various reconstruction architectures.

Results on the Replica dataset. In Tab. 2 we report the numerical results on
the Replica dataset, with respect to NeuS [30], VolSDF [37], GeoNeuS [8], I2-
SDF [44], NeuRIS [29], MonoSDF [40], and Neuralangelo [13]. As observed, the
proposed geometric shaping technique still provides positive improvements when
incorporated into these baselines, aligning with the conclusion drawn from the
ScanNet++ data. Qualitative examples can also be found in Fig. 1.

4.4 Analyses

Table 3: Ablation studies on three scenes from
ScanNet++. The best and second-best results are
marked in bold and underlined.

Chamfer (m)↓ F-score ↑
6ee2 7b64 9460 Mean 6ee2 7b64 9460 Mean

NeuRIS [30] 0.029 0.070 0.405 0.168 0.65 0.69 0.24 0.53
NeuRIS+ (color) 0.023 0.038 0.315 0.125 0.72 0.68 0.34 0.58
NeuRIS+ (SDF) 0.127 0.053 0.360 0.180 0.47 0.61 0.30 0.46
NeuRIS+ w/o normal 0.036 0.025 0.338 0.133 0.66 0.75 0.32 0.58
NeuRIS+ w/o DINO 0.061 0.033 0.381 0.158 0.63 0.72 0.32 0.56
NeuRIS+ (Full) 0.044 0.033 0.198 0.092 0.66 0.76 0.41 0.61

MonoSDF [40] 0.020 0.016 0.046 0.028 0.81 0.79 0.88 0.83
MonoSDF+ (color) 0.024 0.019 0.033 0.025 0.79 0.78 0.87 0.81
MonoSDF+ (SDF) 0.588 0.029 3.443 1.353 0.38 0.65 0.21 0.42
MonoSDF+ w/o normal 0.128 0.023 0.066 0.072 0.68 0.73 0.80 0.74
MonoSDF+ w/o DINO 0.064 0.016 0.022 0.034 0.78 0.83 0.93 0.85
MonoSDF+ (Full) 0.014 0.020 0.023 0.019 0.85 0.85 0.93 0.87

Ablation studies. We select
three representative scenes
from the ScanNet++ dataset
and conduct ablation studies
to evaluate the effectiveness
of our method designs. We
conduct ablation studies us-
ing two top-performing base-
lines: NeuRIS and MonoSDF.

The results are reported
in Tab. 3. Instead of using
the surface normal formula
to inject mutual information,
we first perform a basic mu-
tual information shaping sep-
arately in the color and SDF
values. These two variations
are labeled as base+ (color)
and base+ (SDF), respectively. Interestingly, we find that, even though color is
not directly related to geometry, by shaping it, we can still obtain improvements
on the geometry in some cases. Moreover, shaping directly on the SDF values
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severely degrade the reconstruction quality, which evidences that the shaping
on SDF values could incur a competition with the goal to faithfully learn the
geometry within the neural radiance field. We further examine the effectiveness
of combining semantic and geometric features to identify geometrically highly
correlated regions. As demonstrated in Fig. 3, using only one type of the features
can lead to incorrect correlations. Tab. 3 also shows that eliminating any one
of the features can decrease the performance, confirming the effectiveness of our
positive-negative sample selection mechanism levering the multimodal features.

Table 4: Time and memory consumption.
Training Time (h) VRAM (GB)

NeuS [30]+ 3.00+0.37 7.89+1.68
VolSDF [37]+ 3.18+1.96 16.36+4.68
GeoNeuS [8]+ 3.26+0.16 5.72+3.56
I2-SDF [44]+ 3.47+2.84 10.08+8.09
NeuRIS [29]+ 3.70+0.20 11.73+4.12
MonoSDF [40]+ 2.65+1.32 12.83+9.42
Neuralangelo [13]+ 3.12+2.06 16.44+1.00

Time and memory consumption. Our
method provides benefits for 3D re-
construction with limited additional
effort. Specifically, it only increases
the optimization time and memory
usage during the training process,
without affecting the model architec-
ture and final storage. The time and
memory consumption are reported in
Tab. 4. It is observed that the over-
head on the training time highly de-
pends on the architecture used in
each basline. For example, the train-
ing time increase on NeuRIS is marginal while more significant on VolSDF. These
studies provide comprehensive information on the trade-offs between training
time and performance gain. However, we do find that baselines with the pro-
posed shaping technique can achieve a better performance (e.g., early geometries
from NeuS and NeuS+ shown in Fig. 5) at the same training steps due to the
effective regularization by mutual information.

5 Conclusion

We explore the usage of the second-order geometric correlations as a regulariza-
tion and introduce a mutual information shaping technique of the normals for
better surface reconstruction quality. With a simple yet effective correlated point
selection mechanism that does not depend on accurate geometry information,
we can perform a contrastive learning that maximizes the detected correlations.
In return, we can observe a boost in the geometric quality of the reconstructed
surfaces in state-of-the-art neural scene representations.

Extensive evaluations on various baselines and datasets show the effectiveness
of our method, which improves 3D reconstruction quality without resorting to a
more sophisticated surface modeling. The overhead caused by the shaping of the
normals varies with different neural architectures of the scene representation,
e.g., some are marginal, and some are significant, which we deem as a limitation
of our current pipeline. We believe that an acceleration in computation can be
achieved using a coarse-to-fine strategy, which we leave as a future work.



InfoNorm 15

Acknowledgments. We thank the anonymous reviewers for their valuable feed-
back. This work is supported by the Early Career Scheme of the Research Grants
Council (grant # 27207224), the HKU-100 Award, and in part by NSF China
(No. 62172363). Siyan Dong would also like to thank the support from HKU
Musketeers Foundation Institute of Data Science for the Postdoctoral Research
Fellowship.

References

1. Bae, G., Budvytis, I., Cipolla, R.: Estimating and exploiting the aleatoric uncer-
tainty in surface normal estimation. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 13137–13146 (2021)

2. Bao, C., Zhang, Y., Yang, B., Fan, T., Yang, Z., Bao, H., Zhang, G., Cui, Z.:
Sine: Semantic-driven image-based nerf editing with prior-guided editing field. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 20919–20929 (2023)

3. Cai, B., Huang, J., Jia, R., Lv, C., Fu, H.: Neuda: Neural deformable anchor
for high-fidelity implicit surface reconstruction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8476–8485 (2023)

4. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: Proceedings of
the IEEE/CVF international conference on computer vision. pp. 9650–9660 (2021)

5. Chen, Y., Wu, Q., Zheng, C., Cham, T.J., Cai, J.: Sem2nerf: Converting single-view
semantic masks to neural radiance fields. In: European Conference on Computer
Vision. pp. 730–748. Springer (2022)

6. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. In: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques. pp. 303–312 (1996)

7. Do, T., Vuong, K., Roumeliotis, S.I., Park, H.S.: Surface normal estimation of
tilted images via spatial rectifier. In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16. pp. 265–
280. Springer (2020)

8. Fu, Q., Xu, Q., Ong, Y.S., Tao, W.: Geo-neus: Geometry-consistent neural implicit
surfaces learning for multi-view reconstruction. Advances in Neural Information
Processing Systems 35, 3403–3416 (2022)

9. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric reg-
ularization for learning shapes. arXiv preprint arXiv:2002.10099 (2020)

10. Guo, H., Peng, S., Lin, H., Wang, Q., Zhang, G., Bao, H., Zhou, X.: Neural 3d
scene reconstruction with the manhattan-world assumption. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5511–
5520 (2022)

11. Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: Lerf: Language em-
bedded radiance fields. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 19729–19739 (2023)

12. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4015–4026
(2023)



16 X. Wang & S. Dong et al.

13. Li, Z., Müller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.:
Neuralangelo: High-fidelity neural surface reconstruction. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8456–
8465 (2023)

14. Liu, F., Zhang, C., Zheng, Y., Duan, Y.: Semantic ray: Learning a generalizable
semantic field with cross-reprojection attention. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 17386–17396 (2023)

15. Liu, Y.L., Gao, C., Meuleman, A., Tseng, H.Y., Saraf, A., Kim, C., Chuang, Y.Y.,
Kopf, J., Huang, J.B.: Robust dynamic radiance fields. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13–23
(2023)

16. Liu, Z., Milano, F., Frey, J., Siegwart, R., Blum, H., Cadena, C.: Unsupervised
continual semantic adaptation through neural rendering. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3031–
3040 (2023)

17. Long, X., Lin, C., Wang, P., Komura, T., Wang, W.: Sparseneus: Fast generaliz-
able neural surface reconstruction from sparse views. In: European Conference on
Computer Vision. pp. 210–227. Springer (2022)

18. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. In: Seminal graphics: pioneering efforts that shaped the field,
pp. 347–353 (1998)

19. Meng, X., Chen, W., Yang, B.: Neat: Learning neural implicit surfaces with arbi-
trary topologies from multi-view images. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 248–258 (2023)

20. Metzer, G., Richardson, E., Patashnik, O., Giryes, R., Cohen-Or, D.: Latent-nerf
for shape-guided generation of 3d shapes and textures. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12663–
12673 (2023)

21. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020)

22. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018)

23. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. pp. 165–
174 (2019)

24. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021)

25. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2016)

26. Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., Engel, J.J., Mur-
Artal, R., Ren, C., Verma, S., Clarkson, A., Yan, M., Budge, B., Yan, Y., Pan,
X., Yon, J., Zou, Y., Leon, K., Carter, N., Briales, J., Gillingham, T., Mueggler,
E., Pesqueira, L., Savva, M., Batra, D., Strasdat, H.M., Nardi, R.D., Goesele, M.,
Lovegrove, S., Newcombe, R.: The replica dataset: A digital replica of indoor spaces
(2019)



InfoNorm 17

27. Tertikas, K., Despoina, P., Pan, B., Park, J.J., Uy, M.A., Emiris, I., Avrithis,
Y., Guibas, L.: Partnerf: Generating part-aware editable 3d shapes without 3d
supervision. arXiv preprint arXiv:2303.09554 (2023)

28. Wang, F., Galliani, S., Vogel, C., Speciale, P., Pollefeys, M.: Patchmatchnet:
Learned multi-view patchmatch stereo. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. pp. 14194–14203 (2021)

29. Wang, J., Wang, P., Long, X., Theobalt, C., Komura, T., Liu, L., Wang, W.:
Neuris: Neural reconstruction of indoor scenes using normal priors. In: European
Conference on Computer Vision. pp. 139–155. Springer (2022)

30. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv
preprint arXiv:2106.10689 (2021)

31. Weder, S., Garcia-Hernando, G., Monszpart, A., Pollefeys, M., Brostow, G.J., Fir-
man, M., Vicente, S.: Removing objects from neural radiance fields. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
16528–16538 (2023)

32. Xiangli, Y., Xu, L., Pan, X., Zhao, N., Rao, A., Theobalt, C., Dai, B., Lin, D.:
Bungeenerf: Progressive neural radiance field for extreme multi-scale scene render-
ing. In: European conference on computer vision. pp. 106–122. Springer (2022)

33. Xu, L., Xiangli, Y., Peng, S., Pan, X., Zhao, N., Theobalt, C., Dai, B., Lin, D.:
Grid-guided neural radiance fields for large urban scenes. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8296–
8306 (2023)

34. Xu, X., Yang, Y., Mo, K., Pan, B., Yi, L., Guibas, L.: Jacobinerf: Nerf shaping
with mutual information gradients. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 16498–16507 (2023)

35. Yan, Z., Li, C., Lee, G.H.: Nerf-ds: Neural radiance fields for dynamic specular
objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 8285–8295 (2023)

36. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: Mvsnet: Depth inference for unstruc-
tured multi-view stereo. In: Proceedings of the European conference on computer
vision (ECCV). pp. 767–783 (2018)

37. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. Advances in Neural Information Processing Systems 34, 4805–4815 (2021)

38. Yeshwanth, C., Liu, Y.C., Nießner, M., Dai, A.: Scannet++: A high-fidelity dataset
of 3d indoor scenes. In: Proceedings of the International Conference on Computer
Vision (ICCV) (2023)

39. Yu, H., Julin, J., Milacski, Z.A., Niinuma, K., Jeni, L.A.: Dylin: Making light field
networks dynamic. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 12397–12406 (2023)

40. Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: Monosdf: Exploring monoc-
ular geometric cues for neural implicit surface reconstruction. Advances in neural
information processing systems 35, 25018–25032 (2022)

41. Zhang, Y., Yang, G., Guibas, L., Yang, Y.: Infogaussian: Structure-aware
dynamic gaussians through lightweight information shaping. arXiv preprint
arXiv:2406.05897 (2024)

42. Zhi, S., Laidlow, T., Leutenegger, S., Davison, A.J.: In-place scene labelling and un-
derstanding with implicit scene representation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 15838–15847 (2021)



18 X. Wang & S. Dong et al.

43. Zhu, B., Yang, Y., Wang, X., Zheng, Y., Guibas, L.: Vdn-nerf: Resolving shape-
radiance ambiguity via view-dependence normalization. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 35–45
(2023)

44. Zhu, J., Huo, Y., Ye, Q., Luan, F., Li, J., Xi, D., Wang, L., Tang, R., Hua, W.,
Bao, H., Wang, R.: I2-sdf: Intrinsic indoor scene reconstruction and editing via
raytracing in neural sdfs. In: CVPR (2023)


	 InfoNorm: Mutual Information Shaping of Normals for Sparse-View Reconstruction 

