
VITATECS: A Diagnostic Dataset for Temporal
Concept Understanding of Video-Language

Models

Shicheng Li1, Lei Li2, Yi Liu1, Shuhuai Ren1, Yuanxin Liu1

Rundong Gao1, Xu Sun1, and Lu Hou3

1 State Key Laboratory of Multimedia Information Processing, School of Computer
Science, Peking University

{lisc99, xusun}@pku.edu.cn
2 The University of Hong Kong

3 Huawei Noah’s Ark Lab
houlu3@huawei.com

Abstract. The ability to perceive how objects change over time is a
crucial ingredient in human intelligence. However, current benchmarks
cannot faithfully reflect the temporal understanding abilities of video-
language models (VidLMs) due to the existence of static visual short-
cuts. To remedy this issue, we present VITATECS, a diagnostic VIdeo-
Text dAtaset for the evaluation of TEmporal Concept underStanding.
Specifically, we first introduce a fine-grained taxonomy of temporal con-
cepts in natural language in order to diagnose the capability of VidLMs
to comprehend different temporal aspects. Furthermore, to disentangle
the correlation between static and temporal information, we generate
counterfactual video descriptions that differ from the original one only
in the specified temporal aspect. We employ a semi-automatic data
collection framework using large language models and human-in-the-
loop annotation to obtain high-quality counterfactual descriptions effi-
ciently. Evaluation of representative video-language understanding mod-
els confirms their deficiency in temporal understanding, revealing the
need for greater emphasis on the temporal elements in video-language
research. Our dataset is publicly available at https://github.com/
lscpku/VITATECS.

Keywords: Temporal understanding · Vision-language learning · Bench-
mark construction

1 Introduction

Many important concepts in human languages contain a temporal dimension [11,
22], such as human actions, changes in status, and event order, which are beyond
the expressive power of individual static images. Such temporal concepts bring
great challenges to video-language learning and are crucial for the generalization
capability of intelligent systems in real-life scenarios.

https://github.com/lscpku/VITATECS
https://github.com/lscpku/VITATECS
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Fig. 1: Illustration of the gap between current training and evaluation procedures
and real-world applications. In current video-language datasets (blue box), temporal
information is highly correlated with static scenes. Models trained and evaluated on
them cannot acquire the ability to understand temporal concepts, leading to failure in
challenging real-world applications (red box).

Although these temporal concepts are present in existing text-to-video re-
trieval [19,55,60] or video question answering [59,64] benchmarks, most of these
datasets fail to faithfully assess the temporal understanding ability of Video-
Language Models (VidLMs) due to the strong correlation between static ob-
jects/scenes and temporal information. For example, in the blue box in Fig. 1,
each video can be aligned to its description by merely identifying the static ob-
jects such as the fire, the microphone, and the PC case. As a consequence, the
models may learn to simply rely on static clues to make predictions, leading to
failure in real-world applications that require a genuine understanding of tempo-
ral concepts, e.g ., to distinguish between the action of “connecting something to
system” and “disconnecting something from system” as demonstrated by the red
box in Fig. 1. Previous works [5,16,20,24,48] have pointed out similar issues and
provided several solutions. However, they do not properly define and categorize
different aspects of temporal information. The lack of a clear definition adds to
the difficulty of assessing the precise abilities of VidLMs. Additionally, they often
construct evaluation datasets by following certain templates or using synthetic
scenes, making them unsuitable for more diverse and realistic scenarios.

In light of the drawbacks of current video-language testbeds, we propose
a new dataset for VidLMs, VITATECS, to fill the gap for temporal concept
understanding evaluation by decoupling temporal information and static infor-
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mation. Inspired by Winoground [50], to measure the ability of VidLMs to un-
derstand and align the temporal concepts, we ask the models to distinguish
between the correct caption of a video and a modified version of the caption
which contains similar static information and only differs in temporal informa-
tion. To allow for a more comprehensive and fine-grained evaluation of temporal
understanding ability, we summarize several aspects of temporal concepts that
are commonly present in video descriptions, including Direction, Intensity, Se-
quence, Localization, Compositionality and Type, which according to our study
cover most of the temporal information in video-language datasets.

Since collecting high-quality video-text pairs is time-consuming and expen-
sive, we follow previous works in dataset construction [32, 38, 40, 47, 62], and
augment existing open-domain video-language datasets by harnessing the world
knowledge encoded in pre-trained large language models (LLMs) [39]. Specifi-
cally, given an annotated video-text pair in the dataset, we ask the LLM to gen-
erate a counterfactual description that only differs from the original description
in one given temporal aspect using in-context learning [4]. To prevent potential
mismatch when dealing with complex instructions, we design a human-in-the-
loop procedure to filter out low-quality generations by iteratively generating
counterfactual descriptions, human labeling, and fine-tuning a filter model. In
each iteration, the generated samples are used to update the filter model and the
in-context learning exemplar set to boost generation and filtering quality. This
annotation framework allows us to construct a 13k+ dataset from 231 human-
written counterfactuals while maintaining high quality and diversity.

Based on our dataset, we conduct a comprehensive evaluation of state-of-
the-art video-language understanding models. Our findings can be summarized
as follows.

– Existing models barely surpass random guesses in many aspects, confirming
their general lack of temporal understanding.

– Temporally-adapted image-text models outperform video-text pre-training,
but primarily due to better utilization of static clues.

– Failure of text encoders to learn temporal concepts during pre-training is
partly responsible for low performance on temporal understanding.

– Different video-text datasets tend to invoke different temporal understanding
abilities.

In summary, our work with VITATECS sheds light on limitations in current
VidLMs’ temporal understanding, providing insights for future development.

2 Related Work

Video-Language Understanding. With the great success of end-to-end deep learn-
ing models in natural language processing and image-text understanding, the re-
search community has shown a growing interest in the more challenging task of
video-language understanding, with promising results achieved on a wide range
of tasks including video captioning [23,67], video question answering [59,64] and
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Table 1: Comparison with other diagnostic video datasets from four aspects: whether
they are video-language datasets, whether they are open-domain, whether they target
temporal understanding ability, and whether they contain a fine-grained evaluation of
model abilities.

Dataset video-language open-domain temporal fine-grained

Temporal Dataset [48] ✗ ✓ ✓ ✗

CATER [16] ✗ ✗ ✓ ✗

CLEVRER [63] ✓ ✗ ✓ ✓

SSv2-label [24] ✓ ✗ ✓ ✗

Contrast set [40] ✓ ✓ ✗ ✗

VITATECS (Ours) ✓ ✓ ✓ ✓

video-text retrieval [6, 19, 46, 55, 60, 68]. Some research [7, 12, 13, 25, 26, 29, 30,
34, 44, 51, 53] follows the prevalent paradigm in NLP and multi-modal under-
standing by directly conducting pre-training on video-text pairs. Another line
of work [2, 14, 17, 35, 36, 54, 61] adapts powerful image-text pre-trained models
like CLIP [42] to transfer their knowledge to the video-language domain. Recent
studies [28,37,45,66] have also explored the possibility of integrating LLMs with
vision encoders to perform video-language understanding tasks. Despite these
valuable efforts, we argue that the apparent prosperity of video-language under-
standing models still rests upon the power of image-language models and that
more attention should be paid to their temporal understanding abilities.

Datasets on Temporal Understanding. Although the temporal dimension is the
primary difference between videos and images, it has not received proper ac-
knowledgment from current model design and dataset construction processes
in the video-language community. Previous works [1, 5, 15, 20, 21, 24, 48, 52, 56]
have pointed out the lack of emphasis on temporal understanding abilities. Ev-
idence of this negligence includes the insensitivity of models to the frame order
of input videos [48,65], several order-agnostic architecture designs with state-of-
the-art retrieval performance [17,35], visualization of intermediate layer features
or saliency maps [8, 20], and even the success of using single frames training to
achieve promising results [24]. Although a few datasets have been proposed to
address this issue, they either fail to properly define and categorize different as-
pects of temporal information in video-language understanding, or only focuses
on certain narrow aspects of temporality [3, 33, 41, 57, 58]. In addition, many
of theses benchmarks use videos constructed from computer-rendered synthetic
videos [16, 63] or videos focusing on single human actions [18, 31, 48, 49], which
are not representative of real-world videos. We remedy these problems by identi-
fying aspects of temporality and introducing a new benchmark for measuring the
temporal understanding abilities in VidLMs that boasts higher diversity in video
content and language forms. See Tab. 1 for a comparison between VITATECS
and some existing video datasets.
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Fig. 2: Examples from the six aspects of our dataset. Each sample contains a video, a
ground-truth caption, and a counterfactual description with modifications in the given
temporal aspect. Differences between the sentence pairs are highlighted in blue and
red.

3 VITATECS: Diagnosing Temporal Concept
Understanding

In this section, we propose VITATECS, a new dataset for measuring how well
VidLMs capture temporal information across modalities. It consists of (video,
caption, counterfactual) triples, where the counterfactual description retains the
same static information as the original caption while modifying its temporal
information in one of the six fine-grained aspects that we define in Sec. 3.1. We
elaborate on the details of our temporal dataset in Sec. 3.2 and the human-in-
the-loop annotation framework we devise to facilitate its construction process in
Sec. 3.3.

3.1 Fine-Grained Temporal Understanding

Measuring the temporal understanding ability of VidLMs is a challenging task.
On one hand, it is not clear how to define and characterize the temporal infor-
mation in a video. Previous works [24,40,48] draw a rough equivalence between
temporal information and the actions in the video. In reality, temporal informa-
tion can emerge in a variety of forms, such as human actions, changes in object
status, dynamics of substances, the order of events, etc., and is widely manifested
in daily activities. On the other hand, it is infeasible to completely disentangle
the temporal information from the static information. The background scenes,
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objects, and people’s postures are all highly correlated with the temporal infor-
mation in open-domain videos. If not properly controlled, such static bias would
allow models to rely on static clues as shortcuts for making predictions while
seemingly learning to capture the temporal information.

To achieve high coverage of temporal information in video-language datasets
and allow for fine-grained diagnosis of temporal understanding abilities, we iden-
tify six aspects of temporal concepts commonly reflected in natural language:
Direction, Intensity, Sequence, Localization, Compositionality and Type. These
aspects of temporal information are disentangled from static information to dif-
ferent degrees and address different facets of the temporal information in video-
language datasets, allowing us to pinpoint the temporal understanding abilities
of VidLMs. Since our final target is to construct text pairs with aspect-specific
modifications, for clarity, we define these aspects in terms of the temporal ques-
tions they address and the corresponding modification patterns as follows.

– “Direction” measures the model’s ability to answer the following question:
“In which direction does the status of objects change?” Examples of this
aspect include sentence pairs describing opposite spatial movements or one
action reversing the effect of the other.

– “Intensity” measures the model’s ability to answer the following question:
“How fast or how intense does the change occur?” Examples of this aspect
include counterfactual sentences which change the words that modify the
verbs or change the verb to a similar action with subtle differences in the
manner it is conducted.

– “Sequence” measures the model’s ability to answer the following question:
“How many events are depicted in the video and in what order?” Examples
of this aspect usually involve changing the temporal order or number of
occurrences of the events.

– “Localization” measures the model’s ability to answer the following ques-
tion: “On which part of the frame does the change occur?” Examples of this
aspect include sentence pairs with the same action conducted either in dif-
ferent absolute spatial locations or in different locations in relation to other
objects in the video.

– “Compositionality” measures the model’s ability to answer the following
question: “Who performed which action and to whom?” Examples of this
aspect often include actions with interchanged subjects or objects.

– “Type” measures the model’s ability to answer the following question: “What
is the action depicted in the video?” This aspect contains general alterations
to the actions with a less stringent constraint on the static information con-
tained.

To validate the coverage of our temporal concept categorization, we randomly
sample 200 video-text pairs from MSR-VTT [60] and VATEX [55] and inspect the
types of temporal information they contain. We find that for 98% of the samples,
their temporal information falls in one of our categories, which demonstrates
that our taxonomy is able to achieve high coverage while taking into account
the disentanglement from static information.
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Fig. 3: Illustration of our human-in-the-loop annotation framework. Texts in orange
indicate the labels predicted by the filter model. Texts in red, blue and purple indicate
candidates that are eliminated by the NLI model, the filter model and human annota-
tors, respectively.

3.2 Dataset Format

Following Winoground [50], we measure the ability of VidLMs to match the
videos to their correct descriptions among some well-designed choices as a proxy
for their temporal understanding abilities. Specifically, for each aspect a, we
collect (video, caption, counterfactual) triples {(Vi, Ci, C̃i)}Na

i=1 where Na denotes
the number of samples for aspect a, Vi denotes the video, Ci denotes the true
caption of the video, and C̃i is the counterfactual description that differs from
Ci only in the temporal aspect a. Fig. 2 shows examples of our dataset.

3.3 Human-in-the-Loop Annotation Framework

Due to the heavy expenses of collecting high-quality (video, caption, counter-
factual) triples, we present a human-in-the-loop annotation framework for semi-
automatic counterfactual generation based on existing (video, caption) datasets.
At the core of our framework is a loop consisting of three stages: generation,
filtering, and revision. In stage 1, we use in-context learning [4,10] to generate
candidate counterfactuals based on ground-truth video-text pairs with LLMs.
In stage 2, the candidates are filtered using a combination of rules, off-the-shelf
language understanding models, and fine-tuned language understanding models.
In stage 3, we ask human annotators to verify the quality of the candidates and
use the high-quality ones to refine the generation process and the filter model.
The three stages are conducted on a small subset and are repeated until the fil-
ter model achieves satisfactory precision on a held-out evaluation set. Below, we
first lay out the criteria for our counterfactual descriptions and then elaborate
on the details of each stage.
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Criteria. During our effort to construct the dataset, we found that LLMs en-
counter some difficulty in following our instructions when generating counterfac-
tual descriptions, possibly due to the reflective nature of our temporal concepts.
To enable consistent and high-quality counterfactual generation, we first iden-
tify five major criteria for measuring the quality of generated counterfactuals as
follows.

(a) The counterfactual should neither entail nor be entailed by the caption.
(b) The counterfactual should contain roughly the same amount of information

as the caption.
(c) The counterfactual should be grammatically correct and semantically plau-

sible.
(d) The counterfactual should retain the static information in the caption and

only change the given aspect of temporal information.
(e) The pattern of counterfactual description should be diverse across the entire

dataset.

Among these desirable properties, criteria (a)-(d) are instance-level criteria
we aim to address in both the generation and filtering stages. In contrast, cri-
terion (e) is a dataset-level criterion dealt with in a finalization step after the
filter model has converged.

Exemplar Sets. Throughout our annotation process, we maintain three sets of
exemplars: positive set X+ contains sentence pairs that differ only in a given
aspect; negative set X− contains sentence pairs that violate one of the afore-
mentioned criteria (a)-(d); N/A set XNA contains captions that do not describe
a certain aspect of the temporal concept. These exemplars serve two purposes:
on the one hand, they compose the demonstrations of valid and invalid data
samples for in-context learning, which supply the generative language models
with clearer and better-informed instructions; on the other hand, they provide
supervision signals for the fine-tuning of the filter model. These three sets are
initialized with manually annotated examples and expanded semi-automatically
to boost the generation and filter model performance as more data samples are
generated. The size and examples of the initial exemplar sets are available in the
Appendix.

In-Context Learning Generation. In this stage, we draw upon the generative
strength of ChatGPT (gpt-3.5-turbo-0613) [39] to generate counterfactual
descriptions given the original caption and the desired aspect of variation. The
use of in-context learning allows us to capture the different aspects of temporal
concepts through carefully-designed instructions and demonstrations. Specifi-
cally, we first randomly sample a small subset (500 for each aspect) of (video,
caption) pairs from the test sets of two popular video-text retrieval datasets,
MSR-VTT [60] and VATEX [55]. Then, for each (video, caption) pair, we invoke
the instruction following and pattern replication abilities of ChatGPT by con-
structing a prompt consisting of an aspect-specific instruction, demonstrations
sampled from the exemplar sets, and the query for which we aim to generate the
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counterfactual description. The demonstrations are sampled from both X+ and
XNA so that the LLM not only learns to generate counterfactual descriptions
for valid captions but also learns to recognize which captions do not concern the
temporal aspect of interest.

Automatic Filtering. In view of the uneven quality of generated examples, we
propose to filter the candidates and automatize this procedure using natural lan-
guage understanding models. First, we leverage an off-the-shelf natural language
inference (NLI) model, Sentence-BERT [43], to filter out examples that do not
meet criterion (a), i.e., the cases where one description entails the other. Then,
to filter out candidates that do not meet criterion (b)-(d), we use a neural net-
work that takes a pair of sentences as input and performs a 7-way classification
task, where category 0 corresponds to disqualified generations and categories
1-6 correspond to the six aspects we define. Considering the similarity in task
formulation, we initialize the filter model with the same NLI model above. The
fine-tuning data consists of samples from both X+ and X−. We adopt a rigorous
decision mechanism that classifies the given sentence pair into one of the six as-
pects only if the model makes consistent predictions for the pair and its reversed
version with high confidence, as we care more about the precision of the filter
model than its recall.

Human Revision. To guarantee the quality of filtered examples and guide both
the in-context learning procedure and the filter model in the right direction, we
introduce human supervision to revise the filtering results. We manually check
the samples that are predicted to fall in one of the six aspects and correct the
wrong predictions. Note that, on the one hand, due to the relatively small size
of the sampled subset and the rigorous confidence-based filtering procedure, the
number of examples for human revision is reduced significantly; on the other
hand, human annotators only need to rectify the predicted labels instead of
writing the entire counterfactual description. Therefore, this revision stage does
not require excessive human effort and only incurs acceptable annotation costs.

Iterative Procedure. We repeat the generation, filtering, and revision procedure
to iteratively enlarge the exemplar sets and refine the filter model. In each it-
eration, the previously revised examples are incorporated into X+ and X− ac-
cording to their labels. This simultaneously augments the demonstration set of
in-context learning for better generation quality and provides more training data
for fine-tuning the filter model. After each iteration, the fine-tuned filter model
is evaluated on an independently annotated test set. We terminate the iteration
once no significant improvement of the filter model is observed.

Finalization. After the filter model has converged, we perform generation and
filtering on a larger scale (20,000 for each aspect) without human revision. As a
finalization step, we address the issue of diversity by favoring generations that
involve a less common change of verb throughout the dataset when merging the
filtered samples.
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Table 2: Statistics of our dataset including the number of samples, the number of
videos, and the average length of the original captions and the counterfactual descrip-
tions.

Direction Intensity Sequence Localization Compositionality Type

# samples 3,800 779 151 1,053 1,450 6,605
# videos 2,646 692 150 915 1,110 4,287

Avg. len (caption) 13.6 13.6 14.9 14.6 13.9 11.7
Avg. len (counterfactual) 13.8 13.9 14.9 14.5 13.9 11.6

Annotation Efficiency of the Framework. Our framework can be easily scaled to
generate larger datasets since no more human efforts are required once the filter
model has converged. In our case, it only takes 231 human-written descriptions
and around 1500 labeling annotations to obtain the final benchmark with 13k+
samples, showing the efficiency of our annotation framework. The statistics of our
dataset are shown in Tab. 2. We also manually check the quality of VITATECS
by sampling 100 instances from each aspect and find that 94.8% of them satisfy
our criteria. See Appendix A for more details on the quality check process.

4 Evaluation of Video-Language Models

In this section, we evaluate prevailing VidLMs to examine their temporal under-
standing ability. We first introduce the evaluation settings and then discuss the
findings drawn from our evaluation to facilitate future studies.

4.1 Experimental Setup

Evaluated Models. In our experiments, we focus on models designed for the
video-text retrieval task, which can calculate the similarity score between a
video and a text query. We test three pre-trained VidLMs (VIOLET [12], AL-
PRO [26] and Singularity [24]) and three temporally-adapted image-language
models (CLIP4Clip [35], X-Pool [17] and X-CLIP [36]). We also include two
recent video large language models, Video-LLaMA [66] and VideoChat [28], as
well as pure image-text foundation models such as BLIP [27], which has shown
strong performance on zero-shot video-text retrieval.

Evaluation Metric. A model’s prediction is considered correct if the similarity
score of the correct caption is higher than that of the generated counterfactual.
We measure the accuracy of the models on each of the six aspects of temporal
concepts, and explore a recall-based metric in Sec. 4.3.

Human Baseline. We randomly choose 100 samples for each aspect from our
dataset and ask five volunteers to help establish a human performance baseline.
The annotators are shown a video and two text descriptions at a time and are
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Table 3: Accuracy (%) of human annotators and state-of-the-art VidLMs on VI-
TATECS. The VidLMs are evaluated on the full dataset, while human performance is
marked in gray to indicate it is evaluated only on a randomly sampled subset.

Dataset Direction Intensity Sequence Localization Compositionality Type Avg.

BLIP-large [27] Zero-shot 58.6 67.7 51.7 66.2 61.8 78.6 64.1
Singularity [24] MSR-VTT 54.7 61.7 52.3 63.0 65.5 77.4 62.4
ALPRO [26] MSR-VTT 55.4 56.0 45.7 59.2 58.6 74.5 58.2
VIOLET [12] MSR-VTT 60.2 62.8 61.6 60.6 64.8 78.2 64.7
CLIP4Clip [35] MSR-VTT 62.6 65.3 51.7 66.5 63.5 82.4 65.3
X-Pool [17] MSR-VTT 59.9 63.0 55.6 66.5 64.3 81.3 65.1
X-CLIP [36] MSR-VTT 63.6 60.8 55.6 64.5 63.7 83.2 65.2
Video-LLaMA [66] Zero-shot 51.6 52.2 56.3 51.0 49.4 51.7 52.0
VideoChat [28] Zero-shot 52.3 50.3 46.4 50.4 51.7 51.0 50.4

Human - 94.6 93.2 94.0 93.8 97.8 92.2 94.3

Table 4: Accuracy (%) of CLIP-based models with and without temporal aggregation
modules

Model Temporal Direction Intensity Sequence Localization Compositionality Type Avg.

CLIP4Clip [35] ✓ 62.6 65.3 51.7 66.5 63.5 82.4 65.3
✗ 61.6 67.3 60.3 66.1 62.8 82.4 66.8

X-CLIP [36] ✓ 63.6 60.8 55.6 64.5 63.7 83.2 65.2
✗ 62.1 63.8 59.6 65.6 64.2 82.6 66.3

X-Pool [17] ✓ 60.4 65.5 58.3 65.0 62.1 79.9 65.2
✗ 59.9 63.0 55.6 66.5 64.3 81.3 65.1

required to choose the text that best describes the video. We report the average
accuracy of the five annotators as the human baseline.

4.2 Evaluation Results

Overall Performance. As shown in Tab. 3, although humans can easily match the
videos to their correct descriptions with high consistency (κ = 0.86) and nearly
no mistakes, the overall performance of all the evaluated models is still far from
expectations. No model achieves an accuracy of over 70% on the temporal aspects
other than the relatively easy “Type” aspect, which has the strongest correlation
with the static information. Particularly, on the more temporally demanding
aspects (“Direction”, “Intensity”, and “Sequence”), the models perform barely
over the random baseline (50%). Considering that part of our videos directly
comes from MSR-VTT, the poor performance of models fine-tuned on MSR-
VTT reaffirms our statement that existing video-language datasets are incapable
of assessing the temporal understanding ability of models.

Effects of Vision Encoders. Among the models we evaluate, the temporally-
adapted image-text models based on CLIP generally outperform the models with
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Table 5: Average cosine similarity between the representations of original captions
and counterfactual descriptions produced by different text encoders

Text Encoder Direction Intensity Sequence Localization Compositionality Type Avg.

CLIP-text [42] 0.963 0.964 0.975 0.965 0.970 0.912 0.958
Sentence-BERT [43] 0.890 0.940 0.970 0.916 0.939 0.704 0.893
CLIP4Clip [35] 0.941 0.939 0.969 0.932 0.947 0.828 0.926
CLIP4Clip-temporal [35] 0.946 0.946 0.971 0.939 0.953 0.847 0.934

video-text pre-training. To further investigate how much the temporal aggrega-
tion modules contribute to the temporal understanding abilities of the CLIP-
based models, we disable the temporal aggregation module in these models and
replace it with a simple mean pooling layer. The results are shown in Tab. 4.
Contrary to what is expected, disabling the temporal aggregation module only
results in a slight drop in performance for X-Pool. It even improves the tempo-
ral understanding ability of CLIP4Clip and X-CLIP. This suggests that these
temporal aggregation modules are potentially under-trained due to the weak
requirement of temporal modeling in video-language datasets like MSR-VTT.
Consequently, the superiority of the CLIP-based models mainly stems from the
effective utilization of the static information in the video instead of a true under-
standing of the temporal concepts. For a similar reason, image-text models are
able to achieve comparable performance on our dataset without further video-
text training.

Similarity of Text Representations. We calculate the average cosine similarity
between the representations of the original captions and the counterfactual de-
scriptions with different text encoders. As shown in Tab. 5, both the CLIP text
encoder and Sentence-BERT produce highly similar sentence representations for
samples in the “Sequence” aspect, indicating that the struggle of the evaluated
models can partly be explained by the inability of text encoders to recognize the
temporal distinction between the captions and the counterfactual descriptions.
We also notice that the CLIP text encoder generally produces higher similar-
ity scores even after it is fine-tuned on video-text data. This suggests that the
ability to identify temporal concepts in natural language may be lost during the
image-text pre-training stage and cannot be recovered by fine-tuning on existing
video-language datasets.

Effects of Fine-Tuning Data. We conduct a comparison between the perfor-
mance of VidLMs fine-tuned on different downstream datasets. The results are
shown in Tab. 6. We find that models fine-tuned on different text-to-video re-
trieval datasets exhibit different temporal understanding abilities. For example,
DiDeMo tends to elicit higher accuracy on “Localization” and “Composition-
ality”, while LSMDC contributes to better understanding of “Intensity”. Also,
since SSv2 only depicts single human actions, it brings benefits on the “Direc-
tion” aspect but not on “Sequence” understanding, which can be improved by
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Table 6: Accuracy (%) of VIOLET, Singularity, and X-Pool fine-tuned on different
video-text datasets

Model Dataset Direction Intensity Sequence Localization Compositionality Type Avg.

VIOLET [12]
DiDeMo [19] 50.9 59.7 55.6 61.6 64.5 77.7 61.7
LSMDC [46] 60.2 62.8 61.6 60.6 64.8 78.2 64.7

YouCook2 [68] 58.2 60.2 62.9 61.1 61.7 76.8 63.5

Singularity [24]
ActivityNet [23] 54.0 64.8 50.3 64.7 61.8 76.0 61.9

DiDeMo [19] 57.1 65.3 53.6 67.2 64.3 76.9 64.1
SSv2-label [18, 24] 57.1 65.1 49.7 63.5 59.4 75.2 61.7

X-Pool [17] LSMDC [46] 60.1 69.2 50.3 66.6 59.4 77.1 63.8
MSVD [6] 64.4 57.9 51.0 68.3 62.1 78.8 63.8

Table 7: Recall@10 of ALPRO and CLIP4Clip on video-to-text retrieval on VI-
TATECS

Model Dataset Description Direction Intensity Sequence Localization Compositionality Type Avg.

ALPRO Zero-shot
Caption 28.5 48.1 70.3 43.9 34.6 22.9 41.4

Counterfactual 28.2 42.9 70.0 38.4 32.6 12.7 37.5
All 28.3 45.5 70.2 41.2 33.6 17.8 39.4

CLIP4Clip MSR-VTT
Caption 53.6 73.7 90.7 69.8 65.2 48.5 66.9

Counterfactual 47.7 66.0 88.7 60.0 60.4 22.4 57.5
All 50.7 69.9 89.7 64.9 62.8 35.4 62.2

fine-tuning on datasets with longer video duration and dense captions such as
YouCook2. This finding advocates the use of diverse videos and captions in the
training process.

4.3 Discussions

Recall on VITATECS. Previous work [9] on the challenges of Winoground points
out that accuracies based on cosine similarity comparison might be too harsh for
the models, and it is possible that they under-perform on Winoground because
the image-text pairs are out-of-distribution for them. This is also a concern
for our dataset, so we follow them by calculating the Recall at k > 1 on the
task of video-to-text retrieval on the entire VITATECS dataset for each aspect.
Since a video may have multiple caption-counterfactual pairs in our dataset,
we choose k = 10 and show the recalls for captions, counterfactuals, and both
descriptions in Tab. 7. We observe that for both ALPRO and CLIP4Clip, the
recalls of captions and counterfactuals are very close. This indicates that the
models are able to connect the texts with their corresponding videos through the
shared static information, but cannot distinguish between the different temporal
information in the caption and the counterfactual.

Ablation Study of Counterfactual Design. To verify the design of our coun-
terfactual descriptions, we randomly sample 100 instances from each aspect of
VITATECS and apply different modification strategies to the original captions.
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Table 8: Accuracy (%) of X-CLIP on VITATECS and other counterfactual construc-
tion strategies

POS of replaced words All Noun Verb Adjective
# replaced words 1 2 3 1 1 1

Random 74.5 82.7 90.3 82.1 67.0 71.3
Synonym 64.8 77.2 83.3 72.1 64.8 67.5

VITATECS (subset) 64.3

Specifically, we randomly choose 1-3 words in the caption and replace them with
its synonym or a random word of the same part of speech. We also experiment
with different types of words (nouns, verbs, or adjectives) as the target for re-
placement. The results are shown in Tab. 8. On the one hand, we can conclude
that discriminating between the original caption and these altered ones is much
easier when we randomly replace the words in the caption, even when only one
word is changed. This margin is greater when we modify the nouns than when we
modify the verbs in the captions, which aligns with our observation that current
models rely heavily on static clues to make predictions. This demonstrates that
the temporal understanding addressed by our VITATECS is more difficult to
solve than simple object or action replacement. Also, the accuracy of the model
rises quickly as we increase the number of replaced words, while our VITATECS
maintains its difficulty despite showing greater lingual diversity. On the other
hand, replacing words with their synonyms without contextual information may
change their semantics significantly, as evidenced by the relatively high accuracy
of models on these counterfactuals compared to VITATECS. This cautions us
against the use of purely lexical methods for counterfactual construction. Finally,
neither of these replacement methods is able to attach fine-grained labels to the
resulting sentence, demonstrating the superiority of our counterfactual design.

5 Conclusion

This work aims to address the deficiency of temporal understanding evaluation
abilities in existing video-language datasets. We present a fine-grained char-
acterization of temporal concepts in video descriptions, and introduce a novel
dataset that measures the temporal understanding capabilities of VidLMs by
their ability to distinguish between the actual description of a video and its
temporally modified alternative. To facilitate dataset construction, we design a
human-in-the-loop annotation framework by leveraging LLMs for counterfactual
description generation. Evaluation of state-of-the-art models demonstrates their
failure to fully grasp temporal concepts. We hope our work can provide valuable
insight into the future development of video-language understanding research.
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