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A Derivation of MMSE Error (8))
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where we have used the identity tr(𝐴𝐵𝐶) = tr(𝐶𝐴𝐵) and the fact that F is
unitary.

B Experiments

B.1 Hardware Proof-of-concept

Implementation Details
Imaging Distance The system is designed such that objects as close as 1.3 m will
experience identical PSFs, so we restrict the imaging distance to at least 1.3 m.
Periodic Grating Phase Our SLM does not have 100% pixel fill factor, so we use
the standard practice of adding a periodic grating phase to our target pupil phase
function such that the desired image is separated from the pixel diffraction.
Modulation at Pupil Plane If the optical system is not properly designed, a hard-
ware implementation will deviate from simulation. To prevent this, we use well
corrected commercial lenses with the system layout optimized in Zemax Op-
ticStudio (Fig. B.1) until the primary lens’ exit pupil was relayed to the SLM
plane, and the primary lens’ image was relayed to the sensor. The hardware
system was laid out according to the optimized design. To align the pupil plane
with the SLM, a viewing card was placed at the expected SLM plane. A colli-
mated laser was then coupled into the main lens and the exact pupil plane found
by iteratively changing the beam input angle and adjusting the card’s axial lo-
cation until no beam translation was observed as the laser input angle varied
(beam translation will be zero only at the correct SLM plane, see Fig. B.1). We
then replaced the card with the SLM. To determine the exact sensor distance,
we imaged a standard test target, adjusting the sensor distance until the image
sharpness was maximized.

Limitations
Monochromatic Imaging Our SLM requires narrow-band illumination which lim-
its our system to monochromatic imaging. This also reduces the system effi-
ciency. Other programmable phase devices such as deformable mirrors, color-
multiplexing SLMs, micro-mirror SLMs, or electrowetting lenses would offer pro-
grammable phase without these limitations. Our design method could be applied
to these hardware systems by using pupil phase parameterization and physical
optics methods that better model the specifics of different hardware.
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Fig. B.1: (a) First order optical layout of our hardware prototype. The primary lens
forms an intermediate image. The pupil relay subsystem images the primary lens exit
pupil onto the SLM plane. The Image Relay Subsystem forms the final image, with
the SLM acting as the aperture stop. (b) A different input beam angle leads to zero
translation of the beam footprint at the SLM plane.

Limited FOV SLM does not have 100% fill factor in each pixel or efficiency to
modulate phase. this property of SLM will work as a comb function. In our
system, SLM locates at pupil plane or Fourier plane. In the real scene, there
will be duplicate images of original scene locates at different diffraction order.
Therefore, we need to use SLM to add virtual grating upon the designed phase
to move the desired image between the 0th and 1st order of the replicates of
original scene images. Also, to minimize the overlapping, we add a field stop at
the first image plane after the main lens to cut off the field of view. Overall,
on the one hand, we loss some field of view at the imaging plane. On the other
hand, we can have a ground truth image side by side the modulated image.
Practicality of SLMs The phase-only SLM used in this project may be not af-
fordable for many price-sensitive applications. However, many controllable op-
tics of lower complexity exist (e.g ., tunable lenses or MEMS-based modulators,
amplitude-only LCD modulators). While we did not explore these hardware
items in this paper, in principle, our method can be used to design dynamic pri-
vacy preserving systems based around other programmable hardware. We believe
our method lays the groundwork for exploring this space and may enable more
practical hardware realizations of dynamic privacy preservation in the future.

B.2 Qualitative Results

PSFs A set of PSFs sampled by DyPP is plotted in Table B.1.

Black-box Attacks on DyPP More black-box inversion qualitative results
are presented in Table B.2.

B.3 Ablations

Privacy Manifold Bound 𝑝 The parameter 𝑝 of (14) determines the privacy
bound of (2). This allows control over trade-off between privacy and utility of the
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Table B.1: From top to bottom: original image, DyPP image, utility task output,
corresponding PSF. Best viewed with zoom.

Table B.3: Effective face recognition accuracy (FRA) on PubFig test set and raw
measurement’s PSNR/SSIM versus 𝑝.

𝑝 0.05 0.1 0.2
FRA 0.05 0.09 0.17

PSNR/SSIM 14.4/0.578 14.8/0.571 16.1/0.583

privacy manifold. Table B.3 illustrates this trade-off for values of 𝑝 between 0.05
and 0.2. It is shown that the DyPP camera is trustworthy in that the effective
face recognition accuracy meets the specified bound for different 𝑝.

Effect of the Size of H on Black-box Attacks Figure B.2 ablates the face
recognition accuracy by black-box attacks as a function of |H |, the number of
PSFs measured by the attacker. It can be seen that the recognition accuracy
increases slowly with |H |, remaining significantly lower than that of white-box
attacks even for 128 PSFs. Further, the computation cost required by the black-
box attack linearly scales with |H | and can be prohibitive for large |H |.

Effect of Lnoninvert and Ldiversity Table B.4 ablates the effects of Lnoninvert

and Ldiversity on the robustness of DyPP to black-box attack. It is shown that
both Lnoninvert and Ldiversity is necessary for the optimal performance of DyPP.
Especially, in practice, we observe that when Ldiversity is disabled, the trained
network tends to generate a limited variety of PSFs (i.e. mode collapse) and
thus the black-box attacks often succeed.
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Table B.2: Some black-box inversion qualitative results. From top to bottom: original
image, DyPP image, black-box inversion.
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Fig. B.2: FRA versus |H |.

Table B.4: Affects of Lnoninvert and Ldiversity on robustness against black-box inver-
sion attack. ✗ indicates that the loss component is disabled.

image reconstruction closed-set face recognition

Lnoninvert Ldiversity PSNR SSIM PubFig Accuracy
✗ ✗ 20.1 0.737 0.47
✓ ✗ 19.5 0.717 0.42
✗ ✓ 18.4 0.653 0.19
✓ ✓ 17.3 0.638 0.14


