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Abstract. The problem of designing a privacy-preserving camera (PPC)
is considered. Previous designs rely on a static point spread function
(PSF), optimized to prevent detection of private visual information, such
as recognizable facial features. However, the PSF can be easily recovered
by measuring the camera response to a point light source, making these
cameras vulnerable to PSF inversion attacks. A new dynamic privacy-
preserving (DyPP) camera design is proposed to prevent such attacks.
DyPP cameras rely on dynamic optical elements, such spatial light mod-
ulators, to implement a time-varying PSF, which changes from picture
to picture. PSFs are drawn randomly with a learned manifold embed-
ding, trained adversarially to simultaneously meet user-specified targets
for privacy, such as face recognition accuracy, and task utility. Empiri-
cal evaluations on multiple privacy-preserving vision tasks demonstrate
that the DyPP design is significantly more robust to PSF inversion at-
tacks than previous PPCs. Furthermore, the hardware feasibility of the
approach is validated by a proof-of-concept camera model.

Keywords: Privacy-preserving Camera

1 Introduction

The joint evolution of cameras and computer vision algorithms enabled the
popularization of applications such as crowd monitoring [38], autonomous driv-
ing [3,22,30], and smart homes [4,24,67]. However, the increasing deployment of
cameras, both at home and in public spaces, raises significant concerns about pri-
vacy [6,19,28,29,48,51,53,61]. This literature can be divided into software-level
and hardware-level privacy protection. The former aims to post-process images
collected with non-private cameras to guarantee privacy a posteriori. Examples
include redaction algorithms (e.g . face swapping [2, 54] or blur filtering [19]).
These approaches maintain the risk that private information could be leaked
before post-processing. Hardware-level protection aims to prevent this by guar-
anteeing that private information is never collected.

The success of end-to-end optical design, know as deep optics [1,5,7,8,10,26,
27, 32, 33, 37, 42, 43, 59, 60, 65], suggests the feasibility of hardware-level privacy.
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Fig. 1: PPCs that implement a static PSF h enable the solution of tasks like object
detection while maintaining privacy (top-left). However, this protection can be easily
overridden with PSF inversion attacks. A point light source is used to recover h, allow-
ing the recovery of subject identities by simple deconvolution (bottom-left). The DyPP
camera uses a dynamic PSF to prevent these attacks (right). A PSF h𝑡 is randomly
sampled from the manifold of privacy preserving camera parameters before picture 𝑡

is taken. This creates a mismatch with a PSF h𝑡′ obtained via inversion attacks, pre-
venting the recovery of private information.

In fact, some previous works have addressed the design of privacy-preserving
cameras (PPCs) by end-to-end optimization of the camera point spread function
(PSF) [28, 29, 61]. This has shown that it is possible to blur images enough
to prevent the recognition of faces and other identifying subject traits while
still capturing enough information to solve vision tasks such as human pose
estimation [29], action recognition [28], or depth estimation [61]. In Figure 1, we
provide an example for object detection.

While these works serve as a proof of concept, practical privacy must con-
sider how privacy guarantees can resist a motivated attacker. Although previous
works have shown robustness to blind reconstruction techniques, such as Wiener
deconvolution [16] or the DeblurGAN [36], this underestimates the risk of re-
construction. As illustrated in Figure 1, an attacker with physical access to the
camera can precisely estimate the PSF h by simply measuring the camera re-
sponse to a point light source. We denote this as a PSF inversion attack . Given
the PSF, many modern techniques for the solution of inverse problems [64] can
produce a reconstruction of reasonably high quality from the blurred images.
This is also shown in Figure 1 where the total variation denoising (TVD) algo-
rithm of [56] is used with the camera PSF to reconstruct an image that reveals
subject identity. Hence, given access to the camera, it is possible to overcome
the privacy guarantees for most scenes.
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In this work, we consider the design of dynamic privacy-preserving (DyPP)
cameras that use a time-varying PSF h𝑡 to prevent PSF inversion attacks. We
formalize privacy as an upper bound on the face recognition accuracy of a state-
of-the-art recognizer on the camera images. A PSF that meets this privacy guar-
antee while preserving the scene information necessary to solve vision task T
from its images is denoted privacy-preserving for T . Figure 1 shows an example
for the object detection task. The set of all such PSFs is denoted the privacy
manifold P(T ) of T . As shown in the right inset of the figure, we hypothesize
that, for any task T , P(T ) is sufficiently diverse so that an inversion attack
based on one PSF h𝑡 is ineffective for images collected with another PSF h𝑡′
randomly sampled from P(T ). It follows that, by randomly sampling from P(T ),
it is possible to change the camera PSF from image to image, thus preventing
PSF inversion attacks3.

An implementation of the DyPP camera is proposed, based on two main
contributions. The first is a novel PPC design that relies on an optical device
known as a spatial light modulator (SLM) to implement a programmable PSF
that changes with each photo. The second is an algorithm that samples PSFs
from the privacy manifold P(T ), so as to meet the desired privacy guarantees
while enabling the solution of task T . This involves the learning of an embedding
into the PSF manifold, end-to-end using the camera model, with loss functions
that encourage an optimal trade-off between multiple objectives: (1) meeting the
target privacy bound for face recognition, (2) maximizing utility for the task,
(3) mitigating measurement information that can be used to invert the camera,
and (4) maximizing sampled PSF diversity, to prevent PSF inversion attacks.

Experiments show that the DyPP camera can successfully sample a diverse
set of PSFs from the privacy manifold to produce privacy-preserving images
that enable the solution of several vision tasks, including crowd counting, pose
estimation, or object detection. We also report on the construction of a proof-of-
concept camera system that validates the practical feasibility of the approach.

2 Related Works

PPCs The preservation of visual privacy has long been studied [49]. Software-
level methods post-process images collected by standard cameras to remove sen-
sitive information. Redaction techniques include blur filtering [19, 34, 45, 66],
human/object removal [12,13], face swapping [2,54], or visual abstraction [9,18].
Other techniques not explicitly designed for privacy protection, such as style
transfer [25], can also be leveraged. The main limitation of this approach is that
sensitive information can be leaked before the post-processing. To prevent this
risk, there has recently been an interest in hardware-level methods that elimi-
nate private information from the raw sensor measurements, while still enabling
the solution of vision tasks. This approach relies on special camera or sensor

3 This assumes that standard protections are used to prevent attackers from hacking
into the camera or recovering camera parameters if they do.
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designs [53] (e.g . extremely low resolution cameras [57, 58, 61], miniature vision
sensors [51, 52]). A recent and promising trend is to design the optical elements
of a PPC in an end-to-end manner, i.e. to jointly optimize the camera and the
subsequent vision network to achieve the best trade-off between privacy and
task performance. [28,29] optimize a freeform lens jointly with a utility network
for human pose estimation and activity recognition, respectively. [61] learns a
privacy-preserving phase mask for passive depth estimation.
Attacks These works have empirically validated robustness to deep blind decon-
volution techniques, such as Wiener deconvolution [16] or the DeblurGAN [36].
However, they have not considered PSF inversion attacks, which enable the use
of much more powerful deconvolution methods and image reconstruction. This is
particularly problematic because the PSF of a linear shift-invariant (LSI) camera
can be recovered by simply taking photographs of a point light source. Hence,
these attacks are easily within reach of anyone with physical camera access. One
possibility to circumvent this risk is to render the camera non-LSI. For exam-
ple, [57,58,61] enforce a extremely low-resolution raw measurement (e.g . 16×16)
by introducing a downsampling operation at the camera sensor level. However,
the extremely low resolution of the raw measurement limits their application in
more challenging utility tasks. In this work, we explore the alternative of using
a time-varying PSF.
Deep Optics End-to-end optimization of optic designs is now popular in the
vision and imaging communities. It has achieved success for applications such
as achromatic extended depth of field and super-resolution imaging [59], demo-
saicing [5], time-of-flight imaging [10, 42, 60], high-dynamic-range imaging [43],
microscopy [27,33], monocular depth estimation [8,26], and hyperspectral imag-
ing [1, 32,37]. Recently, it has also been applied to design PPCs [28,29,61].

3 DyPP Camera Design Methodology

3.1 Motivation

A PPC aims to capture images that enable the solution of computer vision tasks
without revealing private information (e.g . subject identity, race). This can be
done by end-to-end design of camera optics, with a a differentiable convolutional
image formation model [28,29,61]. Given scene x, the camera measurement is

x̃ = h ∗ x + η, (1)

where h is the camera PSF computed using Fourier Optics [21], ∗ denotes 2D
convolution, and η is a vector of i.i.d. white Gaussian noise η𝑖 ∼ N(0, 𝜎2).

As illustrated on the left of Figure 1, these approaches can achieve a good
trade-off between privacy and computer vision performance. Given original scene
projection x, the PPC produces a blurry image x̃ that hides the identity of the
scene subjects, while enabling object detection by a modern object detector [41,
62] finetuned on a blurry dataset. However, these works fail to consider the
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Fig. 2: End-to-end training of the DyPP camera. A manifold embedding 𝑔 maps a
random code 𝜖 into a vector 𝛼 of PSF parameters on the privacy manifold P. This
produces a PSF h(α). Given scene x, the camera then produces measurements x̃. The
embedding 𝑔 is trained with task and utility losses that guarantee the balance between
privacy (upper bound on face recognition accuracy) and utility (lower bound on target
task accuracy) desired for the the privacy manifold P. Double arrows that indicate
both forward and backward propagation are performed.

problem that the camera PSF h can be measured by simply introducing an
impulse (in practice a point light source) at the camera input. Given the PSF,
many deconvolution algorithms can then be used to obtain a reconstruction x′

of x from x̃. We denote this procedure as a PSF inversion attack. As illustrated
on the right of Figure 1, for the total variation denoising algorithm of [56], the
reconstruction usually suffices to identify the subjects in the scene. In this work,
we seek a privacy-preserving camera robust against PSF inversion attacks.

3.2 Privacy Manifold

We hypothesize that there are many PSFs that meet the privacy goal, i.e. protect
subject identity while enabling the solution of a target computer vision task T .
We denote the set of such PSFs as the privacy manifold of T . Formally, consider
the image formation model of (1). Let X be the set of 2D projections x of the
scene, X̃(h) the set of images produced by the camera of PSF h, Φ be a face
recognizer, and 𝜌Φ (h) its face recognition accuracy on X̃(h).4 The camera is
said to be private at level 𝑝 if 𝜌Φ (h) < 𝑝. Given a utility network Ψ for task T ,
the goal is to design the camera that achieves performance 𝜌Ψ (h) > 𝜏 on X̃(h).
We denote the set of camera PSFs that meet the two bounds,

P(𝑝, 𝜏) (T ) = {h | 𝜌Φ (h) < 𝑝, 𝜌Ψ (h) > 𝜏} (2)

as the privacy manifold of parameters (𝑝, 𝜏) for task T . In the remainder of this
work, we omit the dependence on the task T to simplify all equations.

4 While we focus on face recognition to measure privacy risk, the proposed camera
design can be trivially extended to other privacy criteria, such as age, gender, or
race classification accuracy.
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3.3 Privacy Preserving Camera Approach

The basic idea of the proposed dynamic privacy-preserving (DyPP) camera ar-
chitecture is to learn how to randomly sample PSFs h ∈ P(𝑝, 𝜏). A different PSF
h𝑖 can then be sampled before each image x̃𝑖 is acquired. Since this leads to a
time-varying PSF h, it becomes impossible to recover a generic h with a point
light source. However, sampling from the privacy manifold requires the simul-
taneous satisfaction of the two bounds of (2). This requires a trade-off between
eliminating all information that gives away subject identity and preserving all the
information needed to the successful completion of the task T . We achieve this
goal by relying on a differentiable camera model and end-to-end optimization of
the PSF sampling function with respect to these two goals. This is implemented
with the architecture of Figure 2, composed by three main blocks: camera, PSF
sampling network, and privacy (face recognition) and utility (task) performance
trade-off balancing. We next discuss these components.
Differentiable Camera Model Our approach utilizes a spatial light modulator
(SLM), an active optical element with controllable phase delay, in the pupil of
a conventional imaging lens to produce a shift-invariant imaging system with a
dynamic PSF. We parameterize the pupil phase, 𝜙α (𝑥, 𝑦), as

ϕα (𝑥, 𝑦) =
𝑑𝑧∑︁
𝑖=1

𝛼𝑖 (𝑡)Z𝑖 (𝑥, 𝑦), (3)

where Z𝑖 is the 𝑖-th Zernike polynomial sorted by the Noll’s indices [47] and
α = {𝛼𝑖}𝑑𝑧

𝑖=1 is the corresponding vector of Zernike coefficients which are used to
control the camera PSF at time 𝑡. The complex pupil transmittance is given by

tα (𝑥, 𝑦) = exp [𝑖𝑘𝜙α (𝑥, 𝑦)]A(𝑥, 𝑦) (4)

where 𝑘 = 2𝜋
𝜆

is the wavenumber for wavelength 𝜆 and A(𝑥, 𝑦) models the pupil
amplitude transmittance, taking on a value of 1 inside the SLM active area and
0 otherwise. We choose the lens focal length and aperture size such that objects
from 1.3m to ∞ are all in-focus. As a result, the wavefront in the pupil from an
on-axis point source in the world is planar. The PSF is well approximated by the
squared magnitude of the 2D Fourier transform of the pupil transmittance [21]

ℎα (𝑥′, 𝑦′, 𝜆) ∝
1

𝜆2

����F {tα (𝑥, 𝑦)}
��
𝑓𝑥=

𝑥′
𝜆 𝑓

, 𝑓𝑦=
𝑦′
𝜆 𝑓

����2. (5)

Note that, per Fourier optics theory, the spatial frequency coordinates of the
Fourier transform of the pupil, ( 𝑓𝑥 , 𝑓𝑦), are replaced by

(
𝑥′

𝜆 𝑓
,
𝑦′

𝜆 𝑓

)
, yielding a

function of sensor spatial coordinates (𝑥′, 𝑦′). Equation 5 is implemented at
wavelengths 640 nm, 550 nm and 460 nm using a discrete Fourier transform with
appropriate sampling and zero-padding. The resulting PSF is convolved with a
training image using (1) to produce a simulated measurement. The measurement
is differentiable with respect to the Zernike coefficients, α. An illustration of the
differentiable camera model is presented in Figure 3.
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Fig. 3: Image formation model.

PSF Sampling As illustrated on the right of Figure 2, the privacy manifold is
modeled with a non-linear embedding

𝑔 : Δ → A (6)

from an interval Δ = [−1, 1]𝑑𝑧 of latent codes to the space A of Zernike coeffi-
cient vectors α = (𝛼1, . . . , 𝛼𝑑𝑧

)𝑇 . This embedding is trained with loss functions
that encourage camera privacy (Lnoninvert) and PSF diversity (Ldiversity). After
training, a PSF h in the privacy manifold P is obtained by sampling a random
code ϵ ∼ U(Δ) from a multivariate uniform distribution over Δ, obtaining a
Zernike coefficients vector with

α = 𝑔(ϵ) (7)

and synthesizing the PSF h with (3)-(5). We next discuss the losses in detail.
Noninvertibility Loss: This loss aims to increase the difficulty of reconstructing
the scene x from the camera measurements x̃. It leverages the fact that, given
a linear observation model x̃ = Hx + 𝜂, the mean squared error (MSE) 𝜖MSE of
the MMSE estimator of x given x̃ is [23]

𝜖MSE ∝ 𝜎2tr
(
(HH∗)−1

)
. (8)

Since the camera model is a 2D convolution, H is a doubly block circulant matrix
diagonalizable by the 2D discrete Fourier transform (DFT) matrix F , according
to H = F ∗𝚲F . Here, 𝚲 = diag (F {ℎ}) is a diagonal matrix containing the 2D
DFT of h. Substituting into (8) it can be shown that the MSE of the MMSE
estimator is given by

𝜖MSE = 𝜎2
∑︁
𝑖

1

|𝚲𝑖𝑖 |2
. (9)

Hence, we use a loss which maximizes the reconstruction MSE by minimizing

Lnoninvert =
∑︁
𝑖

− 1

|𝚲𝑖𝑖 |2 + 𝜀
(10)

where 𝜀 > 0 is a small constant, added for numerical stability. Note that this
loss encourages the minimization of the coefficients {𝚲𝑖𝑖}𝑖 of the Fourier trans-
form of h. Therefore, the noninvertibility loss can be seen as a regularizer that
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encourages smooth PSFs h, leading to blurry images and increased difficulty of
image reconstruction.
Diversity Loss: This loss encourages the privacy manifold P to contain a large
diversity of PSFs, so as to induce more variability from PSF to PSF, increase the
difficulty of measuring the PSF, and thus prevent PSF inversion attacks. While
the Shannon entropy of the random vector α of Zernike coefficients is a sensible
diversity measure, it is difficult to derive a differentiable and computationally
efficient estimator of this entropy [50]. To circumvent this, we instead maximize
the upper bound [11] 𝐻 (α) ≤ 1

2 log det cov(α) + 𝑑𝑧

2 log(2𝜋𝑒). This leads to the
diversity loss

Ldiversity = −1

2
log det ĉov(α) (11)

where ĉov(α) is the sample covariance of a set of 𝑁cov randomly sampled Zernike
representations {α𝑖 = 𝑔(ϵ𝑖)}𝑁

cov

𝑖=1 .

Privacy-utility Trade-off So far, we have discussed how to sample a set of
diverse and non-invertible PSFs. The final module of Figure 2 aims to ensure
that these PSFs satisfy the privacy manifold constraints of (2), in terms of face
recognition accuracy upper bound 𝑝 and task performance accuracy 𝜏.
Privacy Loss: The closed-set face recognition performance of a state-of-the-art
recognizer [40] is used as a proxy privacy criterion for camera design. The face
recognizer is a multiclass predictor Φ : X → R𝐶 . Given a face image x it returns
subject identity 𝑦∗ = argmax 𝑗 Φ 𝑗 (𝑥).

Given a face recognition dataset DP = {(x𝑖 , 𝑦𝑖)}𝑁
P

𝑖=1 consisting of 𝑁P face
images from 𝐶 identities, the images are passed through the camera of PSF
coefficients α to obtain measurements {x̃𝑖 (α)}𝑁P

𝑖=1 . Using the definition of clas-
sification margin

M(𝑦,Φ(x)) = Φ𝑦 (x) −max
𝑗≠𝑦

Φ 𝑗 (x), (12)

the recognition accuracy of Φ can be estimated by

�̂�Φ (α) = 1 − 1

𝑁P

∑︁
(x𝑖 ,𝑦𝑖 )∼DP

ℓ0/1 (M(𝑦𝑖 ,Φ(x̃𝑖 (α)))), (13)

where ℓ0/1 (𝑧) = (1 − sign(𝑧))/2 is the 0/1 loss function. This loss identifies mis-
classifications, i.e. instances with negative margin but is non-differentiable and
intractable for gradient-based optimization. We rely on the approximation by the
sigmoid loss ℓ𝑠𝑖𝑔 (𝑧) = (1 + exp(𝜂𝑧))−1 where 𝜂 > 0 is a smoothness parameter.

To encourage the PSF h(α) to meet the privacy requirement of (2), we rely
on privacy loss

Lprivacy = max( �̂�Φ (α) − 𝑝, 0). (14)

This is minimized when �̂�Φ (α) ≤ 𝑝, i.e. the privacy requirement is met.
Utility Loss: The performance of a state-of-the-art algorithm/network Ψ for the
task T is used as proxy utility criterion for the DyPP camera. Given a dataset
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DU = {(x𝑖 , 𝑦𝑖)}𝑁
U

𝑖=1 of task T , the performance of Ψ can be estimated by

�̂�Ψ (α) = 1

𝑁U

∑︁
(x𝑖 ,𝑦𝑖 )∼DU

−𝑢Ψ (x̃𝑖 , 𝑦𝑖) (15)

where 𝑢Ψ is a surrogate loss function for the task. To encourage the PSF h(α)
to meet the task utility requirement of (2), we rely on utility loss

Lutility = max (𝜏 − �̂�Ψ (α), 0). (16)

This is minimized when �̂�Ψ (α) ≥ 𝜏, i.e. the task performance requirement is
met. It is also possible to learn a privacy manifold compatible with multiple
utility tasks (e.g . a multi-purpose PPC) by simply summing (16) across tasks.

By minimizing Lprivacy and Lutility jointly and adversarially, the generated
PSFs are expected to preserve as much information utilizable for the vision tasks
as possible while meeting the privacy requirement. Note that by setting 𝜏 = ∞
it is possible to simply optimize the task utility while meeting the privacy guar-
antee. This encourages the best possible task performance under the privacy
guarantee. We use this setting in all our experiments. Overall, the privacy man-
ifold embedding 𝑔 is trained by jointly optimizing the combination of all losses
in (10), (11), (14), and (16), i.e. using the loss

Loverall = 𝜆1Lnoninvert + 𝜆2Ldiversity + 𝜆3Lutility + 𝜆4Lprivacy, (17)

where the coefficients {𝜆𝑖}4𝑖=1 are hyperparameters.
Training A Zernike vector α is randomly sampled per training iteration, using
(7), for the purposes of computing Lnoninvert, Lprivacy, and Lutility. To compute
Ldiversity, we additionally sample a set of Zernike vectors {α𝑖 = 𝑔(ϵ𝑖)}𝑁

cov

𝑖=1 per
iteration to derive sample covariance ĉov(α). We found in practice that when the
utility network Ψ is trained purely on clear images, the utility performance esti-
mate of (15) is unrealistically low. To avoid this, we unfreeze Ψ during training
and adapt its parameters of by back-propagating Lutility through the network.

4 Experiments

In this section, we empirically evaluate the ability of the DyPP camera design to
meet the privacy and utility bounds of (2) and its robustness to PSF inversion
attacks. In addition, we discuss a proof-of-concept physical camera model built
to demonstrate the hardware feasibility of the approach.

4.1 Experimental Set-up

Optics Simulation We simulate a camera sensor with a pixel size of 1 µm, an
f-number of 1.8 and a resolution size of 640×640 pixels. Following the protocol
of [29,59], the number of Zernike coefficients is set to 𝑑𝑧 = 350.
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Table 1: Utility performance evaluation networks and datasets.

Task Network Ψ Dataset Dutility

Crowd Count MAN [38] ShanghaiTech Part B [68]
Beijing BRT [15]

Pose Est. YOLO-Pose [41] COCO Keypoints 2017 [39]

Obj. Det. YOLOv5 [62] COCO Detection 2017 [39]

Table 2: Performance on different privacy inference tasks.

closed-set face recognition face verification
PubFig [35] LFW [31] AgeDB-30 [44]
Accuracy AUROC

No Privacy 0.96±0.01 1.00±0.00 0.99±0.01

Low-resolution [57,58] 0.07±0.01 0.75±0.02 0.62±0.02
Defocus Lens [51] 0.14±0.01 0.76±0.03 0.65±0.02
PP-HPE Lens [29] 0.09±0.01 0.73±0.03 0.63±0.03

DyPP 0.09±0.02 0.72±0.02 0.63±0.03

Privacy Criterion The face recognition privacy criterion is evaluated on a sub-
set of the PubFig [35] dataset of public figure faces. This includes 175 identities,
each with 25 training images and 5 test images5. All the training images are
used as DP in (14). An off-the-shelf ArcFace [14] face recognizer with IResNet-
100 [17] backbone is used as the privacy inference model in Lprivacy. We set the
manifold privacy bound of (2) to 𝑝 = 0.1.
Utility Criteria Utility performance is evaluated on three tasks: crowd count-
ing, pose estimation, and object detection. The datasets and networks used for
evaluation are summarized in Table 1. For all networks, we use the official public
implementations. We set the manifold utility bound of (2) 𝜏 = ∞ for all three
tasks. As discussed above, this encourages the maximization of task utility under
the privacy constraint set by 𝑝.
Reconstruction Attacks The following attack strategies are considered.
Blind: attacker without access to camera hardware, reconstructs images by blind
deconvolution via Deep Image Prior [63].
Deep Learning: attacker without access to camera hardware but access to dataset
of image pairs, each including an image collected with the camera and a clear
image of the scene. Attacker trains an encoder-decoder deblurring U-net [55]
with skip connections, following [20,46].
PSF inversion: attacker with access to camera, performs PSF inversion attack
and uses recovered PSF in the total variation denoising (TVD) algorithm [56].
White- vs Black-Box: For PSF inversion attacks, the PSF h of a static camera
can be easily measured using a point light source. This is denoted as a white-
box attack. The time-varying PSF h𝑡 of the DyPP camera prevents white-box
attacks. The attacker can still use a point light source to measure a set H = {h𝑖}𝑖
of camera PSFs. Given a private image, the attack can then be performed with
all PSFs in H and the best reconstruction chosen, e.g . by visual inspection.

5 We ignored 25 identities without enough face image samples, due to invalid URLs.
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Table 3: Pose estimation performance on the COCO validation set.

AP AP50 AP75 AP𝑀 AP𝐿 AR

Low-resolution [57,58] 10.3 26.2 6.5 5.9 16.9 14.4
Defocus Lens [51] 30.8 58.9 34.1 15.9 51.6 34.1
PP-HPE Lens [29] 42.8 69.8 44.2 29.8 59.9 50.1

DyPP 42.2 69.3 43.6 29.5 59.1 49.7

Table 4: Object detection performance on the COCO validation set.

AP AP50 AP75 AP𝑀 AP𝐿 AR

Low-resolution [57,58] 8.2 21.4 6.9 5.7 14.0 13.8
Defocus Lens [51] 24.9 40.6 26.7 29.7 41.3 22.0
PP-HPE Lens [29] 33.9 51.0 35.9 37.0 50.2 28.5

DyPP 36.0 53.7 38.4 39.2 51.3 30.5

Table 5: Crowd counting performance on ShanghaiTech B and Beijing BRT test sets.

ShanghaiTech B [68] Beijing BRT [15]
MAE/MSE MAE/MSE

Low-resolution [57,58] 41.4/60.5 10.65/13.90
Defocus Lens [51] 25.3/42.4 3.28/4.50
PP-HPE Lens [29] 21.3/33.7 2.93/4.12

DyPP 19.3/28.7 2.35/3.43

This is denoted as a black-box attack. White-box attacks are simulated by using
the true PSF h in the TVD algorithm. For black-box attacks this is replaced
by a set of PSFs randomly sampled from the the privacy manifold. The best
reconstruction is chosen by measuring PSNR/SSIM of the reconstruction.
Baselines The proposed DyPP camera is compared to two previous LSI PPCs
of static PSF: Defocus lens [51] and PP-HPE lens [29]. For PSF inversion attacks,
the robustness of the baselines to white-box attacks is compared to that of the
DyPP camera to black-box attacks. In addition, we consider a camera with
extremely low resolution (32×32) [57,58] as a non-LSI privacy camera baseline.
Training Details The manifold embedding network 𝑔 used to implement the
DyPP camera is a 4-layer MLP with leaky ReLU activation and 512 nodes
for each hidden layer. The network is trained in two stages. In the first stage,
we train a generic manifold embedding 𝑔 over the three tasks, using an image
batch size of 128 for Lprivacy and a batch of size 8/8/1 (object detection/pose
estimation/crowd counting) for Lutility. Training is performed by a stochastic
gradient descent optimizer with learning rate of 1e-4 for 10,000 iterations, which
takes roughly 3 days on an NVIDIA-A100-80GB GPU. In the second stage, we
further finetune the utility networks with blurry images generated by the trained
𝑔. For black-box PSF inversion attacks on DyPP, we use a set of |H | = 64
randomly sampled PSFs by default.

4.2 PPC Performance

Tables 2 - 5 summarize the trade-off between privacy and task utility achieved
by all PPCs considered in this work.
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Ground Truth: 40 Estimation: 38.6 Ground Truth: 66 Estimation: 70.5

Fig. 4: Qualitative results on different utility computer vision tasks. From left to right:
original image, DyPP image, task outputs. From top to bottom: object detection, pose
estimation, crowd counting.

Table 6: Robustness to reconstruction attacks. Higher reconstruction quality in terms
of SSIM/PSNR indicates lower robustness.

Raw Blind [63] Deep Learning [55] white-box TVD [56] Black-box TVD [56]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Defocus Lens [51] 16.6 0.601 17.3 0.645 16.2 0.626 22.1 0.788 - -
PP-HPE Lens [29] 14.7 0.558 16.9 0.623 15.9 0.601 21.8 0.756 - -

DyPP 14.8 0.571 16.1 0.589 15.6 0.584 20.3 0.745 17.3 0.638

Face Recognition Accuracy Table 2 summarizes privacy performance in
terms of face recognition accuracy. This is 96% on the clear images of the Pub-
Fig test set, but decreases to less than 15% on images from all cameras, showing
that they are effective at guaranteeing privacy. To investigate how privacy gen-
eralizes to other tasks, we measured performance on two face-verification tasks
using the LFW [31] and AgeDB-30 [44] datasets. Note that the cameras were
not retrained on these dataset. Table 2 shows that the results were qualitatively
similar to those of PubFig. All cameras significantly degraded the nearly perfect
AUROC of the original images. Among the different cameras, Low-resolution
sensors are the most private on PubFig, but DyPP generalized better to LFW,
and the two cameras have similar performance on AgeDB-30. Note that privacy
does not matter in isolation, as the images collected by the camera must preserve
enough information to allow the solution of the vision task.
Utility Performance Tables 3-5 summarize the utility performance of all PPC
designs on the three tasks considered. In all tasks, the performance of both
the Low-resolution sensor and Defocus Lens was poor. DyPP and PP-HPE had
comparable pose estimation performance on COCO, but DyPP outperformed all
other cameras for object detection and crowd counting.
Utility-privacy Trade-off Altogether, it can be concluded that Low-resolution
sensors achieve privacy by eliminating too much information, degrading the per-
formance of the PPC for the vision tasks considered. Due to this weak perfor-
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Fig. 5: From left to right: clear im-
age, DyPP raw measurement, white-
box TVD reconstruction, and black-
box TVD reconstruction.

Table 7: Performance on different privacy inference tasks.

PubFig [35] LFW [31] AgeDB-30 [44]
Accuracy AUROC

Defocus Lens [51] 0.14±0.01 0.76±0.03 0.65±0.02
+ White-box TVD 0.72±0.02 0.86±0.02 0.79±0.02

PP-HPE Lens [29] 0.09±0.01 0.73±0.03 0.63±0.03
+ White-box TVD 0.65±0.03 0.84±0.02 0.78±0.03

DyPP 0.09±0.02 0.72±0.02 0.63±0.03
+White-box TVD 0.54±0.03 0.81±0.03 0.75±0.03
+ Black-box TVD 0.14±0.04 0.75±0.03 0.68±0.02

mance we do not consider these sensors in the remaining experiments. Among the
LSI cameras, PP-HPE has a better trade-off than Defocus. DyPP outperforms
PP-HPE on crowd counting and object detection, but slightly underperforms on
pose estimation. This is unsurprising given that the later is specifically optimized
for pose estimation [29].
Qualitative Results Figure 4 shows examples of original images, images cap-
tured with the DyPP camera and the results of object detection, pose estimation,
and crowd counting on the latter. It is interesting that the computer vision net-
works perform quite well on images that are degraded to the point of being
nearly unintelligible for a human.
Robustness to PSF Inversion Attacks We next consider the robustness of
the different LSI cameras to PSF inversion attacks. We report white-box attack
performance for all PPCs. Note that the black-box attack is the only practical
attacks for DyPP, while the white-box attack is infeasible for DyPP, whose point
is to prevent them. We account for this by shading white-box results in the table.
Reconstruction Quality Table 6 summarizes the robustness of the LSI cam-
eras in terms of image reconstruction metrics like SSIM and PSNR between
original and reconstructed image. In both cases, lower values denote weaker
reconstruction and better privacy protection. “Raw” denotes the absence of at-
tack, showing that all cameras have comparable performance in this setting.
The remainder of the table summarizes performance under the different attack
strategies. Two conclusions can be taken. First, white-box PSF inversion attacks
are much more effective than those previously studied in the literature. For all
cameras, blind and deep learning attacks barely increase the raw PSNR/SSIM.
This is unlike white-box PSF inversion, which increases PSNR from ∼15 to ∼20
and SSIM from ∼0.55 to ∼0.75. Second, black-box inversion attacks are much
less effective than their white-box counterparts, and again unable to significantly
increase on the PSNR/SSIM of the raw measurement. Figure 5 visualizes an ex-
ample of images recovered from the DyPP sensor measurement by white-box
and black-box PSF inversion attacks. These results show that, by preventing
white-box attacks, DyPP is much more privacy-preserving than all baselines.
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Fig. 6: Camera setup and sample im-
ages. Left: Real-world privacy camera
implementation: 1. linear polarizer, 2.
Kowa 5 mm, f/1.8 lens, 3. Iris as a
field stop, 4. 50mm achromatic lens, 5.
HOLOEYE PLUTO SLM, 6. beam split-
ter, 7. 50 mm Canon camera lens, 8.
Sony IMX178 board level sensor. Right:
(from top to bottom) The ground truth
image, privacy-preserving measurement,
Privacy-preserving pose estimation.

Face Recognition Accuracy Table 7 extends the face recognition performance
characterization of Table 2 to the attack setting. Again, white-box attacks are
much more effective than black-box ones. While the PubFig recognition accu-
racy increases from 9% to 54% for the former, it remains at 14% for the latter.
Although this is less private than the raw measurements, the DyPP camera is
significantly more robust to inversion attacks than the other LSI PPCs. Similar
results hold for LFW [31] and AgeDB-30 [44], where black-box attacks are much
less effective than white-box ones.

4.3 Hardware Proof-of-concept

We validate the DyPP concept in a benchtop hardware prototype, shown 6.
In principle, any hardware that allows programmable pupil phase could be
used. Ours uses a liquid crystal on silicon (LCOS) phase-only SLM (HOLOEYE
PLUTO), which operates in a reflective geometry, to implement our dynamic
pupil phase functions. The incident light is filtered to be quasi-monochromatic
and polarized which his required by our particular SLM model. A 5 mm focal,
f/1.8 main lens forms a clean, un-blurred image at its back focal plane. We use a
relay system comprising a lens and beam splitter to project the main lens’ pupil
onto the SLM which then imparts our desired phase. Another 50 mm lens (ele-
ment 7) collects the phase-modulated light that reflects from the SLM, forming
an image on the sensor that is blurred by our prescribed PSF.

5 Conclusion

In this work, we propose a new design of PPC whose PSF is randomly sampled
from a privacy-preserving manifold in the parameter space. Due to the time-
varying nature of its PSF, this PPC design is significantly more robust to image
reconstruction attack, compared to prior PPCs with static PSF.
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