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Abstract. Aligning multiple modalities in a latent space, such as im-
ages and texts, has shown to produce powerful semantic visual repre-
sentations, fueling tasks like image captioning, text-to-image genera-
tion, or image grounding. In the context of human-centric vision, albeit
CLIP-like representations encode most standard human poses relatively
well (such as standing or sitting), they lack sufficient acuteness to dis-
cern detailed or uncommon ones. Actually, while 3D human poses have
been often associated with images (e.g. to perform pose estimation or
pose-conditioned image generation), or more recently with text (e.g. for
text-to-pose generation), they have seldom been paired with both. In
this work, we combine 3D poses, person’s pictures and textual pose de-
scriptions to produce an enhanced 3D-, visual- and semantic-aware hu-
man pose representation. We introduce a new transformer-based model,
trained in a retrieval fashion, which can take as input any combination
of the aforementioned modalities. When composing modalities, it out-
performs a standard multi-modal alignment retrieval model, making it
possible to sort out partial information (e.g. image with the lower body
occluded). We showcase the potential of such an embroidered pose rep-
resentation for (1) SMPL regression from image with optional text cue;
and (2) on the task of fine-grained instruction generation, which consists
in generating a text that describes how to move from one 3D pose to
another (as a fitness coach). Unlike prior works, our model can take any
kind of input (image and/or pose) without retraining.
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1 Introduction

People play a central role in many applications across a wide range of domains,
including robotics, digitization (such as virtual avatars), and entertainment. In
many of these contexts, the human pose is a defining characteristic. While a
large body of work aims to estimate [7,26,37] or predict it [1,5,45], for instance,
to further facilitate human-robot interaction, another seeks to generate it [23,
27,35,54, 56|, to enhance experiences in video games or virtual worlds. These
tasks demonstrate the crucial importance of human understanding.
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Fig. 1: Motivation. Comprehending a complex 3D object in a 2D world is not simple.
Having access to several of its shadows, obtained by lighting it under different angles,
can help better understand it. Similarly, we collect several multi-modal (and naturally
partial) observations of the human pose (the “shadows”), and try to create an enriched
pose embedding (the “3D” object). This embedding is derived from 3D joint rotations,
pictures of humans and pose descriptions, then further used in downstream applications
requiring human pose understanding.

Early works have focused on detecting and visually understanding people.
While human bodies can already be fairly well studied through visual data, true
human understanding goes beyond mere perception. It also relies on meaning,
that is, semantics. Now, we humans, tend to prefer when the world’s semantics
match ours. This is where natural language comes into play. Language empowers
the conveyance of complex and abstract concepts; making it possible to gather
similar elements together under the same word. For instance, one person could
have their hand at shoulder level, and another person their hand way overhead;
yet, both individuals could be “waving”.

Ultimately, both visual and textual data are essential to achieve human un-
derstanding: they are two facets of the same prism. However, both are imperfect:
visual data may exhibit occlusions or depth uncertainty, while text is relatively
ambiguous. Despite these flaws, they provide crucial information that a 3D pose
alone could not convey, such as world affordance, reality anchoring, and seman-
tics. In the end, all three modalities (visual data, text and 3D poses) can be
considered complementary — partial, yet valuable — observations of the same
abstract “human pose” concept (see Figure 1 for an illustration).

More concretely, recent advances have demonstrated the utility of pairing
images and texts to derive powerful semantic image embeddings [57]. In this
work, we extend this principle to the concept of human pose. We aim to derive
a rich pose embedding that is simultaneously semantic-, visual- and 3D-aware,
by embroidering images, texts and 3D poses together. Indeed, current endeavors
only yield coarse representations of human poses, failing to distinguish between
two similar complex poses.

Previous works have essentially focused on connecting individuals depicted
in images to their 2D or 3D pose [11,26,67,70], or on linking 3D poses with fine-
grained text descriptions [14], thereby producing strong visual pose embeddings
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or semantic pose embeddings. More recently [20] repurposed a large vision and
language transformer model to output a human pose, based on either an im-
age, text or a combination of both inputs. However, just like other multi-modal
works leveraging large language models (LLM) [18,66], it requires converting
new modalities to equivalent textual representations, so as to enable processing
in the LLM space. This process could lead to partial loss of modality-specific
information, in particular information that cannot be transcribed through text.
Another body of works [13,60,65] proposes to unify human-centric perception
tasks under a single multi-modal model. Yet, these models are generally trained
with task-specific objectives. Overall, recent multi-modal methods tend to align
modalities to enable any-to-any translation [24,48], but do not necessarily com-
bine multi-modal information to build a single versatile representation.

In this paper, we design a multi-modal framework that embroiders different
modalities, so as to build a richer semantic-, visual-, 3D-aware pose embedding
space. We use a transformer to aggregate information from available modalities
within a single global token. The model is trained with uni-modal contrastive
objectives, on the reprojections of this global representation to each modality
space. As a result, we can enhance any single modality embedding fed to our
model with multi-modal awareness. We demonstrate the benefit of our proposed
pose representation by addressing the tasks of any-to-any multi-modal retrieval,
pose estimation, as well as pose instruction generation, which has a direct ap-
plication in automatic fitness coaching. This task consists in producing a text
that specifies how to modify one pose into another. Differing from the initially
proposed baseline PoseFix [15], the utilization of our multi-modal representation
makes it possible to process direct camera input without the need for additional
retraining. In summary, our contributions list as follow:

*® We introduce a new framework to embroider together several human pose-
related modalities and derive a rich semantic-, visual-, 3D-aware pose embed-
ding space (Section 3), We train it on the adapted BEDLAM-Script dataset
(a description-augmented version of BEDLAM [6]). As a direct side-product,
we present results for any-to-any multi-modal retrieval (Section 4).

#* We showcase an application of the proposed enhanced pose representation
for the task of pose instruction generation (Section 5). Although our method
is almost exclusively trained on synthetic data (the proposed BEDLAM-Fix
dataset), we obtain promising results on real-world images.

%% We illustrate SMPL regression as another application (Section 6).

2 Related Work

We propose a novel multi-modal human pose representation, using a framework
related to general multi-modal alignment, which can be applied to downstream
tasks such as pose instruction generation. We briefly review related methods.

Multi-modal representations of humans. Several methods proposed to
learn efficient pose-structured human image representations [10,11,70], but do
not consider valuable extraneous information (3D, or finer-semantics brought by
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text data). A growing body of work, focusing on human-centric perception, use
more human-related multi-modal data (e.g. RGB images, depth maps, 2D key-
points, 3D pose and shape, visual attributes or description etc.) [29] to perform
diverse tasks, e.g. person re-identification, human parsing, pose estimation, ac-
tion recognition, attribute recognition etc. These works usually resort to task- or
dataset-specific objective functions, to train a single model taking multi-modal
input. PATH [60] learns a shared image transformer with task-specialized pro-
jectors and dataset-dedicated heads. UniHCP [13] processes the image via cross-
attentions taking task-specific queries, task-wise interpreted as a set of features
directly denoting the expected task output. Less visual-centric, Hulk [65] trains
modality-specific tokenizers which outputs are processed in a shared encoder and
decoded based on given modality indicators (“query tokens”) to perform modality
translation. Unlike these works, we introduce a task-agnostic multi-modal-aware
representation, that could be used out-of-the box in any pose-related task. In
particular, we show its effectiveness on the task of pose instruction generation
from images, which requires adequate human pose perception and a fine-grained
semantic understanding of the body/ parts and their relationships.

Closer to this idea, PoseScript [14] models semantic pose embeddings by
pairing 3D poses and descriptions in natural language. However it does not
consider the visual modality. More recently, ChatPose [20] append a SMPL [44]
projection layer to a large vision and language model [43], so to leverage its
reasoning abilities for pose estimation and text-to-pose generation. They hence
derive a visual-semantic 3D pose representation, yet constrained to live in the
textual space. Also, the model is not designed to take direct 3D pose input.

Multi-modal alignment. It is common to align different modalities to per-
form multi-modal applications. Efforts spanned aligning text and images [19,
22, 36, 38], videos [2, 3, 42|, audio [30, 50], robotic states [18], 3D shapes [58],
3D scenes [31], 3D human poses [14], human motions [55, 68], and so forth.
Beyond empowering cross-modal retrieval, connecting modalities gives birth to
powerful multi-informed versatile encodings. One of the most recent iconic works
is CLIP [57], which learns a joint embedding space for images and texts with
contrastive learning. The produced visual semantic representations are reused
off-the-shelf in a variety of tasks and domains [16,33,61,69]. Research in multi-
modal alignment further stepped up thanks to the introduction of ever-growing
datasets, computational resources and models, which make it possible to get
qualitative pseudo labeling [48,67] or reliable synthetic data [8].

Some works have explored aligning more than two modalities. Omnivore [25]
aligns several unpaired labeled visual modalities by feeding all visual patches to a
single transformer, trained for classification. All modalities end up being encoded
in the same space, hatching cross-modal retrieval. ImageBind [24] brings it one
step further by additionally considering non-visual modalities such as audio and
text, leveraging the natural co-occurrence of images with other modalities.

Other recent works align modalities to facilitate any-to-any generation. NExT-
GPT [66], similar to Palm-e [18], feeds pretrained uni-modal representations to
learnable modality-specific projections layers, such that they can be processed
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by a frozen LLM [12]. Eventually, the outputs are re-projected in uni-modal
spaces and fed to pretrained diffusion models for generation. 4M [48] tokenizes
all modalities to process them with the same tansformer decoder, trained with
masked modeling (for visual modalities) and next token prediction (for sequence
modalities), for a random subset of (modality) query and target tokens. It con-
verts modalities but does not learn a single multi-modal-informed representation.
Different from the above-mentioned methods, we go beyond aligning or con-
verting modalities. We learn to intermingle them with the aim of obtaining a
unique, richer, multi-modal-informed representation, computable from any set
of input modalities. Basically, we use multi-modal data to figure how to enhance
uni-modal encodings. In particular, this augmented embedding is not compelled
to live in the textual space as in [18, 20, 66], which could lead to the loss of
non-textual information. Instead, it is free to assume any relevant structure in
its own embedding space. For the same reason, we apply contrastive learning on
the modality-specific spaces instead of the augmented embedding space, using
uni-modal reprojections of the augmented encoding.
Pose instruction generation is a recent task, which consists in generating an
instruction explaining how to correct one pose in another specific pose. FixMy-
Pose [34] introduced a first dataset based on highly-synthetic pairs of images.
ATFit [21] focuses on video data, and learns to produce feedbacks out of template
sentences, based on the comparison between a trainee’s and a trainer’s motion
extracted features. More recently, PoseFix [15] adapted the automatic caption-
ing pipeline from [14] to create synthetic instructions for a pair of 3D poses
sampled from AMASS [46]. Those prove useful for pretraining, before finetuning
on a small set of human-written texts. The proposed text generation model is a
simple text decoder conditioned on pose pairs via cross-attentions. However, it
is limited to parameterized pose input (i.e. 3D joint rotations), and thus cannot
be directly applied to real-world scenarios, as in a fitness coaching application
receiving camera input. In this work, we use our 3D-, visual- and semantic-aware
embedding to scale the task on direct image input, without having to train the
model on a dataset of real images and textual instructions together.

3 The PoseEmbroider framework

We now describe our proposed framework for learning multi-modal enhanced
pose representations, see Figure 2 for an illustration. Note that the overall de-
sign does not rely on specific types or numbers of modalities, allowing for its
extension to other domains and sets of modalities. In this paper, we focus on
three modalities: images of people, 3D human poses (parameterized by the ro-
tations of the main SMPL [44] body joints) and text, in the form of fine-grained
pose descriptions in natural language. Each of them provide different kinds of
information, be it visual, spatial and kinematic, or semantic. We aim to leverage
their partial representation of the same abstract concept of human pose, to build
a richer pose embedding. For simplicity, we assume in what follows that we have
a tri-modal dataset, i.e. with samples from all modalities for each example.
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Fig.2: The PoseEmbroider framework. Each modality is encoded independently
by an encoder (left). The PoseEmbroider (right) is a transformer-based model, taking
a varying set of modality inputs. It produces a visual-, 3D-, semantic-aware pose rep-
resentation Z, by embroidering together available inputs. The model is trained using
uni-modal contrastive losses between the modality-specific reprojections m € {9, p, f}
of T and the original modality encodings m € {v,p,t}. The total objective function
accounts for various Zg, obtained from the set G of input modalities. z and e, are
learnable tokens, ‘+’ denotes an addition.

3.1 Method

Encoders. Similar to other multi-modal methods [24], we resort to pretrained
uni-modal encoders for each modality. Specifically, we use a Vision Transformer [17]
tuned on human data [53] to encode images; a variant of the VPoser [53] en-
coder for poses (trained on the main 22 body joints); and a text transformer [62]
mounted on top of DistilBERT [59] frozen word embeddings, obtained from a
text-to-pose retrieval model [14]. All encoders are used frozen.

General framework. Each modality input is first processed by its respective
frozen pretrained encoder, then fed to a modality-specific learnable linear layer
followed by a ReLU activation, to select pose-related features and filter out irrel-
evant details (e.g. background information in images). Average pooling further
reduces multi-token representations into single vectors (image case). Let v, p
and t in R? denote the corresponding outputs for the image, pose and text of
a data triplet respectively. In what follows, we use m to refer to any of them:
m e M = {v,p,t}.

The PoseEmbroider mainly consists of a transformer [62]. It takes a variable
set of input modalities G € S, in addition of a learnable global token z, that
will collect and aggregate pose knowledge across all input modalities through
the attention mechanisms of the transformer. We consider any combination of
one (“single input” type) or two (“dual input” type) input modalities, i.e. S =
Hvh Ap} {t} {v,p} {v, t}, {p, 1} }.

Hence, the PoseEmbroider is provided with {z}UG, where a modality-specific
learnable token e,, € R? has been added to each input modality encoding in
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order to inform the transformer about their nature. e,, can be compared to a
special kind of learnable positional encoding.

The PoseEmbroider outputs |G| + 1 tokens. Yet, we only consider the first
one, noted Zg, which derives directly from the token x and holds specific infor-
mation from G. It represents the richer, multi-modal informed pose embedding,
illustrated as the 3D object in Fig. 1. It can be obtained from any set of input
modalities, and be used as main pose representation in downstream tasks.

Training. To ensure Zg carries important visual, spatial & kinematic and se-
mantic pose information, we compare it to each of the original unimodal encod-
ings. However, we do not perform a direct comparison of g with each modality
encoding m € M, as it would compel all modalities to live in the same space, and
eventually lead to the collapse of Z¢ to a representation of common information
between modalities. Instead, we want Zg to be an enhancement of its compo-
nents. Even more, we want it to form sensible postulates for the modalities that
did not directly contributed to its derivation.

Thus, to train Tg, we project it “back” to each modality space thanks to
expendable modality-specific multi-layer perceptrons [28] (MLPs). These yield
e € Mg = {bc,pac,ta}. For a given batch of B training samples, we then
compute the uni-modal contrastive loss for each modality m, following the widely
used InfoNCE [51]:

exp(y o(yi, zi))
Eel ) = Z B, exp (v o0, 2)) W

where v is a learnable temperature parameter and o is the cosine similarity
function defined as o(y,z) = y'z/(|[ylll|z]). Denoting Mg = {(m,7ng) | m €
M, 1qa € Mg of the same modality}, the total loss is then:

L= Le(m,rng). (2)

GeS Mg

Metaphorically, if we refer to Figure 1, we used available shadows (G) to
try to infer the 3D object (Zg), thanks to the PoseEmbroider. To optimize the
latter, we light the object under different angles to check shadow consistency in
a soft way (L£). Specifically, we do not require the shadows to perfectly match
(as it would be the case with a reconstruction loss): we only enforce the ranking
of the real object’s shadow to be better than another object’s shadow. Actually,
during this “validation” step, we assume access to all ground-truth shadows: even
if one or more modalities were missing from the input, as e.g. with {p}, the loss
is applied on all available modalities. This design forces Z¢g to be multi-modal
aware, beyond being simply multi-modal informed. In other words, the PoseEm-
broider aims at providing a strong representation of any (partial) combination
of the modalities.

3.2 Dataset: BEDLAM-Script

A multi-modal model requires multi-modal data. However, there is no existing
dataset that gathers images, 3D poses and texts all at once. In fact, perfect
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3D pose labeling generally requires expensive and non-scalable in-studio cap-
ture. Therefore, datasets with real-world images and good-quality 3D human
pose annotations are rare, which motivates the creation of synthetic datasets.
BEDLAM [6] is the most recent endeavor in this regard. It provides rendered
sequences of clothed humans in different environments, performing a wide va-
riety of motions extracted from the AMASS dataset [46]. It thus comes with
ground-truth 3D pose annotations. Previous works [9] have shown that training
on BEDLAM brought the best result for pose estimation over various real data
benchmarks [41,64,71], compared to training on other (including real) datasets.

We thus opt for this dataset. Similar to [14], we first select a set of N diverse
poses by farthest point sampling, i.e. sampling iteratively the pose that has
the largest mean-per-joint distance with respect to the set of poses already se-
lected. This process makes it possible to efficiently reduce the size of the training
(N=50k) and validation (N=10k) sets while preserving data diversity. We aug-
ment each image-pose pair with 3 detailed pose descriptions using the automatic
captioning pipeline from PoseScript [14]. Specifically, given 3D joint coordinates,
they compute a collection of “posecodes” informing about atomic pose configu-
rations (e.g. bending of a body part, relative body part positioning, etc.). Those
are further converted to natural language description thanks to a set of syntactic
rules, merging posecodes that carry similar semantic information. We improve
this pipeline to account for head rotations and self-contacts, so as to get better
pose descriptions. We do so using a mesh rendering of the pose, and a self-
contact detection algorithm [49] coupled with a semantic segmentation of body
vertices. We refer to the resulting dataset of images, 3D poses and text descrip-
tions as BEDLAM-Script, and train our PoseEmbroider framework on it. While
its training involves exclusively synthetic data, we show that the PoseEmbroider
produces convincing results on real-world images and human-written texts.
Data processing. We consider normalized 3D body poses, i.e. with the global
rotation set such that the hips are aligned and always facing in the same di-
rection. The motivation is to force the model to extract more general, world-
anchored pose knowledge, in contrast to camera-dependent pose information.
While BEDLAM annotations are in SMPL-X [53] format, i.e. they include hands,
we restrict the 3D pose representation to the main 22 joints of the body. Fu-
ture work could additionally consider the hands, by also adapting the automatic
captioning pipeline to provide such information, e.g. as in [40].

4 Results on Multi-Modal Retrieval

As a direct side product of its training, the PoseEmbroider framework exhibits
multi-modal retrieval abilities. In this section, we report results for any-to-any
multi-modal retrieval, and use this task for our ablations. We additionally show-
case qualitative results for edited-retrieval in a multi-modal setting.

Evaluation metrics. We consider all possible any-to-any multi-modal retrieval
sub-tasks. This results in 6 single-query and 3 dual-query tasks. The standard
metric for retrieval evaluation is the recall@K (RQK), i.e. the percentage of
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Table 1: Multi-modal retrieval results. Models are trained on BEDLAM-Script
and evaluated on its validation set. The total mRecall is the average of single and dual,
corresponding to the average over all single- and dual-query retrieval tasks respectively.
V, P, and T refer to the “visual” (image), “pose” and “text” modalities respectively. The
aligner trained on single-input only (first row) corresponds to the idea of [14,24].

mRecall Single query Dual query

total single dual V—P V=T P—=V P-T T—V T—P VP-T PT-V VTP

Representation & training input subsets
Aligner (single-input only) 724 66.5 78.3 775 463 758 760 462 775 713 70.7 92.8

Aligner (dual-input extension) 72.5 66.4 785 76.9 458 758 76.3 459 778 720 70.4 93.1
PoseEmbroider (single input only) 69.7 66.7 T72.7 80.2 48.0 74.6 T77.7 43.6 764 67.5 61.9 88.7
PoseEmbroider (dual input only) 71.1 587 83.6 69.7 30.0 78.0 787 26.5 69.2 79.6 78.2 93.0
PoseEmbroider (S5) 746 669 822 79.7 478 762 787 432 758 77.9 75.1 93.7
PoseEmbroider architecture

MLP core 734 66.5 80.3 79.9 46.4 755 79.2 41.9 76.2 76.8 71.1 93.0
Trans. core, no projection heads 73.5 66.4 80.5 80.2 46.7 759 76.5 43.6 75.6 75.0 73.6 93.0

Transf. core, w/ projection heads (proposed) 74.6 66.9 822 79.7 478 762 787 432 758 779 75.1 93.7

queries whose annotated target appears within the top-K of retrieved elements.
We report the average recall over K € {1,5,10}.

Alignment baselines. To highlight the benefits of the PoseEmbroider represen-
tation over a more typical alignment-based representation, we further introduce
the Aligner model (similar in number of learnable parameters to the full PoseEm-
broider). Unlike the PoseEmbroider, the frozen pretrained uni-modal encoders
in the Aligner are followed by deep learnable modality-specific projection heads
(i.e. MLPs, as opposed to single modality-specific layers leading to a shared
transformer). The MLP heads are trained with pair-wise and triplet-wise align-
ment losses to produce a joint embedding space:

c=% ch(m,@q;q). (3)

GeS m¢G

Simply put, there is one contrastive loss term L.(mj, mg) for each pair of
modalities (single input), and one for each kind of dual input, where the dual
query representation is computed as the average of its components’ features.
We denote as Aligner (single-input only) the model trained solely on S’ =
{{v},{p},{t}}, and as Aligner (dual-input extension) the model trained on S.

The Aligner (single-input only) can be thought as a version of ImageBind [24]
applied to the human pose domain, or as a version of the PoseScript retrieval
model [14] connected with an image network. Yet, different from these ap-
proaches, and to allow a fair comparison with the PoseEmbroider, the core
encoders are not optimized: solely the MLP heads are (and are trained on
BEDLAM-Script as well). Eventually, the Aligner (dual-input extension) ex-
plicitly integrates compositionality in the training objective, conversely to [24].
Quantitative results are presented in Table 1. First of all, they reveal that
our proposed PoseEmbroider (row 5) outperforms the best Aligner baseline (row
2) by 2.9% (mRecall), showing particular progress with respect to dual queries
(4.7%). Tt suggests that the PoseEmbroider not only enhances single-modality
encodings but also effectively combines their knowledge. It is especially blatant
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His right elbow is bent at right
angle and lower than his left
elbow. Both feet are about
shoulder width apart. His left
elbow is bent and his left hand
is behind his torso and he is
gazing to the right slightly.

Example 1
Example 2
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Fig. 3: Qualitative examples of any-to-any multi-modal retrieval on the vali-
dation split of BEDLAM-Script, for diverse input and output modalities.

for pose retrieval, where the use of both image and text as input improves over
using each alone (+17.6% and +23.6%), respectively). Other cases (e.g. image re-
trieval) hint at the PoseEmbroider ability to extract intel from the most informa-
tive modality. Note that results involving both the visual and textual modalities
are the lowest for all models because they are the most ambiguous (occlusions,
truncations by image boundaries, incomplete/imprecise descriptions).

Query set ablation. It stems that the Aligner design is not very sensitive to an
enhanced optimization using input combinations (row 2 vs. row 1). In contrast,
it appears clearly that training on various sets of inputs (S) is valuable to the
PoseEmbroider, as it improves the mean Recall by +7% compared to using single
inputs only (row 5 vs. row 3). Unsurprisingly, we also observe better performance
for single queries when considering single input types during training (+13.6%),
and likewise for dual queries (+15.0%, row 3 wvs. row 4). Eventually, the best
performance for all retrieval tasks is reached when using both query types.

Architecture ablation. To justify the PoseEmbroider design, we first replace
the transformer with an MLP (row 6 in Table 1). In this setting, all modality
encodings at stake are added together and fed to an MLP, whose output plays
the role of Z¢. Unlike concatenation, the addition operation allows the model to
be run on various subsets of modalities. This model is trained with the same ob-
jective as the proposed PoseEmbroider. Next, we ablate the re-projection heads
which make it possible to use uni-modal contrastive losses. This configuration
has a training objective similar to a regular alignment model. Results reveal
that the transformer version is slightly more powerful than the MLP version
(+1.6%), and that the re-projection heads are valuable (+1.5%), especially in
the dual-query case (+2.1%).

Qualitative results. Figure 3 presents some results for any-to-any multi-modal
retrieval, demonstrating that the PoseEmbroider efficiently associates the differ-
ent pose modalities and exhibits human pose understanding.

We further consider the special use case of “edited-retrieval” where, for in-
stance, the user is looking for a 3D pose similar to the one depicted in an image,
yet a little different. The parts of the image showing unwanted pose traits are
masked while supplementary information is provided through text input. We
observe that the model is able to leverage and combine information from both
modalities to find relevant poses. Examples are shown in Figure 4.
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Fig. 4: Qualitative examples of edited-retrieval in a multi-modal setting on
BEDLAM-Script. Texts specify new traits with respect to the original pose shown in
the image. Artificial occlusion is created by overlaying a black rectangle on the image.

5 Results on human pose instruction generation

Human pose instruction generation [15,21,34] consists in generating directions
in natural language to correct a human pose. This task has direct application
in at-home fitness coaching, to provide automatic feedback. It can be solved
with a text decoder, conditioned on both the source pose A (the trainee’s) and
the target pose B (the trainer’s). The poses could be highly similar, and differ
only in subtle aspects. Hence, this task typically requires a fine-grained semantic
understanding of the human pose. Previous works [15] have proposed methods
that operate on 3D pose inputs, however they cannot handle real-world scenarios
where the user simply works out in front of their phone camera. To further
evaluate our proposed PoseEmbroider, we replace the original 3D pose encoder
in [15] by our pretrained PoseEmbroider. This configuration makes it possible
to train the text generation model on reliable 3D poses, and seamlessly transfer
to visual inputs, without requiring further training.

Datasets: BEDLAM-Fix, PoseFix-OO0S. Available datasets for this task
include PoseFix [15] and FixMyPose [34]. Both have approximately the same
training size (4-6k), and provide human-written annotations, however the first
one pairs 3D human poses from a wide variety of AMASS [46] sequences, while
the second one links highly synthetic images of poses extracted from about 20
Unity dance motions. We resort to PoseFix for finetuning the text decoder, and
restrict to out-of-sequence (OOS) pairs to eliminate noise stemming from global
rotation changes. Similar to BELDAM-Script (Section 3.2), we process BED-
LAM [6] to create pretraining data, following the same procedure as in [15].
Specifically, we sample pose pairs from BEDLAM-Script by enforcing both se-
mantic similarity and minimal pose difference constraints. We consider both
pairs of poses performed by the same subject (i.e. with the same appearance,
environment and motion) and different subjects. We further run their automatic
comparative pipeline on the 3D poses to obtain synthetic instruction texts. We
end up with 54k (resp. 12k) training (resp. validation) pairs.

Method overview. We use a similar method as [15]: the elements A and B are
encoded through siamese networks, and fused thanks to the TIRG module [63] to
condition an auto-regressive text decoder. We experiment with both the Aligner
(dual-input extension) and the PoseEmbroider for encoding the inputs. To train,
we use their cached (frozen) pretrained features, obtained from the 3D poses
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Fig.5: The pose instruction generation model. We train the model on pairs of
poses (pa,pn) and use our frozen PoseEmbroider to encode them. These two embed-
dings are fused with TIRG [63], whose output is used to condition an auto-regressive
transformer text decoder via cross-attentions. At test time, the trained model can be
directly applied on poses, images or a mix of both.

Table 2: Text generation results for different query types. Models are trained
on BEDLAM-Fix using pairs of poses only, and evaluated on the associated validation
split for queries of different natures. We further finetune the text decoder on a mix of
BEDLAM-Fix and PoseFix-OOS data, and report results on the test set of PoseFix-
OOS. The Aligner baseline represents [15].

Dataset (query type) Representation R Precision? NLP7
R@l R@2 R@3 BLEU-4 ROUGE-L METEOR

BEDLAM-Fix (P4, P5) iégilelgmbroider ?:11371 452541 4292% ?;23% %3225 i%17
BEDLAM-Fix (Vs, Vi) éloiglel]eilrmbroider 1125323 129226 223771 22;48 37728 ?::)?Z?
L ) e e e e B
BEDLAM-Fix (Va, Pp) éggzgmbroider 2219(; 239823 :ZZQZ :;((])36 ?39913 ig(]zl
A ) D 4 %00 5 B A
O - L

data. Sole the fusing module and the text decoder are being learned. At inference
time, we use any combination of 3D poses and visual input, see Figure 5.
Baseline. We use our best Aligner to represent the PoseFix baseline [15]. Indeed,
their encoder takes only 3D pose input, and is trained specifically for the task,
alongside the text decoder. Yet, we aim to compare off-the-shelf representations,
and further empower inference from visual input.

Evaluation metrics. Following [15], we retrain an instruction-to-pair retrieval
model on the aforementioned datasets to assess the semantic content of the
generated text through R-precision (with a larger, harder pool of 200). This
complements the typical n-gram based NLP metrics (BLEU-4 [52], Rouge-L [39]
and METEOR [4]) which evaluate formulation similarity with the reference text.
Quantitative results are reported in Table 2, for different sets of inputs, de-
pending on the respective nature of elements A and B at test time (i.e. 3D pose
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Bend your right knee more.  Put your left foot on the . . .
- 8 y /1 Put both hands on the floor. Move  Raise your right arm and extend it to

Move your right foot oor. Extend your arms . . .
. ) ght f X i . ) your left leg forward. Move your the left side. Move your left hand to
Sforward. Move your right  out in front of you. Turn X .
N X right leg forward. the right.
hand to your right thigh. your head to the left.

Fig. 6: Instruction generations on real-world images using the PoseEmbroi-
der pose representation. The text model was trained using the frozen PoseEmbroi-
der embeddings of 3D poses only. The generated text is shown below each image pairs.

or image). The PoseEmbroider representation outperforms the Aligner repre-
sentation in all cases, particularly when both inputs are 3D poses (+36% R@1
on BEDLAM-Fix, (+41% on PoseFix-O0S), despite sharing the same 3D pose
encoder at the core. This suggests that the PoseEmbroider is indeed capable of
enhancing semantic pose representations. Notably, 3D pose inputs yield better
results than visual inputs, which are inherently less reliable (occlusions). Since
instruction generation is driven by element B, it makes sense to find better re-
sults for the setting (V4, Pg) than (P4, Vi), when compared to (Va, Vg) (+87%
vs. +36%). The setting (Va, Pg) typically corresponds to that of a fitness ap-
plication scenario, involving camera input from the user and clean, 3D pose
registrations of the target pose.

Qualitative results. In Figure 6, we present examples of generated instructions
for real-world input images, illustrating the steps for performing Yoga poses.
While the text generation model was trained using only a dataset of 3D poses
and texts, the PoseEmbroider makes it possible to transfer to image input.

6 Results on SMPL regression

We showcase results for the task of SMPL regression, where the goal is to predict
the pose and shape parameters of the SMPL body model [44] for a given input
data of any modality. This task is known as 3D Human Mesh Recovery [32],
when applied on images. We proceed similarly as before, and train a neural head
to predict SMPL parameters from pretrained, frozen features of the PoseEm-
broider and the Aligner, here obtained from image input for training. We use
the standard iterative residual network from [32] to predict the joint rotations
from the mean parameters, and an MLP to regress shape coefficients.

In Table 3, we report the average pa-MPJPE (Procrustes-aligned Mean Per
Joint Position Error) on BEDLAM-Script and 3DPW [47]. We note that the
state-of-the-art SMPLer-X Huge model [9] achieves 43 and 41mm for each re-
spectively, and that our PoseEmbroider with the trained SMPL-head is only
subpar by 6 and 12mm, while (1) leveraging a smaller ViT (base) for encoding,
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Table 3: SMPL regression results for different representations and inputs.
The regression head is trained solely on BEDLAM-Script, with frozen image-based
features of the Aligner/PoseEmbroider models. We report the pa-MPJPE in mm with
the ground truth pose, on BEDLAM-Script (validation set) and 3DPW [47] (test set).

pa-MPJPE| BEDLAM-Script 3DPW
Aligner (image) 50 54
PoseEmbroider (image) 49 53
PoseEmbroider (imagetext) 44 -
Target i : : Target
e | =
3 | 8 P

+ The right knee is /
unbent. . §
4

5
+ They are hunched et \\
p forward wi;h mel — \
forearms touching the .
thighs. N P |

Fig. 7: Immage-based SMPL regression with an optional text hint.

(2) not training the input representation end-to-end, and (3) training the re-
gression head on 50K synthetic samples only (thus exposing the domain gap on
3DPW). Interestingly, our model improves by +11% when provided text cues.
The PoseEmbroider design makes it possible to process added textual informa-
tion without any retraining, e.g. to refine estimations as illustrated in Figure 7.

7 Discussion

Conclusion. We have introduced the PoseEmbroider framework, which de-
rives visual-, 3D-, semantic-aware pose representations. Instead of aligning to
fit shared information across modalities, it is trained to combine and thus en-
rich single-modality pose representations. Beyond its direct use in any-to-any
multi-modal retrieval, the proposed versatile representation can be leveraged for
complex downstream tasks requiring fine-grained human pose understanding,
such as pose instruction generation or SMPL regression.

Limitations and future work. Future improvement could come from employ-
ing more aggressive losses (e.g. attempting to predict target features instead of
solely learning to match them), training on more data (the 50k training samples
pale in comparison to the 400 millions pairs CLIP was trained on), or incorporat-
ing a broader set of modalities (depth maps, 2D keypoints etc.). The described
training procedure resorts to a single tri-modal dataset. Yet, we can envision
learning from a set of uni-modal and bi-modal datasets, each coming with dif-
ferent groups of modalities.

Acknowledgments. This work is supported by the Spanish government with the
project MoHuCo PID2020-120049RB-100, and by NAVER LABS Europe under tech-
nology transfer contract ‘Text4Pose’.
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