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Abstract. This paper introduces a method for synthesizing time-
varying bidirectional reflectance distribution functions (BRDFs) by ap-
plying learned temporal changes to static BRDFs. Achieving realistic
and natural changes in material appearance over time is crucial in com-
puter graphics and virtual reality. Existing methods employ a parametric
BRDF model, and the temporal changes in BRDFs are modeled by poly-
nomial functions that represent the transitions of the BRDF parameters.
However, the limited representational capabilities of both the paramet-
ric BRDF model and the polynomial temporal model restrict the fidelity
of the appearance reproduction. In this paper, to overcome this limita-
tion, we introduce a neural embedding for BRDFs and propose a neural
temporal model that represents the temporal changes of BRDFs in the
latent space, which allows flexible representations of BRDFs and tempo-
ral changes. The experiments using synthetic and real-world datasets
demonstrate that the flexibility of the proposed approach achieves a
faithful synthesis of temporal changes in material appearance.

Keywords: texture synthesis · time-varying appearance

1 Introduction

Achieving realistic and natural temporal changes in material appearance is essen-
tial in computer graphics and virtual reality. Reflectances on a scene surface can
be represented by the bidirectional reflectance distribution functions (BRDFs),
which are functions of incoming and outgoing light directions and return the
reflectance rates. Parametric BRDF models [5,6,22] have been proposed to rep-
resent reflection by a set of parameters to control the appearance. However, it
is hard to manually design the transitions of the BRDF parameters to represent
natural changes of the temporal appearances.

For the synthesis of time-varying BRDFs, previous works transfer the tempo-
ral transitions of the BRDF parameters to static BRDFs, utilizing a small-scale
real-world time-varying BRDF dataset [10]. These methods approximate the
transitions of the BRDF parameters by polynomial functions to cope with the
data limitation and transfer their coefficients to a static BRDF. However, the
fidelity of the synthesized BRDFs is limited due to a lack of flexibility in (1) the
parametric representation of BRDFs and (2) the polynomial representation of
their temporal model.
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Fig. 1: Overview of the proposed method. We estimate the transitions of BRDFs over
time in the latent space, enabling the faithful synthesis of time-varying BRDFs. The
right-top figure illustrates the environment map used for rendering the results.

To address these issues, this paper presents a method that synthesizes time-
varying BRDFs using a neural temporal model that effectively captures the tem-
poral transition from limited resources on the time-varying BRDFs. The key to
our method is to disentangle the static and temporal representations as shown
in Fig. 1. Specifically, the proposed method employs a neural embedding to rep-
resent BRDFs as latent vectors, which is learned from large-scale static BRDF
databases. Given the compact embedding of BRDFs, we train a lightweight neu-
ral temporal model (NTM) using the time-varying BRDF datasets, efficiently
representing the transitions of the latent vectors over time. Our neural represen-
tations of BRDFs and the neural temporal model offer greater flexibility than
existing parametric models, allowing the synthesis of time-varying BRDFs faith-
fully reflecting both input BRDFs and temporal changes.

The quantitative evaluation using synthetic data and qualitative evalua-
tion using a real-world dataset demonstrate that the proposed method achieves
a high-fidelity synthesis of BRDFs compared to the polynomial model-based
method. Our implementation will be published upon acceptance.

2 Related work

In this section, we first review previous works dealing with time-varying BRDFs.
We then introduce neural network-based representation methods for BRDFs.

Time-varying BRDFs Gu et al . [10] introduce a real-world dataset of time-
varying BRDFs, which captures 26 samples with 5 different changes over time,
namely burning, drying of smooth surfaces, drying of rough surfaces, rusting, and
ripening. The dataset contains time-series textured BRDFs, i.e., bidirectional
texture functions (BTFs), where the BRDFs at each pixel are represented by the
Torrance-Sparrow model [22]. Capturing these real-world datasets requires large-
scale equipment (e.g ., a light stage) and substantial labor, making large-scale
data collection difficult.
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To synthesize time-varying BRDFs, [10] also proposes a model for repre-
senting the transition of the BRDF parameters, space-time appearance factor-
ization (STAF). The STAF model represents each BRDF parameter; diffuse
albedo, specular albedo, and roughness are expressed by polynomial functions
with respect to timestamp t and affine projections. While the STAF model can
be used for synthesizing new time-varying BRDFs by replacing the parameters
of the affine projections from a different static BRDF, it suffers from spatial
inconsistency due to the mismatch between the original and given parameters.

To deal with this issue, Meister et al . [17] have proposed the spatio-temporal
BRDF (STB) model, which represents each BRDF parameter with spatially-
varying polynomial functions with respect to timestep t. Based on the STB
model, the example-based approach for synthesizing time-varying BTFs, Spatio-
Temporal BRDFs transfer (STT), has been proposed. STT takes a time-varying
BTF, fitted to the STB model, and a texture image as input and synthesizes
a novel time-varying BTF, i.e., determines coefficients of polynomial functions
for diffuse albedo, specular albedo, and roughness. They first find the correspon-
dences of patches between the input texture image and the diffuse albedo map
of the input time-varying BTFs with timestep t = 0. For each corresponding
patch, the synthesized STB obtains the coefficients of the specular albedo and
roughness from the STB fitted to the input time-varying BTFs and the coeffi-
cients of the diffuse albedo from the input texture image with scale modification.
Unlike the STAF model, the STT model incorporates spatial information. How-
ever, since the specular albedo and roughness are directly derived from the input
time-varying BRDFs, transferring the temporal changes to materials with large
differences regarding specularity becomes challenging.

In contrast to these data-driven methods, Kimmel et al . [13] propose a
modeling-based simulation method of aging and weathering induced by absorbed
radiation, which is derived from physical theory. The proposed method bypasses
the difficulty of modeling each class of time-varying appearances by learning
them from data.

Neural representation for BRDF While the measured BRDFs [7,16], which store
reflectances for possible sets of lighting and viewing directions, have greater
flexibility than conventional modeling-based BRDFs [4–6,18,22,26], they require
a large number of parameters, making it hard to control the appearance by
altering these parameters. Recent studies have explored neural representations
that embed high-dimensional data into a compact latent space, which reduces
the required memory footprint and allows material editing and interpolating on
the latent space.

Hu et al . [12] have proposed the use of autoencoders to obtain a com-
pact representation of measured BRDFs. Unlike previous factorization-based
representations [3, 16], their method achieves lower reproduction error with a
smaller number of parameters. Sztrajman et al . [21] have proposed the Neural
BRDF (NBRDF) that also uses the autoencoder architecture to obtain a BRDF
from samples of measured reflectances and observed angles. NBRDF trains per-
material autoencoders and trains another autoencoder that models the weight
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Fig. 2: Overview of the proposed method. The proposed method consists of three
modules: the BRDF encoder and decoder and the neural temporal model (NTM). The
encoder and decoder are pretrained on large-scale (static) BRDF datasets. We input
time-varying BTFs as source material and embed per-pixel BRDFs into the latent
space. The NTM then learns the transitions of latent vectors over time. To synthesize
novel time-varying BTFs, we embed BRDFs in the target BTFs into the latent space.
The trained NTM subsequently estimates a time series of latent vectors conditioned by
the target BRDFs as an initial timestep, which are fed to the decoder to reconstruct
the BRDFs.

parameters of the autoencoder, resulting in better reconstructions. However,
since NBRDF needs to train the autoencoders per material, the embedding is
computationally expensive. Zheng et al . [27] adopts the neural processes [9] in
an encoder-decoder architecture to obtain a compact representation of BRDFs,
denoted as BRDFNPs. BRDFNPs takes as input the sets of reflectances and
incoming and outgoing light directions and embeds them into a latent vector.
Fan et al . [8] proposes the use of the latent space of BRDFs to synthesize the lay-
ered BRDFs, denoted as neural layered BRDFs. Conventional renderer requires
expensive computation to simulate the layered BRDFs; this method allows the
synthesis of the layered BRDFs by combining the latent vectors of the top and
bottom layer’s BRDFs. The proposed method is inspired by the neural layered
BRDFs and synthesizes the time-varying BRDFs in the latent space. For the
embedding of BRDFs, we also propose an extended method of BRDFNPs.

3 Proposed method

Figure 2 summarizes the overview of the proposed method. We begin by training
the BRDF encoder and decoder to embed a BRDF into a latent space, using
large-scale data sources of static BRDFs. To model the temporal changes, we
introduce the neural temporal model (NTM) representing the temporal changes
in the latent space. We explain the details of each step as follows.
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Fig. 3: Network architecture of the proposed BRDF encoder and decoder. The encoder
takes the sets of angles X reflectances Y as input and outputs the latent vectors zRGB

and zBRDF. We input the latent vectors zRGB and zBRDF and sets of angles X̂ into
the decoder and obtain the reflectances Ŷ corresponding to the input angles X̂ . FC,
LN, and MLP represent a fully connected layer, layer normalization [1], and multilayer
perceptron, respectively.

3.1 BRDF encoder and decoder

Figure 3 shows the network architectures of the BRDF encoder and decoder.
Similar to BRDFNPs [27], the BRDF encoder takes as input m sets of an-
gles X := {[θk ∈ R4]⊤}mk=1, where θk is the incoming and outgoing light direc-
tions for the k-th sample represented by the half-vector parameterization [19,21]

and the corresponding RGB reflectances Y :=

{[
v
(k)
r , v

(k)
g , v

(k)
b

]⊤}m

k=1

.

To better deal with the color inputs, we propose a branched network ar-
chitecture that consists of two modules: one for extracting a color latent vec-
tor zRGB ∈ R3 and another for a latent vector invariant to the permutation of
color channels, denoted as permutation-invariant latent vector zBRDF ∈ Rdz .
While the color latent vector retains information on the material color, the
permutation-invariant latent vector allows for efficient training without the need
for data augmentation related to the permutation of color channels employed
in [21].

The color latent vector zRGB is extracted by the parameter-free operation,
i.e., the color channel-wise median for all input reflectances. The permutation-
invariant latent vectors zBRDF is extracted using attention-based neural net-
works. As following the BRDFNPs, the permutation-invariant latent vectors
zBRDF is modeled as Gaussians, and the encoder outputs the mean µ ∈ Rdz

and the variance Σ ∈ Rdz of them. We first concatenate each sample from the
input angles X and reflectances Y for a each color channels, resulting input sam-

ples S = {s′k}
m
k=1 where s′k =

{[
v
(k)
r ,θ⊤

k

]⊤
,
[
v
(k)
g ,θ⊤

k

]⊤
,
[
v
(k)
b ,θ⊤

k

]⊤}
. We treat
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Fig. 4: The network architecture of NTM, which estimates the latent vector of the next
timestep using LSTM [11]. NTM incorporates two LSTM blocks: one for the color latent
vectors

{
z
(t)
RGB

}
and another for the permutation-invariant latent vectors

{
z
(t)
BRDF

}
.

each sample s′k as a permutation-invariant set of the 5-dimensional vectors and
feed them into the feature extractor. This extractor consists of self-attention [24]
and class-attention [23], which uses the class token c for the aggregation, designed
to extract features that are invariant to the permutation of the color channels.
Consequently, we obtain the sample-wise features W =

{
wk ∈ Rdw

}m

k=1
. We

then feed the sample-wise features W into the aggregator, which uses the global
average pooling [15] to compute the material-wise feature w ∈ Rdw being invari-
ant to the number of samples m. Finally, we use the multilayer perceptron (MLP)
to estimate the mean µ and the variance Σ of the permutation-invariant latent
vectors zBRDF. To handle the high-dynamic range of reflectances Y, we apply
the log transformation [27]:

l(a) = log (1+ log (1+ log (1+ log (1+ a)))) . (1)

The decoder uses MLPs with skip connections. The decoder takes as input the
concatenated latent vector

[
z⊤RGB, z

⊤
BRDF

]⊤ ∈ R3+dz , where zBRDF is randomly
sampled from the estimated normal distribution N (µ,Σ), and sets of angles X̂ .
It then outputs the reflectances Ŷ that corresponds to the input angles X̂ .

The training of the encoder and decoder follows the same procedure used
in BRDFNPs. For the training dataset, we use the MERL BRDF database [16],
containing 100 measured BRDFs, and synthesized BRDFs using the Disney prin-
cipled BRDF model [5], which is controlled by 11 parameters. During the train-
ing, half of the training batch is from MERL BRDFs, and the remaining is from
synthesized BRDFs.

3.2 Neural Temporal Model (NTM)

The NTM aims to learn the temporal changes of BRDFs through the projec-
tion of latent vectors employing Long Short-Term Memory (LSTM) [11], which
is a technique commonly used in sequential data processing. Figure 4 shows
the network architecture of the proposed NTM. The NTM uses two distinct
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LSTM blocks: one for the color latent vectors and another for permutation-
invariant latent vectors. Given n frames time-varying BRDFs, we first compute

the embedded latent vectors
{
z
(t)
RGB

}n−1

t=0
and

{
z
(t)
BRDF

}n−1

t=0
using the pre-trained

BRDF encoder. The NTM takes the latent vectors z
(0)
RGB and z

(0)
BRDF as input

and sequentially outputs the estimates of the latent vectors
{
ẑ
(t)
RGB

}n−1

t=1
and{

ẑ
(t)
BRDF

}n−1

t=1
. We then train the NTM using the following loss

L =
1

n− 1

n−1∑
t=1

(∥∥∥l−1
(
z
(t)
RGB

)
− l−1

(
ẑ
(t)
RGB

)∥∥∥2
2
+

∥∥∥z(t)BRDF − ẑ
(t)
BRDF

∥∥∥2
2

)
,

where l−1(·) denotes the inverse of the log transformation (Eq. (1)).
Once trained on the source time-varying BRDFs, the NTM takes the latent

vectors of the target static BRDFs as input and estimates the time series of latent
vectors. These latent vectors are then fed into the BRDF decoder to reconstruct
the time-varying BRDFs. The synthesis is conducted in a per-pixel manner; a
BTF is constructed by arranging the individual estimates.

4 Experiments

Clean Weathered
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N
R

30 0 7 14 21 28 35

50

Frame

Fig. 6: Reconstruction accuracy of the pro-
posed BRDF encoder and decoder for three
time-varying BTFs in the STAF database [10].

We first assess the representa-
tion capabilities of the proposed
BRDF encoder and decoder. We
then show the quantitative and
qualitative evaluations of the syn-
thesis of time-varying BTFs by
the proposed method using synthetic and real-world datasets. In the following
sections, we detail the experimental settings and present the evaluation results.

4.1 Implementation details

The proposed method is implemented using PyTorch1. We train the BRDF en-
coder and decoder for 600, 000 iterations using the Adam optimizer [14] with
the learning rate set to 1× 10−4 and the batch size to 16. Following the original
BRDFNPs, the number of samples m is set to 16, 200. The hyperparameters
of the networks dw and dz are set to 64 and 7. The training process for the
BRDF encoder and decoder requires approximately 60 hours on a single NVIDIA
QUADRO RTX 8000.

For the training of the NTM, we input a time-varying BTF as input and
independently feed the per-pixel time-varying BRDFs into the network. We train
the NTM for 900, 000 iterations using the Adam optimizer, with the learning rate
set to 5×10−4 and the batch size to 1024, which takes approximately 3.5 hours.
1 PyTorch v2.0.0, https://pytorch.org/, last accessed on July 15, 2024.

https://pytorch.org/
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MERL BRDFs

Synthesized BRDFs

Ours NBRDFBRDFNPs

Ours NBRDFBRDFNPs

Fig. 5: Evaluation of reconstruction errors for BRDFNPs [27], NBRDF [21], and the
proposed BRDF encoder and decoder. We use the MERL BRDFs [16] and our syn-
thesized BRDFs and show the PSNRs of sphere images rendered with the estimated
BRDFs. For the MERL BRDFs, five BRDFs, marked with a star indicator, are ex-
cluded from the training dataset for both our method and BRDFNPs. For the synthetic
BRDFs, the ground truth images of spheres are shown below the plot. The dotted lines
indicate the mean of all BRDFs for each method.

4.2 Representation capabilities of BRDF encoder and decoder

We compare our BRDF encoder and decoder with the state-of-the-art neural
BRDF representation methods: BRDFNPs and NBRDF. BRDFNPs are re-
trained using the same dataset as ours.

Dataset and evaluation metric We use the MERL BRDFs and randomly synthe-
sized BRDFs using the Disney principled BRDF for the evaluation. Regarding
the MERL BRDFs, 5 BRDFs out of 100 are not used in the training for ours and
BRDFNPs. We also use the STAF database [10] to evaluate the performance of
the proposed BRDF encoder and decoder for time-varying BRDFs.

For the quantitative evaluation, we render a sphere under the environment
map2, shown in Fig. 1, using the reconstructed BRDFs and compute the peak
signal-to-noise ratio (PSNR). When computing PSNR, we apply the gamma

correction [2] as Γ (v) =
(
1− e2(−βv)

) 1
γ where β = 1.0 and γ = 2.8.

Results for static BRDFs Figure 5 shows the PSNR for 100 MERL BRDFs and
100 randomly synthesized BRDFs. Ours and BRDFNPs achieve better PSNR
2 Poly Haven, https://polyhaven.com/, last accessed on July 15, 2024.

https://polyhaven.com/
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Fig. 7: Generation procedure of our synthetic time-varying BTF dataset.

than NBRDF. When comparing our method to BRDFNPs, both achieve similar
accuracy on average for MERL BRDFs, but our method excels with synthesized
BRDFs. As shown in the figure, our method performs similarly to BRDFNPs for
materials with lower roughness but better for materials with relatively higher
roughness. This is because, in the dichromatic reflection model, the specular color
is modeled by the color of the incoming light, i.e., white. Thus, our permutation-
invariant architecture is more effective for rough materials than for specular ones.

Results for time-varying BRDFs Figure 6 shows the plots of PSNRs of the
proposed BRDF encoder and decoder for three materials in the STAF database
over different frames. We can see the stable predictions of the proposed method
regardless of whether the materials are clean or weathered.

4.3 Novel BTFs synthesis

We compare the synthesis performance of the example-based method, STT [17],
and the proposed method using two datasets: our synthetic dataset and the
STAF database [10], a real-world dataset of time-varying BTFs. In the following
sections, we present a detailed description of the datasets and evaluation results.

Synthetic dataset For the quantitative evaluation, we generate time-varying
BRDFs by changing the BRDF parameters over time. For the BRDF model,
we employ the Torrance-Sparrow model [22], the same model used in the com-
parison method, STT. Specifically, the Torrance-Sparrow model b(x, y,ωi,ωo)
is described as:

b(x, y,ωi,ωo) =
Kd(x, y)

π
+Ks(x, y)ρs(x, y,ωi,ωo),

ρs(x, y,ωi,ωo) =
F (ωi,ωh)G(ωi,ωo, σ(x, y))D(ωh, σ(x, y))

4(ω⊤
i n)(ω

⊤
o n)

,

where (x, y), (ωi,ωo), n, F , G, and D are the texture coordinates, the
incoming and outgoing light directions, the normal direction, the Fres-
nel term, the Smith shadowing-masking function [20], and the GGX nor-

mal distribution function [25], respectively. Kd =
[
K

(r)
d ,K

(g)
d ,K

(b)
d

]⊤
∈ R3,

Ks ∈
[
K

(r)
s ,K

(g)
s ,K

(b)
s

]⊤
∈ R3, and σ ∈ R+ are diffuse albedo, specular albedo,
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Table 1: Mean PSNRs over time for the proposed and comparison methods with
varying the temporal parameter α and the offset parameter β. Avg. shows the average
across the different settings.

α = 0.6 α = 0.8 α = 1.0 Avg.
β=0 0.05 0.1 0.15 0.2 β=0 0.05 0.1 0.15 0.2 β=0 0.05 0.1 0.15 0.2

S1 Ours 39.9 40.2 41.7 39.3 39.4 40.2 40.5 40.5 40.6 40.5 39.2 39.4 39.3 41.1 39.3 40.1
STT [17] 39.2 40.2 40.2 39.8 39.1 38.1 38.9 38.9 38.5 38.0 37.1 38.0 37.7 37.5 37.1 38.5

S2 Ours 42.4 43.3 41.6 39.0 38.0 42.7 42.8 40.4 39.0 37.9 42.5 42.8 41.1 39.4 38.0 40.7
STT [17] 47.1 44.9 40.3 37.4 35.6 45.6 43.7 39.7 37.1 35.4 44.2 42.6 38.9 36.7 35.2 40.3

and roughness, respectively, which parameterize the appearance. Given that dy-
namic changes in the specular albedo color result in an unnatural appearance, we
use K

(r)
s = K

(g)
s = K

(b)
s = Ks, following the STAF and STB models. To mimic

the temporal changes of the appearance, we define the following two temporal
models:

1. Synthetic temporal model 1 (S1):

K
(r)
d (x, y, t) = 1

(1+αt)2K
(r)
d (x, y, 0)

K
(g)
d (x, y, t) = αt2 + 1

1+αt2K
(g)
d (x, y, 0)

K
(b)
d (x, y, t) = 1.5

1.5−αt2K
(b)
d (x, y, 0) + αt

Ks(x, y, t) = Ks(x, y, 0)
σ(x, y, t) = σ(x, y, 0)

2. Synthetic temporal model 2 (S2):
K

(r)
d (x, y, t) = α(0.9− 0.9K

(r)
d (x, y, 0))t+K

(r)
d (x, y, 0)

K
(g)
d (x, y, t) = α(0.4− 0.9K

(g)
d (x, y, 0))t+K

(g)
d (x, y, 0)

K
(b)
d (x, y, t) = α(0.15− 0.9K

(b)
d (x, y, 0))t+K

(b)
d (x, y, 0)

Ks(x, y, t) = −0.3αt+Ks(x, y, 0)
σ(x, y, t) = 0.25ασ(x, y, 0)t2 + 0.5(1 + α)σ(x, y, 0)t+ σ(x, y, 0)

These models are controlled by the initial texture parameters and the temporal
parameter α.

Using the synthetic temporal models, we generate pairs of source and tar-
get materials as illustrated in Fig. 7. The initial texture parameters are ob-
tained from off-the-shelf static materials from ambientCG3. We use the same
material for both the source and target, selecting different patches for each. In
addition, to mimic the gap between source and target materials, we introduce
the offset parameters δ ∈ R3 and β ∈ R where K

(target)
d = δ +K

(source)
d and

σ(target) = β + σ(source).

Real-world dataset From the STAF databse [10], we use the (a) Burning, (b) Cop-
per Patina, and (c) Rusting BTFs as source data. The capture time range is nor-
malized to 0 to 1, and each data has 36 frames with 300×300 texture resolution.
3 ambientCG, https://ambientcg.com/, last accessed on July 15, 2024.

https://ambientcg.com/
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Table 2: PSNRs of the final frame for the proposed and comparison methods with
varying the temporal parameter α and the offset parameter β. Avg. shows the average
across the different settings.

α = 0.6 α = 0.8 α = 1.0 Avg.
β=0 0.05 0.1 0.15 0.2 β=0 0.05 0.1 0.15 0.2 β=0 0.05 0.1 0.15 0.2

S1 Ours 39.9 41.1 42.1 41.1 41.3 39.7 40.3 37.6 36.1 40.3 36.5 36.8 38.0 39.6 38.0 39.2
STT [17] 32.1 32.3 32.4 32.4 32.5 30.6 30.8 30.8 30.9 30.9 29.4 29.5 29.6 29.6 29.6 30.9

S2 Ours 41.5 41.2 38.5 35.5 35.8 42.3 40.5 37.4 37.5 36.7 41.9 41.5 40.3 38.9 38.4 39.2
STT [17] 42.9 39.8 37.3 35.5 34.3 39.4 37.4 35.8 34.6 33.7 36.2 35.1 34.1 33.4 32.9 36.2

For the target material, we use three different data: (a) a Wood from the
STAF database, (b) a Copper material from ambientCG, and (c) a Steel from
the MERL BRDFs. Given that the MERL BRDFs lack spatial variation, we treat
them as spatially uniform BTFs.

Experimental result for our synthetic dataset We vary the temporal parameter α
and the offset of roughness β as α ∈ {0.6, 0.8, 1.0} and β ∈ {0, 0.05, 0.1, 0.15, 0.2}.
We use δ = [0.1,−0.1, 0]⊤ in synthetic temporal model 1 and δ = 0 in synthetic
temporal model 2.

Tables 1 and 2 present the mean PSNRs over time and the PSNRs of the final
frame, respectively, for the proposed method and the comparison method, STT.
For two scenes, we show the plots of PSNRs over time in Fig. 8 and visualizations
in Figs. 9a and 9b. The PSNRs are computed in the same manner as described
in Sec. 4.2. For the visualization, we render a pot scene with the estimated
BTFs under the environment map shown in Fig. 1. Complete visualizations are
available in the supplementary material.

Overall, the proposed method achieves better synthesis accuracy than STT.
From the plots of PSNRs, we can see that STT experiences an increase in er-
rors as time progresses. When there is a gap, particularly in specularity, i.e.,
roughness, between the source and target materials, STT struggles to accurately
reflect the target material, resulting in significant errors as shown in Fig. 9b,
while STT can achieve accurate results for the scene with the small gap. In con-
trast, the proposed method precisely reproduces the target material. Based on
the PSNRs of the final frames, the proposed method outperforms STT in almost
all scenes.

Experimental result for the real-world dataset Figure 10 shows the visual results
of synthesized BTFs by the proposed method and the comparison method, STT,
for the three test scenes: (a), (b), and (c). In scene (a), both the proposed method
and STT achieve comparable results, given that the source and target scenes
share similarities in both reflectance and texture. However, in scene (b), STT
fails to preserve the texture of the target BTF due to the failure of the patch
matching in the source texture. In contrast, the proposed method maintains
texture through its per-pixel approach. In scene (c), STT fails to accurately
reproduce the specularity of the target material, as it relies solely on the specular
albedo and roughness derived from the source material. In contrast, our proposed
method faithfully reflects the specularity inherent in the target BTFs.
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Fig. 8: Plots of PSNRs over time for two scenes in our synthetic dataset.

4.4 Ablation study of permutation-invariant architecture

To confirm the effectiveness of the permutation-invariant architecture in the
BRDF encoder and decoder for BTF synthesis performance, we conduct ablation
studies comparing results with and without the proposed architecture, i.e., ours
and BRDFNPs [27]. Figure 11 shows the synthesis accuracies for the same two
scenes in Fig. 8, demonstrating our consistently superior performance compared
to BRDFNPs.

5 Discussion

This paper presents a method to synthesize time-varying BRDFs from source
time-varying BRDFs and a target static BRDF. In contrast to previous methods,
which suffer limited representation capabilities of parametric BRDF models and
the polynomial temporal models, our proposed method achieves accurate syn-
thesis through the use of neural embedding of BRDFs and a lightweight neural
temporal model (NTM). For neural embedding, we introduce color latent and
permutation-invariant latent representations, which offer efficient representation
for a wide range of BRDFs. The proposed NTM represents temporal changes
in BRDFs as the projections of latent vectors, which have great flexibility. Our
experiments demonstrate that the proposed method excels in scenes with a large
gap in reflectance properties between the source and target BRDFs. As a result,
the proposed method enables us to easily generate time-varying appearances
without manually designing the transitions of the BRDF parameters.

Limitation One of our limitations is that, since the proposed method trains the
NTM for each specific temporal change in materials, we need to train and select
the appropriate NTM according to the input target. Exploring adaptive synthe-
sis through material classification and user instruction represents a promising
direction for our future work.
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Table 2. (Top) Chamfer distance (#) and (Bottom) F-score (") [18,
19] of recovered geometry on DiLiGenT-MV benchmark [21].

Bear Buddha Cow Pot2 Reading Average

R-MVPS [28] 1.070 0.397 0.440 1.504 0.561 0.794
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MVAS (ours) 0.909 0.754 0.907 0.962 0.546 0.816
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Figure 7. Visual comparison of recovered geometry.
R-MVPS [28], B-MVPS [21], and UA-MVPS [18] require
coarse geometry and use all 20 views for optimization, while
PS-NeRF [41] and ours use a sphere initialization and 15 views.

Table 3. Mean angular error (#) of recovered normal maps [21],
evaluated using (Top) 5 test views and (Bottom) all 20 views.

Methods # views Bear Buddha Cow Pot2 Reading Average

R-MVPS [28]

5

12.80 13.67 10.81 14.99 11.71 12.80
B-MVPS [21] 3.80 10.57 2.83 5.76 6.90 5.97
PS-NeRF [41] 3.45 10.25 4.35 5.94 9.36 6.67
SDPS [5] 7.59 11.16 9.46 7.95 16.16 10.46
MVAS (ours) 3.08 9.90 3.72 5.07 10.02 6.36

R-MVPS [28]

20

12.70 13.63 10.92 14.91 11.79 12.79
B-MVPS [21] 3.81 10.58 2.86 5.72 6.98 5.99
PS-NeRF [41] 3.32 10.55 4.21 5.88 8.97 6.59
SDPS [5] 7.72 11.03 9.65 8.14 15.59 10.42
MVAS (ours) 3.09 9.78 3.74 5.04 10.06 6.34

4.2. MVAS for symmetric-light photometric stereo

Some photometric stereo methods can estimate azimuth
angles well but struggle with zenith angles [3, 23]. This
section shows how MVAS can be used for an uncalibrated
photometric stereo setup to eliminate the need for tedious
zenith estimation while allowing full surface reconstruction.

We use the setup shown in Fig. 9 to obtain multi-view
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Figure 8. Visual comparison of recovered normal maps and an-
gular error maps from the first view of DiLiGenT-MV [21] on the
object “Pot2” and “Reading.”

Figure 9. Our uncalibrated symmetric-light photometric stereo
setup. Four lights are mounted symmetrically around the camera.
We put the target object on a rotation table and capture about 30
views ⇥ 5 images in each view.

azimuth maps. We place four lights symmetrically around
the camera and the target object on a rotation table. In each
view, we capture one ambient-light image and four lit im-
ages. The ambient-light images are used for SfM [30] to
obtain the camera poses and are input to MVS [31] for com-
parison. Using the four lit images, The azimuth angles can
be trivially computed from the ratio of the vertical to the
horizontal difference image [23].

Figure 10 compares reconstructed surfaces and normals
by Colmap [31] and MVAS. The first object shows a scene
with challenging white planar faces. Photo-consistency-
based MVS fails to recover the textureless region, while
TSC succeeds in the planar region. This is possibly due
to that TSC can still determine surface normals with wrong
correspondences in a planar region, as discussed in Sec. 3.2.
The second object has a dark surface, which is also chal-
lenging for photo-consistency, and Colmap [31] struggles
to recover the correct surface normals.

4.3. MVAS with polarization imaging

This section shows the application of MVAS on azimuth
maps obtained passively by a snapshot polarization camera,
which makes the capture process as simple as MVS. Since
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Figure 7. Visual comparison of recovered geometry.
R-MVPS [28], B-MVPS [21], and UA-MVPS [18] require
coarse geometry and use all 20 views for optimization, while
PS-NeRF [41] and ours use a sphere initialization and 15 views.

Table 3. Mean angular error (#) of recovered normal maps [21],
evaluated using (Top) 5 test views and (Bottom) all 20 views.
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Some photometric stereo methods can estimate azimuth
angles well but struggle with zenith angles [3, 23]. This
section shows how MVAS can be used for an uncalibrated
photometric stereo setup to eliminate the need for tedious
zenith estimation while allowing full surface reconstruction.

We use the setup shown in Fig. 9 to obtain multi-view
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Figure 8. Visual comparison of recovered normal maps and an-
gular error maps from the first view of DiLiGenT-MV [21] on the
object “Pot2” and “Reading.”

Figure 9. Our uncalibrated symmetric-light photometric stereo
setup. Four lights are mounted symmetrically around the camera.
We put the target object on a rotation table and capture about 30
views ⇥ 5 images in each view.

azimuth maps. We place four lights symmetrically around
the camera and the target object on a rotation table. In each
view, we capture one ambient-light image and four lit im-
ages. The ambient-light images are used for SfM [30] to
obtain the camera poses and are input to MVS [31] for com-
parison. Using the four lit images, The azimuth angles can
be trivially computed from the ratio of the vertical to the
horizontal difference image [23].

Figure 10 compares reconstructed surfaces and normals
by Colmap [31] and MVAS. The first object shows a scene
with challenging white planar faces. Photo-consistency-
based MVS fails to recover the textureless region, while
TSC succeeds in the planar region. This is possibly due
to that TSC can still determine surface normals with wrong
correspondences in a planar region, as discussed in Sec. 3.2.
The second object has a dark surface, which is also chal-
lenging for photo-consistency, and Colmap [31] struggles
to recover the correct surface normals.

4.3. MVAS with polarization imaging

This section shows the application of MVAS on azimuth
maps obtained passively by a snapshot polarization camera,
which makes the capture process as simple as MVS. Since
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Figure 7. Visual comparison of recovered geometry.
R-MVPS [28], B-MVPS [21], and UA-MVPS [18] require
coarse geometry and use all 20 views for optimization, while
PS-NeRF [41] and ours use a sphere initialization and 15 views.

Table 3. Mean angular error (#) of recovered normal maps [21],
evaluated using (Top) 5 test views and (Bottom) all 20 views.
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B-MVPS [21] 3.80 10.57 2.83 5.76 6.90 5.97
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4.2. MVAS for symmetric-light photometric stereo

Some photometric stereo methods can estimate azimuth
angles well but struggle with zenith angles [3, 23]. This
section shows how MVAS can be used for an uncalibrated
photometric stereo setup to eliminate the need for tedious
zenith estimation while allowing full surface reconstruction.

We use the setup shown in Fig. 9 to obtain multi-view
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Figure 8. Visual comparison of recovered normal maps and an-
gular error maps from the first view of DiLiGenT-MV [21] on the
object “Pot2” and “Reading.”

Figure 9. Our uncalibrated symmetric-light photometric stereo
setup. Four lights are mounted symmetrically around the camera.
We put the target object on a rotation table and capture about 30
views ⇥ 5 images in each view.

azimuth maps. We place four lights symmetrically around
the camera and the target object on a rotation table. In each
view, we capture one ambient-light image and four lit im-
ages. The ambient-light images are used for SfM [30] to
obtain the camera poses and are input to MVS [31] for com-
parison. Using the four lit images, The azimuth angles can
be trivially computed from the ratio of the vertical to the
horizontal difference image [23].

Figure 10 compares reconstructed surfaces and normals
by Colmap [31] and MVAS. The first object shows a scene
with challenging white planar faces. Photo-consistency-
based MVS fails to recover the textureless region, while
TSC succeeds in the planar region. This is possibly due
to that TSC can still determine surface normals with wrong
correspondences in a planar region, as discussed in Sec. 3.2.
The second object has a dark surface, which is also chal-
lenging for photo-consistency, and Colmap [31] struggles
to recover the correct surface normals.

4.3. MVAS with polarization imaging

This section shows the application of MVAS on azimuth
maps obtained passively by a snapshot polarization camera,
which makes the capture process as simple as MVS. Since
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Figure 7. Visual comparison of recovered geometry.
R-MVPS [28], B-MVPS [21], and UA-MVPS [18] require
coarse geometry and use all 20 views for optimization, while
PS-NeRF [41] and ours use a sphere initialization and 15 views.

Table 3. Mean angular error (#) of recovered normal maps [21],
evaluated using (Top) 5 test views and (Bottom) all 20 views.
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4.2. MVAS for symmetric-light photometric stereo

Some photometric stereo methods can estimate azimuth
angles well but struggle with zenith angles [3, 23]. This
section shows how MVAS can be used for an uncalibrated
photometric stereo setup to eliminate the need for tedious
zenith estimation while allowing full surface reconstruction.

We use the setup shown in Fig. 9 to obtain multi-view
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Figure 8. Visual comparison of recovered normal maps and an-
gular error maps from the first view of DiLiGenT-MV [21] on the
object “Pot2” and “Reading.”

Figure 9. Our uncalibrated symmetric-light photometric stereo
setup. Four lights are mounted symmetrically around the camera.
We put the target object on a rotation table and capture about 30
views ⇥ 5 images in each view.

azimuth maps. We place four lights symmetrically around
the camera and the target object on a rotation table. In each
view, we capture one ambient-light image and four lit im-
ages. The ambient-light images are used for SfM [30] to
obtain the camera poses and are input to MVS [31] for com-
parison. Using the four lit images, The azimuth angles can
be trivially computed from the ratio of the vertical to the
horizontal difference image [23].

Figure 10 compares reconstructed surfaces and normals
by Colmap [31] and MVAS. The first object shows a scene
with challenging white planar faces. Photo-consistency-
based MVS fails to recover the textureless region, while
TSC succeeds in the planar region. This is possibly due
to that TSC can still determine surface normals with wrong
correspondences in a planar region, as discussed in Sec. 3.2.
The second object has a dark surface, which is also chal-
lenging for photo-consistency, and Colmap [31] struggles
to recover the correct surface normals.

4.3. MVAS with polarization imaging

This section shows the application of MVAS on azimuth
maps obtained passively by a snapshot polarization camera,
which makes the capture process as simple as MVS. Since
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(b) synthetic temporal model 2 (S2) with α = 1.0 and β = 0.2.

Fig. 9: Visual results for two scenes in our synthetic dataset. The top row illustrates
the target and source materials, followed by rows that present the ground truth (GT)
and estimated results by the proposed and comparison methods alongside their error
maps. The numbers under the error maps indicate the PSNRs.
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(a) Source: Burning, Target: Wood from the STAF database.
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(b) Source: Copper Patina, Target: Copper from ambientCG.
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(c) Source: Rusting, Target: Steel from the MERL BRDFs.

Fig. 10: Visual results for our real-world experiments. The source time-varying BTFs
are obtained from the STAF database [10].
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Fig. 11: Plots of PSNRs with and without the proposed permutation-invariant archi-
tecture. BRDFNPs [27] is the original architecture without the proposed module.
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